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H3K36 methyltransferase NSD1 regulates chondrocyte
differentiation for skeletal development and fracture repair
Rui Shao1,2, Zhong Zhang2, Zhan Xu2, Huiling Ouyang2, Lijun Wang2, Hongwei Ouyang 3,4, Matthew Greenblatt 5, Xi Chen 6 and
Weiguo Zou 1,2

Chondrocyte differentiation is a critical process for endochondral ossification, which is responsible for long bone development
and fracture repair. Considerable progress has been made in understanding the transcriptional control of chondrocyte
differentiation; however, epigenetic regulation of chondrocyte differentiation remains to be further studied. NSD1 is a H3K36
(histone H3 at lysine 36) methyltransferase. Here, we showed that mice with Nsd1 deficiency in Prx1+ mesenchymal progenitors
but not in Col2+ chondrocytes showed impaired skeletal growth and fracture healing accompanied by decreased chondrogenic
differentiation. Via combined RNA sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) analysis, we
identified sex determining region Y box 9 (Sox9), the key transcription factor of chondrogenic differentiation, as a functional target
gene of NSD1. Mechanistically, NSD1 regulates Sox9 expression by modulating H3K36me1 and H3K36me2 levels in the Sox9
promoter region, constituting a novel epigenetic regulatory mechanism of chondrogenesis. Moreover, we found that NSD1 can
directly activate the expression of hypoxia-inducible factor 1α (HIF1α), which plays a vital role in chondrogenic differentiation
through its regulation of Sox9 expression. Collectively, the results of our study reveal crucial roles of NSD1 in regulating
chondrogenic differentiation, skeletal growth, and fracture repair and expand our understanding of the function of epigenetic
regulation in chondrogenesis and skeletal biology.
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INTRODUCTION
Human stature depends mainly on the growth of long bones.
Chondrocyte differentiation in the growth plate is a major factor
for bone growth and is involved in endochondral ossification, the
process that vertebrates use mainly to form the skeleton.1

Endochondral ossification begins with mesenchymal progenitor
condensation to form chondroprogenitor cells, and chondrogenic
differentiation, proliferation, and hypertrophy follow. Finally,
blood vessels, osteoblasts, and osteoclasts invade the hyper-
trophic zone to generate cancellous bone.2 For chondrogenic
differentiation, sex determining region Y box 9 (Sox9) is the key
regulator and activates the chondrocyte-specific enhancer of Col2
(collagen II). Mice with Sox9 haploinsufficiency present defective
primordial cartilage and abnormal skeletal mineralization.3 The
transcriptional regulation of Sox9 expression has been extensively
reported; for example, hypoxia-inducible factor 1α (HIF1α) directly
binds to the promoter of Sox9 and activates Sox9 expression,
affecting early skeletogenesis.4–6

Accumulating evidence indicates that epigenetic modifications
play important roles during chondrogenic differentiation and
longitudinal bone growth. The histone demethylase PHF2 can
stimulate chondrogenesis by binding to the promoter region of

chondrocyte-related genes and removing H3K9me2 from these
genes.7 Both KDM4B, an H3K9me3 demethylase, and KDM6B, an
H3K27me2/3 demethylase, play crucial roles in chondrogenesis.8,9

Mutations in KMT2D or KDM6A are causes of Kabuki syndrome,
characterized by mild-to-moderate intellectual disability, typical
facial features, and short stature.10,11 Combined loss of the H3K27
methyltransferases EZH1 and EZH2 in mice severely impairs
skeletal growth by affecting chondrogenesis in the growth plate
and chondrocyte proliferation and hypertrophy.12 Beyond these
processes related to H3K9 and H3K27 regulation, epigenetic
regulation of chondrocyte differentiation and skeletal develop-
ment remains to be further studied.
Nuclear receptor binding SET domain-containing protein 1

(NSD1), encoded by the Nsd1 gene, catalyzes the mono- and
dimethylation of histone H3 at lysine 36 (H3K36).13 In the clinic,
deletion or mutation of the NSD1 gene are the major causes of
Sotos syndrome (cerebral gigantism),14,15 a genetic disorder with
increased bone growth during infancy and childhood and normal
height after puberty,16 strongly indicating that NSD1 is associated
with bone growth. Histone H3 lysine 36 to methionine (H3K36M)
mutation leads to decreased H3K36 methylation levels, which
impairs mesenchymal progenitor differentiation and leads to
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undifferentiated sarcoma in mice and chondroblastoma in clinical
patients,17,18 suggesting that H3K36 methylation plays important
roles during chondrogenic differentiation and cartilage develop-
ment; however, the exact enzyme that plays the key role has not
yet been identified.
To explore the role of NSD1 and H3K36 methylation in

chondrogenic differentiation and skeletal growth, we condi-
tionally deleted Nsd1 in mesenchymal progenitors by mating
Nsd1f/f mice with Prx1-Cre mice and in chondrocytes by mating
Nsd1f/f mice with Col2-Cre mice. Strikingly, we found that
deletion of Nsd1 in Prx1+ mesenchymal progenitors but not in
Col2+ chondrocytes led to impaired skeletal growth and
fracture healing in mice. Mechanistically, NSD1 regulated
chondrogenic differentiation by controlling the expression of
Sox9 through direct regulation by modulating the occupancy of
H3K36me1 and H3K36me2 on the Sox9 promoter and indirect
regulation by binding to the Hif1α promoter. These findings
identified NSD1 as a novel regulator of chondrogenic differ-
entiation, skeletal growth, and fracture healing, providing new
insights into epigenetic regulation of chondrogenic differentia-
tion and bone growth.

