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Abstract

Molecular dynamics (MD) simulations of a double-stranded DNA with explicit water and small ions were performed with the
zero-dipole summation (ZD) method, which was recently developed as one of the non-Ewald methods. Double-stranded
DNA is highly charged and polar, with phosphate groups in its backbone and their counterions, and thus precise treatment
for the long-range electrostatic interactions is always required to maintain the stable and native double-stranded form. A
simple truncation method deforms it profoundly. On the contrary, the ZD method, which considers the neutralities of
charges and dipoles in a truncated subset, well reproduced the electrostatic energies of the DNA system calculated by the
Ewald method. The MD simulations using the ZD method provided a stable DNA system, with similar structures and
dynamic properties to those produced by the conventional Particle mesh Ewald method.
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Introduction

The static and dynamic structural features of nucleic acids,

DNA and RNA, and their complexes with proteins are essential

for their biochemical functions and the regulation of gene

expression during transcription, replication, and translation [1].

Since the solution structures of nucleic acids are generally more

flexible than those of globular proteins, their structural plasticity

should always be considered. Thus, although many X-ray crystal

structures of nucleic acids have been solved, their dynamic

structures with the structural ensemble should also be extensively

analyzed. For that purpose, molecular dynamics (MD) simulations

are frequently utilized for effective investigations [2–5].

In MD simulations of nucleic acids, intra- and inter-molecular

electrostatic interactions play fundamental roles because of their

highly charged and polar features, in addition to their long-range

nature [6]. The charges located at the backbone phosphate groups

make the DNA and RNA polymers negatively charged, and thus

positive counter-ions are distributed closely along the phosphate

backbones for neutralization. In fact, the conformation of double-

stranded DNA is stabilized by the ‘‘condensation’’ of the

counterions and the associated Deby-Hückel type screening

process, where the phosphate negative charges are substantially

neutralized by the counterions [7,8].

A straight cutoff truncation of the electrostatic interactions is

frequently applied in MD simulations, but this resulted in many

artifacts, since the long distance effects were simply neglected

[9,10]. In particular, an MD simulation with such a cutoff

procedure for double-stranded DNA systems profoundly deforms

the initial double-stranded forms [11].

An alternative approach with lattice sum techniques, such as the

Ewald method [12] and the Particle mesh Ewald (PME) method

[13,14], has been recommended for MD simulations of DNA

systems, assuming the periodic boundary condition. Here, the

long-range electrostatic interactions are not ignored, and many

physicochemical properties of the periodic systems are repro-

duced.

Although the lattice sum approach is the most popular standard

technique, its applications to intrinsically non-periodic systems

clearly deviate from reality [15]. Recently, the artifacts produced

by the simple cutoff method have been significantly reduced by

several new approaches, referred to as the non-Ewald methods,

which were reviewed in detail elsewhere [15]. Among them, we

have developed the zero-dipole summation (ZD) method [16–18],

which takes into account the neutralities of charges (zero-

monopole) and dipoles (zero-dipole) in a truncated subset. The

ZD method can be viewed as an extension of the other non-Ewald

method developed by Wolf et al. [19,20], and it provided more

accurate electrostatic energies for a liquid NaCl system [16], a

pure TIP3P water system [17], and a membrane protein system

[18].

One of the advantages of the ZD method is its rapid computation.

The durations of single and parallel calculations using the ZD and

PME methods were evaluated in our previous studies for a pure

TIP3P water system [17] and a membrane protein system [18]. The

real space part of the PME method with a shorter cutoff length, in

principle, requires less computational time than that of the ZD

summation method. However, we can utilize the effectiveness of the

ZD method without the complementary error function, and the

PLOS ONE | www.plosone.org 1 October 2013 | Volume 8 | Issue 10 | e76606



differences between the results of the distinct cutoff values in the

practical cutoff region in both systems tend to be small, as the

number of processors increases [17,18]. Because the ZD method is

free from evaluation of the reciprocal Fourier part required in the

lattice sum method, an O(N) scheme is implied for a large system by

computing only local interactions. Thus, we expect an effective

scalability in the current method. In fact, we have obtained positive

results for several large biomolecular systems [21]. Another

advantage of the ZD method comes from the fact that the ZD

method is irrelevant to the boundary conditions. Thus, it does not

need to obey the exact periodic boundary condition in application

to an intrinsically non-periodic system.