RESULTS
Mice with Nsd1 knockout in mesenchymal progenitors showed
impaired cartilage development
To explore the functions of NSD1 and histone methylation in
chondrogenic differentiation and skeletal growth, we first
examined the expression levels of H3K36 methyltransferases in
a 3D chondrogenic differentiation system in vitro. Through
micromass culture with chondroprogenitor cells,19 we collected
micromasses at different differentiation times and determined
the expression levels of H3K36 methyltransferases. Among the
H3K36 methyltransferases, Nsd1 showed a significantly increased
mRNA level (Figs. 1a and S1A), raising the possibility that NSD1 is
correlated with chondrogenic differentiation. Then, we detected
NSD1 in P7 cartilage and found that NSD1 was widely expressed
in articular cartilage and the growth plate (Fig. S1B). Since Nsd1
germline knockout is embryonic lethal in mice,13 we condition-
ally knocked out Nsd1 in mesenchymal progenitors or chon-
drocytes by breeding Nsd1f/f mice with Prx1-Cre or Col2-Cre mice,
respectively20,21 (Fig. S1C, D). The specificity and efficiency of
Nsd1 knockout were verified by qRT-PCR analyses (Fig. S1E, F). In
Nsd1f/f;Prx1-Cre mice, chondrogenesis lagged behind that in wild-
type littermate mice (Fig. 1b), and whole-mount in situ
hybridization staining of Col2 showed delayed autopod forma-
tion (Fig. 1c). Safranin O staining results showed retarded
formation of both the primary and secondary ossification centers
(Fig. 1d–f). However, in Nsd1f/f;Col2-Cre mice, chondrogenesis
and ossification center formation were normal (Fig. 1g–j). These
data indicate that NSD1 deletion in Prx1+ mesenchymal
progenitors led to embryonic and postnatal limb development
defects. However, the above defects were not observed in Nsd1f/
f;Col2-Cre mice, indicating that NSD1 functions in the very early
process of chondrogenesis.

Nsd1 deletion in mesenchymal progenitors led to skeletal growth
defects in mice
Chondrogenic differentiation is a prerequisite for endochondral
bone formation, which supports long bone growth. Having seen
chondrogenesis and cartilage development defects after NSD1
knockout, we next sought to determine whether these defects
impair bone growth. One-month-old Nsd1f/f;Prx1-Cre mice showed
smaller stature than control mice (Fig. 2a), while Nsd1f/f;Col2-Cre
mice displayed normal stature (Fig. 2b). Nsd1f/f;Prx1-Cre mice
displayed shorter hindlimb bone lengths than control mice,
whereas the hindlimb bone lengths in Nsd1f/f;Col2-Cre mice were
comparable to those in control mice (Fig. 2c, d). The growth plate

is very important for postnatal bone growth and is the basis of
endochondral bone formation. Examination of the growth plate
revealed that Nsd1f/f;Prx1-Cre mice exhibited thicker growth plates
with abnormal cellular morphology in the resting zone, shorter
and disorganized columns in the proliferating zone and a
strikingly thickened hypertrophic zone (Fig. 2e, f). However,
Nsd1f/f;Col2-Cre mice only showed slight thickening in the
hypertrophic zone of the growth plate (Fig. 2g, h). The bone
mass in Nsd1f/f;Prx1-Cre mice was lower than that in control
mice (Fig. S2A, B), and the bone mass in Nsd1f/f;Col2-Cre mice was
comparable to that in control mice (Fig. S2C, D). These results
show that Nsd1 knockout in Prx1+ mesenchymal progenitors leads
to growth plate malformation and skeletal growth defects in mice,
meaning that NSD1 plays an important role during endochondral
bone formation.