Here, we applied the ZD method to a double-stranded DNA

dodecamer, d(59-CGCGAATTCGCG-39)2, with a precisely

determined X-ray crystal structure including explicit water

molecules and small ions. We confirmed that the electrostatic

energies of the current DNA system were very well reproduced as

compared to those calculated by the Ewald method, and that the

MD simulations using the ZD method provided a stable DNA

system, with similar structures and dynamic properties to those

produced by the PME method.

Methods

The algorithm of the ZD method
A brief description of the algorithm of the ZD method are

provided here, instead of the detailed derivation and features of

the method [16,17]. The total Coulombic electrostatic energy,

Etotal, can be described by

Etotal~
1

2

XN

i~1

X
j

qiqj

rij
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where qi is the atomic charge of the i’th atom and rij is the

distance between i’th atom and j’th atom. The manner of the

summation with respect to j depends on the boundary conditions.

The error function and the complementary error function are

designated as erf and erfc, respectively, with a damping factor a
($0).

In the Ewald method with the periodic boundary conditions,

the first term of Eq. 2 can be evaluated via the Fourier space term

and the self-energy term. While, the non-Ewald methods [15],

such as the Wolf method [19,20] and the ZD method [16-18],

utilize the fact that the first term of Eq. 2 for a small a can be

approximated by only a self-energy term { a=
ffiffiffi
p
p

ð Þ
PN

i~1 q2
i and

especially vanishes at all for a = 0. Regarding the second term of

Eq. 2, a truncation with a short cutoff can be employed for a

relatively large a, as in the Ewald approach. Instead, in order to

provide an efficient estimate of the second term even for a small a,

the theoretical frame of the ZD method assumes that the

interaction contribution is counted in a certain neutralized subset

Mi, which consists of certain particles inside the cutoff sphere of an

individual i’th atom. The subset Mi, including the i’th atom, is

characterized such that the total sums of the charges and dipole

moments are both zero in Mi, and any atoms not belonging to Mi

but inside the cutoff sphere are located close to the surface. Note

that the creation of subset Mi is not actually required in practical

applications, because Mi is introduced conceptually to express the

theoretical viewpoint. That is, via mathematical considerations

with respect to the approximation of the excess energy [16], we

can convert the summation of the original potential function

erfc(ar)/r over Mi into an ordinary pair-wise summation of a

suitably reconstructed potential function inside the cutoff sphere

(See Eqs. 10 and 41 in Ref. 16). This results in an approximation

of Eq. 2 as
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Here, in contrast to the lattice sum method, the assumption of

the total charge neutrality in the MD cell is not necessarily

required. For a general system with molecules having covalent

bonds, the relevant modifications to Eq. 3 are required [17].

Double-stranded DNA dodecamer
The atomic coordinates of a double-stranded DNA dodecamer,

d(59-CGCGAATTCGCG-39)2, were obtained from the Protein

Data Bank (PDB) [22] (PDBID 1bna [23]). This DNA model was

embedded in a box with dimensions of 80 Å x 60 Å x 60 Å. In

total, 9,048 explicit TIP3P water molecules [24] and 39 Na+ and

17 Cl2 ions were added in the box, for a physiologically neutral

environment. The total number of atoms in the box was 27,958

(Figure 1 (A)). The initial steepest descent energy minimization

(811 steps) was followed by conjugated gradient minimizations

(982 steps) with positional restraints on the solute, using a force

constant of 10 kcal/(mol Å2). The system was then equilibrated for

1 ns by adopting Berendsen’s NPT algorithm [25] with

temperature and pressure coupling at 300 K and 1 atm,

respectively, with the periodic boundary condition using the

PME method [14] with the real part cutoff of 12 Å and a damping

factor a = 0.35 Å21 for electrostatic interactions, and with a time

step of 0.5 fs. The cutoff distance of the van der Waals interactions

was 12 Å. After this equilibration run, the NVT production run at

300 K was performed by either the PME or ZD method with the

cell size (85.150655.088658.327 Å3) and a time step of 1.0 fs. The

SHAKE algorithm was applied to the system. The charges of the

DNA atoms and the force field were originated from AMBER

parm99bsc0 [26]. The MD simulations by the PME method and

the energy calculations by the Ewald method were performed by

using cosgene/myPresto [27].