Nsd1 deletion in Prx1+ mesenchymal progenitors led to impaired
fracture healing in mice
Bone fracture healing is a regenerative process that recapitulates
many skeletal development events, including endochondral and
intramembranous ossification.22 The chondrogenesis and skeletal
growth defects in Nsd1f/f;Prx1-Cre mice prompted us to further
explore whether the absence of NSD1 affects fracture repair. X-ray
scan results showed that Nsd1f/f;Prx1-Cre mice had less callus
formation than control mice at the same time point (Fig. 3a, b).
Histological assessments showed that cartilage formation was
delayed in Nsd1f/f;Prx1-Cre mice (Fig. 3c, d). Immunofluorescence
staining of COL2 also showed delayed cartilage appearance in
calluses in Nsd1f/f;Prx1-Cre mice during fracture healing (Fig. 3e, f).
Micro-CT analysis at 18 days post fracture showed that cracks
remained in the calluses only in Nsd1f/f;Prx1-Cre mice and not in
control mice (Fig. 3g). Quantitative analysis of the micro-CT results
showed that the bone volume and trabecular bone number in
calluses in Nsd1f/f;Prx1-Cre mice were less than those in control
mice (Fig. 3h). However, in Nsd1f/f;Col2-Cre mice, callus formation
was comparable to that in control mice at the same time point
(Fig. 3i, j). Alcian blue staining showed normal cartilage formation
in Nsd1f/f;Col2-Cre mice (Fig. 3k, l). The union of fracture ends was
synchronized with that in control mice (Fig. 3m), and the bone
formed in the callus showed no difference from that in control
mice (Fig. 3n).
These findings suggest that Nsd1 deletion in Prx1+ mesench-

ymal progenitors leads to impaired fracture healing in mice.
Therefore, NSD1 in Prx1+ mesenchymal progenitors is indispen-
sable for fracture healing.

Nsd1-deficient chondroprogenitor cells showed decreased
chondrogenic differentiation
To investigate the role of NSD1 in chondrogenic differentiation,
we performed 3D pellet culture with chondroprogenitor cells and
found that pellets formed by chondroprogenitor cells from Nsd1f/f;
Prx1-Cre mice were larger and looser (Fig. 4a), with less
proteoglycan content and lower Col2 expression (Fig. 4b) than
those formed by chondroprogenitor cells from control mice.
Alcian blue staining showed that the proteoglycan content was
decreased in micromasses formed by chondroprogenitor cells
from Nsd1f/f;Prx1-Cre mice (Fig. 4c, d). qRT-PCR analyses confirmed
the decreased expression of Sox9, Col2, and Acan in micromasses
formed by Nsd1-deficient chondroprogenitor cells (Fig. 4e–h). In
chondroprogenitor cells, there is a balance among cell differentia-
tion, proliferation, and apoptosis.17,18 We next examined the
proliferation and apoptosis abilities of NSD1-deficient chondro-
progenitor cells. Crystal violet staining, quantification, and the MTT
assay revealed increased cell proliferation (Figs. 4i, j and S3A), and
the TUNEL assay showed no alterations in the apoptosis (Fig. S3B)
of Nsd1-deficient chondroprogenitor cells. These data indicate that
NSD1 is necessary for chondrogenic differentiation of chondro-
progenitor cells.
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Sox9 was regulated by NSD1 through H3K36 methylation
The skeletal growth and fracture healing defects and decreased
chondrogenic differentiation in Nsd1f/f;Prx1-Cre mice prompted us to
examine the underlying mechanisms by which NSD1 regulates
chondrogenic differentiation. Nsd1f/f chondroprogenitor cells were
immortalized and infected with lentivirus expressing Egfp or Cre
recombinase. Western blot analysis showed that Cre induced
depletion of NSD1 and decreased the H3K36me1/2 levels
(Fig. S4A). Accordingly, chondrogenic differentiation was impaired

in Cre-expressing cells (Fig. S4B). RNA sequencing (RNA-seq) data
showed that more genes were downregulated (Fig. 5a)—~65% of
the differentially expressed genes—than upregulated in Cre-expres-
sing cells (Fig. 5b), indicating that H3K36 methylation is mainly linked
to the active regulation of transcription.23,24 In addition, the
H3K36me2 chromatin immunoprecipitation sequencing (ChIP-seq)
assay revealed that differential H3K36me2 binding peaks mainly
accumulated in promoter regions close to transcription start sites
(TSSs) (Fig. 5c). After integration of the H3K36me2 ChIP-seq data
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with the RNA-seq data, 74 genes showed not only decreased
expression levels but also decreased H3K36me2 occupancy in
Cre-expressing cells (Fig. 5d). Gene Ontology (GO) analysis
revealed that these genes were mainly involved in cell
differentiation (Fig. S5). Among these genes were seven
transcription factors, including Sox9, the key transcription factor
for chondrogenic differentiation (Fig. 5e). SOX9 expression was
decreased in both Cre-expressing cells and the growth plate of
Nsd1f/f;Prx1-Cre mice (Fig. 5f, g). Mice with Nsd1 knockout in
chondrocytes did not show a change in the SOX9 protein level
(Fig. S6A). H3K36me2 ChIP-seq data showed decreased
H3K36me2 levels on the promoter of Sox9 in Cre-expressing cells
(Fig. 5h). ChIP-PCR assays confirmed the decreased occupancy of
H3K36me1 and H3K36me2 in the promoter region of Sox9 in
NSD1 knockout cells (Fig. 5i). Moreover, overexpression of Sox9 in
chondroprogenitor cells rescued the chondrogenic differentiation
defects of Nsd1-deficient cells, as demonstrated by Alcian blue
staining and qRT-PCR analysis of chondrogenic differentiation marker
genes (Fig. 5j, k). Collectively, the above data indicate that the
regulation of gene expression by NSD1 occurs mainly through H3K36
methylation in the TSS region and that Sox9 is directly regulated by
NSD1 through H3K36me1/2 occupancy in the Sox9 promoter region.

NSD1 showed direct regulation on Hif1α
As the key regulator of chondrogenic differentiation, Sox9 is
regulated by a number of factors, including HIF1α.4 When RNA-seq
data were analyzed separately, we found that the levels of Hif1α
and its target genes were decreased after Nsd1 deletion (Figs. 6a
and S7A). Western blot analysis and immunofluorescence staining

showed decreased protein levels of HIF1α after Nsd1 knockout in
mesenchymal progenitors (Fig. 6b, c), and no change in the HIF1α
protein level occurred after Nsd1 knockout in chondrocytes
(Fig. S8A). The H3K36me2 ChIP-seq results showed no obvious
binding peak differences in Hif1α (Fig. S9A); thus, we performed
NSD1 ChIP-seq with an anti-Flag antibody after transfecting the
Flag-NSD1 plasmid into ATDC5 cells, a chondrogenic cell line.25

From the Flag-NSD1 ChIP-seq results, we observed a specific NSD1
binding peak in the Hif1α promoter region (Fig. 6d). The ChIP-PCR
assay results verified this binding (Fig. 6e). Next, we cloned the
genomic sequence of the NSD1-specific-binding (NSB) peak into
the pGL3 luciferase reporter (NSB-Luc) plasmid and assessed the
effects of NSD1 on this reporter. The luciferase reporter assay
showed that NSD1 can activate NSB-Luc (Fig. 6f), indicating
positive regulation of Hif1α. Since Sox9 is a well-known target
gene regulated by HIF1α, these data indicate that NSD1 directly
regulates Hif1α and that the regulation of Sox9 by NSD1 can also
be achieved indirectly through Hif1α (Fig. 6g).

DISCUSSION
In this study, we found that the histone methyltransferase NSD1
plays a key role in chondrogenic differentiation. We observed
increased Nsd1 mRNA levels during chondrogenic differentiation.
Nsd1f/f;Prx1-Cre mice showed delayed chondrogenesis, delayed
primary and secondary ossification center formation, shorter stature,
and malformation of the growth plate, but these phenotypes were
not seen in Nsd1f/f;Col2-Cre mice, meaning that NSD1 mainly
functions in the stage before Col2+ chondrocyte formation. From
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single-cell RNA-seq data of E11.5 limb buds, we found that the
distribution of Nsd1 was more overlapped with that of Prrx1 and
broader than that of Col2a1 (Fig. S10A).26 The skeletal growth defects
in Nsd1f/f;Prx1-Cremice were due to aberrant growth plate formation,

especially the abnormal resting zone and disorganized proliferating
zone, consistent with a previous finding that chondrocyte progeni-
tors in the resting zone can supply cells for longitudinal bone growth
in postnatal mice.27 In addition to participating in bone formation
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and elongation under physiological conditions, chondrogenic
differentiation also participates in fracture healing under pathologi-
cal conditions.28 In the fracture model, mice with NSD1 deletion
showed impaired fracture healing, delayed appearance of cartilage,
and decreased endochondral bone formation. Further study showed
that NSD1 deletion disrupted the balance between the proliferation
and differentiation of chondroprogenitor cells.
In Nsd1f/f;Prx1-Cre mice, we observed shorter stature and

decreased bone length, inconsistent with the pre- and postnatal
overgrowth in Sotos syndrome patients.16 In NSD1 heterozy-
gous mice, the growth rate was normal, and the Sotos
phenotype was only observed with careful analysis of the
growth pattern, which was more subtle than that in humans.13

This inconsistency is also observed in Df(13)Ms2Dja (+/−) mice,
a chromosome-engineered mouse model of Sotos syndrome;
most of the Sotos phenotypes, except for overgrowth, are
replicated in these mice, and Df(13)Ms2Dja (+/−) mice show
reduced gestational and postnatal growth.29 In this study, the
inconsistency in bone growth between mice and humans may
be attributed to the deletion of NSD1 within a specific cell
population at a particular stage of development in our mouse
model and the observation that NSD1 may play divergent roles
in regulating bone growth in mice and humans. Overgrowth-
related genes identified in patients do not always cause
overgrowth in mice. For example, mice carrying DNMT3A
mutations show postnatal growth retardation, which is different
from the phenotype of DNMT3A overgrowth syndrome
patients.30,31 In addition, deletion of EZH1 and EZH2 in
chondrocytes causes severe skeletal growth impairment in
mice, which is due to reduced growth plate chondrogenesis
rather than longitudinal bone overgrowth.12,32