In addition, to assess the accuracy of the ZD method

quantitatively, the energies were computed by both the Ewald

and ZD methods for 1,000 snapshot structures taken every 1 ps,

from the 1 ns MD trajectory, which was produced using the PME

method for generating physically plausible phase-space points.

(3)

Zero-Dipole Summation Method for DNA
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Results and Discussion

First, the total electrostatic energies of the double-stranded

DNA system were computed by the ZD method, EZD, depending

on the cutoff distance, for the M:1,000 snapshot structures,

fr(k):(r
(k)
1 ,:::,r(k)

N )gk~1,:::,M . They were compared to those calcu-

lated by the Ewald method, EEwald
total . The resultant average relative

deviations are defined by

S
EZD

total{EEwald
total

EEwald
total

�����
�����Ttrajectory:

1

M

XM
k~1

EZD
total(r

(k)){EEwald
total (r(k))

EEwald
total (r(k))

�����
����� ð5Þ

and are shown in Figure 2. The atom-based cutoff procedure

was used in the ZD method.

For comparison with the simple and straight truncation method,

the total energies by the residue-based cutoff method of the bare

Coulombic function (the RESA method), ERESA
total , were also

calculated by the following equation:

ERESA
total ~

1

2

X
i

X
j[Ri

qiqj

rij

ð6Þ

In Eq. 6, Ri is a group of interacting atoms for the i’th atom,

where all of the interactions in a residue are counted, if at least one

atom in the residue is inside the cutoff sphere, centered on the i’th

atom. For ERESA
total , the relative deviations from EEwald

total were also

calculated in the same manner as in Eq. 5, and are shown in

Figure 2.

It is clear that the deviation of EZD
total from EEwald

total is very small

when a is equal to or less than 0.1 Å21, even at a short cutoff

distance. In fact, the relative deviation was only about 0.007% at

rc = 12 Å when a = 0.0, and it decreased to about 0.005% at rc = 18

Å. In contrast, ERESA
total deviated much more than 1.0% from EEwald

total

at the 12 Å cutoff distance, and it decreased to about 0.2% at the

18 Å cutoff distance, which is still much larger than the deviation

observed for the ZD method with a smaller than 0.1 Å21.

In the cases of the pure water system [17] and the membrane

protein system [18], the ZD method with a = 0.0 always provided

the best approximations at rc values larger than 10 Å. However, in

the current DNA system, the ZD method with a = 0.06 Å21 or 0.1

Å21 sometimes gave better approximations than those with

a = 0.0, although the differences are within the standard deviations

for 1,000 samples. On the contrary, the total energy calculated by

the ZD method with a = 0.14 Å21 always deviated from the Ewald

method much more than those with the smaller a values. This

feature is similar to those observed in our previous reports [17,18],

and its origin can be identified as a consequence of the

approximation of the first term of Eq. 2. The current study

revealed that the ZD method with small a values also works

effectively for a highly charged inhomogeneous DNA system at

short rc, thus allowing us to use a very small or even zero damping

factor without the annoying choice of the parameter value.

Since the system is not homogeneous, in order to dissect the

contributions from each molecule and nucleotide, we investigated

the electrostatic energy contributed from the i’th atom, Ex
i , which

is defined below considering the interaction energy between the

i’th and j’th atoms, Ex
ij :

Ex
i ~

1

2

X
j=i

Ex
ij ð7Þ

Ex
total~

1

2

X
i

X
j=i

Ex
ij~

X
i

Ex
i ð8Þ

Here, x designates the method used to calculate the electrostatic

energies: Ewald, ZD, and RESA, respectively.

The average contributions from individual molecules in the

energy deviations from the Ewald electrostatic energy were

determined by the following Eq. 9, and they are shown in Figure

3.

Figure 1. The double-stranded DNA dodecamer system. (A) The initial DNA structure (PDB 1bna) with the explicit TIP3P water molecules
(cyan), Na+ ions (orange) and Cl2 ions (green). The atom colors of DNA are the CPK colors. (B) A snapshot at 50 ps by the RESA method with rc = 18 Å.
(C) A snapshot at 10 ns by the ZD method, with rc = 12 Å and a = 0.0. (D) A snapshot at 10 ns by the PME method, with rc = 12 Å and a = 0.35 Å21.
Hydrogen atoms are not shown in (B) to (D).
doi:10.1371/journal.pone.0076606.g001

Zero-Dipole Summation Method for DNA
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In Eq. 9, x is ZD with a = 0 and 0.1 (Å21), and RESA is used for

comparison. Here, the molecule is the double-stranded DNA, all

9,048 waters, 39 Na+, and 17 Cl2. The total deviation in Eq. 5 is

also shown.