Over the past decades, the study of NSD1 has mainly focused on
its function in tumorigenesis, including in head and neck squamous
cell carcinomas,33 laryngeal tumors,34 myelodysplastic syndromes,35

and so on. H3K36 methylation is also related to tumor formation,
and H3K36M mutation impairs the differentiation potential of
mesenchymal progenitors and leads to undifferentiated sarcoma
generation.18 H3K36M leads to decreased H3K36 di- and
trimethylation, activating cancer pathways and resulting in
chondroblastoma.17 A recent study found that NSD1-mediated
H3K36me2 is required for the maintenance of DNA methylation at
intergenic regions, which is crucial for the regulation of down-
stream gene expression.36 Collectively, these findings indicate that
NSD1-mediated histone modification plays important roles in
various pathophysiological processes. In our study, Nsd1 knockout
led to a decrease in H3K36me1 and H3K36me2, leading to defects
in chondrogenesis and growth plate formation. However, our
previous study demonstrated that there was no cartilage
phenotype in Setd2f/f;Prx1-Cre mice.37 As SET domain-containing
protein 2 (SETD2) is the only methyltransferase for H3K36me3, our
current study suggested the different functions of different forms
of H3K36 methylation. We performed RNA-seq and ChIP-seq
analysis and found that NSD1 and H3K36 methylation regulate the
transcription of different sets of genes. Among these genes, SOX9
can promote chondrogenic differentiation. It has been proven that
SOX9 is indispensable for skeletogenesis, especially for growth
plate formation.2,3,38,39 The expression of Sox9 was regulated by
NSD1 through H3K36me1 and H3K36me2 occupancy of the
promoter (Fig. 5), and overexpression of Sox9 rescued the
chondrogenic differentiation impairment (Fig. 5), suggesting that
NSD1 is a key epigenetic regulator of chondrogenesis, at least
partially through the regulation of Sox9 expression. NSD1
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deficiency in Prx1-positive MSCs affected limb formation, with
abnormal Col2-positive chondrocyte formation and abnormal Sox9
expression (Figs. 1c and 5g). However, Nsd1f/f;Col2-Cre mice had
normal limb formation (Fig. 1g) with normal Sox9 expression (Fig.
S6A), suggesting that NSD1 functions before the activation of Col2-
cre or the expression of collagen II. In summary, we believe that
NSD1 functions as an epigenetic regulator of Sox9 expression
mainly in Col2-cre-negative chondroprogenitor cells but not in
Col2-cre-positive chondrocytes.
Moreover, we found from the transcriptome analysis that the

expression of Hif1α and its target genes was reduced when Nsd1
was depleted. HIF1α plays a crucial role during chondrogenic
differentiation and limb development. Mice with limb bud
mesenchyme-specific Hif1a knockout show significantly shorter
hindlimbs with abnormal cartilage formation and decreased

differentiation of prechondrogenic cells through direct regula-
tion of Sox9.4 It has been known for years that histone lysine
methyltransferases (KMTs) can promote or inhibit gene expres-
sion by targeting the enhancer or promoter regions of different
genes.40 In addition, some KMTs can regulate target gene
expression independent of HMT activity. EZH2 can promote
cyclin D1 expression directly in natural killer cells independent of
its enzymatic activity.41 G9a, another histone KMT, inhibits
adipogenesis by repressing Pparγ expression in a manner
dependent on its HMT activity and promotingWnt10a expression
in an enzymatic activity-independent manner.42 Here, H3K36me2
occupancy on Hif1α showed no difference after NSD1 knockout,
and among the seven transcription factors found by combined
analysis of the RNA-seq and H3K36me2 ChIP-seq data, only Sox9,
Hopx, Osr2, and Zfp467 showed obvious NSD1 binding peaks (Fig.
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S9B–H), revealing that NSD1 binding and H3K36me2 occupancy
on target genes are not entirely synchronous. In this study, NSD1
bound to the Hif1α promoter directly and activated Hif1α
transcription, raising the possibility that NSD1 may also function
independent of HMT activity.
Collectively, we identified NSD1 as a novel regulator of

chondroprogenitor cell fate and suggested that epigenetic regula-
tion of SOX9 by NSD1 is an important process for chondrogenesis.
These findings suggest that modulation of NSD1 and H3K36
methylation would have therapeutic potential for skeletal growth
defects and fracture healing disorders resulting from chondrogenic
differentiation impairment. Revealing the function of NSD1 in
chondrogenic differentiation and bone growth is helpful to under-
stand the overgrowth of Sotos syndrome patients with NSD1
mutations and to expand our understanding of the function of
epigenetic regulation in chondrogenesis and skeletal biology.

MATERIALS AND METHODS
Ethics statement
All animal experiments were conducted in accordance with a
protocol approved by the Animal Care and Use Committee of
Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy
of Sciences (approval number: SIBCB-NAF-14-001-S350-019). Animals
were bred and maintained under specific pathogen-free conditions in
the institutional animal facility of the Shanghai Institute of
Biochemistry and Cell Biology, Chinese Academy of Sciences.

Mice
Nsd1f/f mice were purchased from the Jackson Laboratory. The
Prx1-Cremouse strain was a gift from Andrew McMahon. The Col2-
Cre mice were kindly provided by Dr. Xiao Yang. All mice analyzed
were maintained on the C57BL/6 background.

Assessment of Nsd1 knockout efficiency
The Nsd1 gene knockout efficiency assay was performed in three
tissues: cartilage, bone, and liver. Cartilage was taken from the
tibial plateau, and bone was obtained by cutting out the ends of
the tibial growth plate and flushing out the bone marrow. Liver
tissue was used as the negative control.

Mouse femoral fracture
The fracture model was established as described previously with 6-
week-old mice.43 Weekly radiographs were performed on mice with
fractures to measure the repair process with a Faxitron Model MX-
20 instrument (Faxitron, America). The callus index was defined as
the maximum diameter of the callus divided by the diameter of
the bone.

X-ray analysis
Prior to X-ray analysis, mice were anesthetized with 2% chloral
hydrate solution (10 μL·g−1 body weight) injected intraperitoneally.
Fractures were confirmed and monitored weekly under anesthesia
using a Faxitron MX-20 Cabinet X-ray System (Faxitron X-ray Corp.).

Micro-CT analysis
For micro-CT analysis, soft tissue was removed from fractured
femurs from age- and sex-matched mice, and the femurs were
fixed with 70% ethanol. Fractured femurs from Nsd1f/f;Prx1-Cre
mice and 1-month-old Nsd1f/f;Col2-Cre mice were scanned with a
Scanco Micro CT80 instrument (SCANCO Medical, Switzerland) at a
resolution of 10 μm. Fractured femurs from Nsd1f/f;Col2-Cre mice
and 1-month-old Nsd1f/f;Prx1-Cre mice were scanned with a
Skyscan 1176 scanner (Bruker, Kartuizersweg, Belgium) at a spatial
resolution of 9 μm. For statistical analysis of trabecular bone in the
callus, the whole region of the callus with a threshold of 85–255
was used. A Gaussian noise filter optimized for murine bones was
applied to reduce the noise in the thresholded 2D image, and 3D

images were reconstructed.44 Indices of trabecular and cortical
bone are shown according to the guidelines.45

Cell culture
Chondroprogenitor cells were obtained from the femoral
condyles and tibial plateau of newborn mice. The cartilage
was digested with 1 mg·mL−1 collagenase II (Sigma, C6885) for
2 h at 37 °C, and the digests were discarded. The remaining
tissue was digested with half the concentration of collagenase II
overnight at 37 °C, and the digests were filtered through a 70 μm
cell strainer (Falcon, 352350) the next day. Cells were plated in
α-MEM (Corning, 10-022-CVR) supplemented with 10% fetal
bovine serum (FBS) and 1% penicillin/streptomycin. ATDC5 cells
were cultured in DMEM:F12 (1:1) supplemented with 5% FBS and
1% penicillin/streptomycin. C3H10 cells were cultured in α-MEM
(low glucose) supplemented with 10% FBS and 1% penicillin/
streptomycin.

Micromass culture
Micromass culture was performed when chondroprogenitor cells
were 80%–90% confluent. Chondroprogenitor cells were digested,
resuspended at 1 × 107 cells per cell, and plated in a 12.5 μL
droplet of cell suspension in the center of a 12-well-plate; the
plate was placed at 37 °C for 2 h, and chondrogenic differentiation
medium, which contained DMEM (Corning, 10-013-CVR),
10 ng·mL−1 TGFβ3 (Peprotech, 100-36E), 100 nmol·L−1 dexa-
methasone (Sigma, D1756), 50 μg·mL−1 L-ascorbic acid 2-
phosphate (Sigma, A8960), 1 mmol·L−1 sodium pyruvate (Sigma,
25-000-CIR), 40 μg·mL−1 proline (Sigma, P5607), and 1% ITS
(Cyagen, ITSS-10201-10), was then gently added. At different time
points, micromasses were acidified with 0.1 N HCl and were then
stained with 1% Alcian blue (Sigma, A5268). Quantification of
Alcian blue staining was performed by measuring the absorbance
at 620 nm after dissolving the stained micromass with 6 M
guanidine hydrochloride solution.

Pellet culture
Pellet culture was performed when chondroprogenitor cells were
80%–90% confluent. Chondroprogenitor cells were digested and
resuspended at 1 × 107 cells per mL, 12.5 μL of cell suspension was
added to 500 μL of chondrogenic differentiation medium in a
15mL tube, the tube was centrifuged at 400 × g for 4min to pellet
the cells in the bottom of tube, the tube was allowed to stand, and
cells were cultured at 37 °C. The culture medium was replaced with
fresh medium every 3 days in the first week and weekly thereafter.

Immortalization of chondroprogenitor cells
Chondroprogenitor cells were infected with pLenti-CMV-SV40
lentivirus expressing simian virus 40 (SV40) T antigen to achieve
immortalization.

Lentiviruses and infection
Lentiviral vectors expressing Egfp and Cre were constructed by
inserting the genes’ CDSs into the pLenti vector. Virus packaging
was conducted according to the VSVG-delta 8.9 system. Mouse
chondroprogenitor cells were cultured for 2 days, infected with
lentivirus for 24 h, and treated with puromycin for 48 h.

Histology and immunohistochemistry
Hindlimbs and fractured femurs from mice were fixed with 4%
paraformaldehyde for 48 h at 4 °C, decalcified in 10% EDTA, and
embedded in paraffin. Each sample was sectioned sagittally at a
thickness of 8 μm for staining. HE staining and Safranin O staining
were performed. Immunohistochemical staining was conducted
using a standard protocol. The in situ hybridization probe for Col2
was a gift from the Laurie H. Glimcher Laboratory.
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Immunofluorescence
Sections were blocked in PBS with 10% horse serum for 1 h and
were then stained overnight with a specific antibody at 4 °C.
Secondary antibodies were used according to the species of the
primary antibody. DAPI (Sigma, D8417) was used for counter-
staining. Slides were mounted with anti-fluorescence quenching
mounting medium (Dako, S3023), and images were acquired with
an Olympus BX51 microscope.

Antibodies
Antibodies specific for the following molecules were used: NSD1
(Bioss, bs-8170R), COL2 (Abcam, ab34712), H3K36me1 (Abcam,
ab9048), H3K36me2 (Abcam, ab9049), H3K36me3 (Abcam, ab9050),
SOX9 (Millipore, AB5535), HIF1α (WB: Novus, NB100-134; IF: Bioss,
bs-0737R), and Flag (Sigma, F1804).

Western blot analysis
Cells were harvested and lysed with EBC buffer (1% NP-40, 10%
glycerol, 135 nmol·L−1 NaCl, 20 mmol·L−1 Tris (pH 8.0)) containing
a protease inhibitor (MCE, HY-K0010). Then, lysates were separated
through SDS-PAGE and transferred to a PVDF membrane (Bio-Rad,
1620177). After incubation with specific antibodies, we used an
enhanced chemiluminescence kit (Millipore, P90720) to detect
protein signals. Quantitative data were analyzed by ImageJ
software (Bethesda, MD, USA).

RNA-seq and data processing
Egfp- and Cre-expressing immortalized Nsd1f/f chondroprogenitor
cells were collected, and total RNA was extracted with TRIzol
Reagent (Sigma, T9424). High-throughput sequencing was per-
formed by the Computational Biology Omics Core, CAS-MPG
Partner Institute for Computer Biology (PICB), Shanghai Institutes
for Biological Sciences, Chinese Academy of Sciences. Raw reads
were mapped to the mm10 genome using the TopHat program. We
assigned each gene an expression value in fragments per kilobase
per million using Cufflinks software. Then, Cuffdiff software was
used to identify differentially expressed genes between Egfp- and
Cre-expressing samples. Differentially expressed gene heat maps
were clustered by k-means clustering using the Euclidean distance
as the distance and visualized using Heml software. GO analysis was
carried out with the DAVID Functional Annotation Bioinformatics
Microarray Analysis tool.

Real-time PCR analysis
Total RNA was isolated from different tissues and cells with TRIzol
Reagent (Sigma, T9424) and reverse-transcribed with a PrimeScript
RT Reagent Kit (Takara, RR037A). Real-time reverse transcription-
PCR was performed in a Bio-Rad CFX Connect Real-Time System.
The primer sets used were Nsd1: sense AAACTCGGAGGGTGCT,
anti-sense CCTGAGGCGTTTCTTCT; Nsd2: sense TGCCAAAAAGGAG
TACGTGTG, anti-sense CTTCGGGAAAGTCCAAGGCAG; Nsd3: sense
TCCACTGGTGTTAAGTTCCAGG, anti-sense GGCACCTCTTGTGTTAA
TTTTGG; Setd2: sense AAATCAGGTACTGGGGCTACA, anti-sense GG
CCCATTTCATTAGATCAGGGA; Ash1l: sense CCTCGGTGGACTAA
AGTGGTG, anti-sense CGCTGGCTCAGAACTATTTGA; Smyd2: sense
AAGGATTGTCAAAATGTGGACGG, anti-sense ATGGAGGAGCATTCC
AGCTTG; Col2: sense CGGTCCTACGGTGTCAGG, anti-sense GCAG
AGGACATTCCCAGTGT; Sox9: sense TTCCTCCTCCCGGCATGAGTG,
anti-sense CAACTTTGCCAGCTTGCACG; Acan: sense AATCCCCAA
ATCCCTCATAC, anti-sense CTTAGTCCACCCCTCCTCAC; Hif1α: sense
AGATCTCGGCGAAGCAAAGAGT, anti-sense CGGCATCCAGAAGTT
TTCTCACAC; Sox5: sense CCCGTGATCCAGAGCACTTAC, anti-sense
CCGCAATGTGGTTTTCGCT; Pgk1: sense ATGTCGCTTTCCAACAAGC
TG, anti-sense GCTCCATTGTCCAAGCAGAAT; Pdk1: sense GGAC
TTCGGGTCAGTGAATGC, anti-sense TCCTGAGAAGATTGTCGGGGA;
Angpt1: sense CACATAGGGTGCAGCAACCA, anti-sense CGTCGTGT
TCTGGAAGAATGA; Cp: sense CTTAGCCTTGGCAAGAGATAAGC,
anti-sense GGCCTAAAAACCCTAGCCAGG; Nos2: sense GTTCTCAG

CCCAACAATACAAGA, anti-sense GTGGACGGGTCGATGTCAC; Igf2:
sense GTGCTGCATCGCTGCTTAC, anti-sense ACGTCCCTCTCGGACT
TGG; Igfbp3: sense CCAGGAAACATCAGTGAGTCC, anti-sense GGAT
GGAACTTGGAATCGGTCA; Rora: sense GTGGAGACAAATCGTCAGG
AAT, anti-sense TGGTCCGATCAATCAAACAGTTC; and Hprt: sense
GTTAAGCAGTACAGCCCCAAA, anti-sense AGGGCATATCCAACAAC
AAACTT.

ChIP-seq and ChIP-PCR
Cells were fixed with 1% formaldehyde for 10min, and the
crosslinking reaction was terminated with glycine for 5 min (final
concentration= 0.125 mol·L−1). After two washes with precooled
PBS (containing a protease inhibitor), the cells were removed by
scraping and resuspended in SDS lysis buffer (50 mmol·L−1 Tris-
HCl (pH 7.5), 10 mmol·L−1 EDTA, 1% SDS, and protease inhibitor)
and sonicated. Cells were centrifuged to obtain cell extracts, which
were then added to precleaning protein G agarose and rotated for
1 h at 4 °C. Extracts were centrifuged, and supernatants were
harvested into new tubes. ChIP assays were performed using
H3K36me1/2 or Flag antibodies. Normal IgG was used as negative
control. ChIP-PCR was used to amplify various genomic regions of
the target gene, and the primers used were Sox9 #1: sense
GACTCCAGGCGCAGAAGCCC, anti-sense CCGGGACTTCGCTGGCG
TTT; Sox9 #2: sense CACATCGGTTCACACGGAGA, anti-sense GTG
GGGTGAGGGGACTTGGA. Hif1α #1: sense CTCGGCTTTTCCCTCCCC,
anti-sense AGTCCTCGCGTCCCCTCA; Hif1α #2: sense GGGCAGTG
TCTAGCCAGGC, anti-sense AAGTCCAGAGGCGGGGTG; and Hif1α
#3: sense CGGTCCACGTCGCCATC, anti-sense CGGGAGCTAGAG
GCGTAC. For the ChIP-PCR assay of micromasses harvested at
different time points, the collected micromasses were cut into
very small pieces after fixation and termination. Sonication was
carried out with a QSONICA Q800R with a 30% sonicator
amplitude, a schedule of 10 s on and 10 s off, and a total
sonication (“on”) time of 30min. Subsequent steps were
consistent with those used for the ChIP-PCR assay of cells.

ChIP-seq data processing
High-throughput sequencing was performed by the Computational
Biology Omics Core, CAS-MPG PICB, Shanghai Institutes for
Biological Sciences, Chinese Academy of Sciences. The SOAP
alignment tool was used to align the ChIP-seq reads to the mouse
genome build mm10. Reads with fewer than two mismatches that
uniquely mapped to the genome were used in subsequent analyses.
We calculated the distance from the peak centers to the annotated
TSSs and then defined the nearest genes as peak-related genes.

Transient transfections and reporter gene assays
For transient transfections, C3H10 cells were seeded overnight in a
12-well plate at a concentration of 5 × 104 cells per well. Cells were
then transfected with the Hif1α-Luc or HRE-Luc reporter plasmid and
various combinations of NSD1 and HIF1A expression constructs as
indicated. Forty-eight hours after transfection, luciferase assays were
performed using the Dual-Luciferase Reporter Assay System
(Promega). The Hif1α-Luc plasmid was constructed by inserting
KpnI/XhoI-digested PCR products, which were amplified using the
forward primer 5′-GGggtaccGGGCAGTGTCTAGCCAGGC-3′ and
reverse primer 5′-CCGctcgagAAGTCCAGAGGCGGGGTG-3′, into the
KpnI/XhoI-digested pGL3-Basic luciferase reporter plasmid.

Statistical analysis
Quantitative data are presented as the mean ± SEM values as
indicated. The statistical significance of differences between WT
and CKO mice was evaluated with GraphPad using unpaired two-
tailed Student’s t tests, and one-way ANOVA was used to detect
the effects of Sox9 treatment. P < 0.05 was considered statistically
significant. The number of samples shown in each figure legend is
the number of biological replicates. Three technical replicates
were used for each experiment.
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MTT assay
The MTT cell viability assay was conducted following the instructions
provided in the MTT Cell Proliferation Assay Kit (Sangon Biotech,
E606334).

TUNEL assay
The TUNEL apoptosis assay was conducted on paraffin sections
following the instructions provided in the DeadEnd™ Fluorometric
TUNEL System (Promega, G3250).
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