The energy accuracies for DNA, Na+ and Cl2 ions were all

about hundred times better with the ZD method than the RESA

Figure 2. Relative electrostatic energy deviations by the ZD and RESA methods with the cutoff distance rc, averaged for 1,000
sampled structures produced by MD with the PME method, compared with those calculated by the Ewald method (Eq. 5). The thin
solid line, dotted line, dashed line, and dash-dotted line with filled circles are the results from the ZD method with damping factor a values = 0.0,
0.06, 0.10, and 0.14 (Å21), respectively. The thick solid line with open circles represents the results from the RESA method. The error bars are the
standard deviations for 1,000 samples.
doi:10.1371/journal.pone.0076606.g002

Zero-Dipole Summation Method for DNA
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method. On the contrary, the accuracies for TIP3P water were

about 10 times better with the ZD method than the RESA

method, as in the membrane protein system [18].

The contribution of each nucleotide in the energy deviation

from the Ewald electrostatic energy was computed, to understand

which nucleotide type contributed to the total energy deviation.

The following values in Eq. 10 were calculated for the individual

nucleotides of the current DNA model with 24 nucleotides: for the

4 different nucleotides, and the 5’ and 3’ terminal nucleotides, and

they are shown in Figure 4.

S
X

nucleotide
type

P
i[nuclotide

(Ex
i {EEwald

i )

EEwald
total

�������

�������
=(Number of nucleotide type)Ttrajectoryð10Þ

Here, x is ZD and RESA. The number of each nucleotide type is

described in parentheses after each nucleotide type in Figure 4.

The accuracies with the ZD method were twenty- to seventy-times

better than those with the RESA method. The deviations with the

ZD method using a = 0 and a = 0.1 (Å21) were similar, and they

were smaller for larger rc in every residue. From the feature that

the 5’-terminal nucleotides lack the phosphate groups with large

negative charge atmosphere, the deviations for the 5’-terminal

nucleotides in both the ZD and RESA methods were about half of

those for the other nucleotides, respectively.

One concern may arise about the assumption applied by the ZD

method in the current inhomogeneous DNA system for the

neutrality of the monopole and dipole moments, which is satisfied

in the large ensemble of homogeneous systems, such as the NaCl

liquid [16] and pure water systems [17]. For an inhomogeneous

protein system, it was confirmed that the monopole and dipole

moments in a rather restricted local region are small enough to be

well approximated by the ZD method [18]. In the current DNA

system, although the 5’-terminal nucleotides lack the negatively

charged phosphate groups, the anti-parallel double-stranded

structure does not generate any large dipole moment. In addition,

the counterion screening should provide neutral conditions, even

around the phosphate groups. As well, it is also suggested that

significant portion of phosphate charge neutralization is performed

by water molecules hydrating the DNA [28]. Therefore, for the

inhomogeneous DNA system, the monopole and dipole moments

can be small enough to be well approximated by the ZD method.

As described in the Introduction section, a simple truncation of

the electrostatic interactions generally deforms DNA structures. In

fact, as shown in Figure 1(B), the double-stranded DNA in the

current system was completely deformed after only a 50 ps MD

simulation by the RESA method with rc = 18 Å. On the contrary,

even after a 10 ns MD simulation by the ZD method with rc = 12 Å

and a = 0.0, the structure of the DNA (Figure 1 (C)) was

maintained in a similar manner to that by the PME method,

with rc = 12 Å and a = 0.35 Å21 (Figure 1 (D)).

The 10 ns MD trajectories of the root-mean square deviations

(rmsds) from the initial crystal structure, obtained by the PME

method with rc = 12 Å and a = 0.35 Å21 and the ZD method with

rc = 12 Å and a = 0.0, are shown in Figure 5 by black and red lines,

respectively. After relatively large fluctuations at initial 1–2 ns, the

motions indicate the equilibrium, and the rmsds obtained by the

ZD method were similar to those generated by the PME method.

This shows that the stabilities of the systems in the MD simulations

by the ZD method and the PME method were comparable.

The absolute values of the rmsds depend on the initial

configuration state we prepared, and this would explain the

relatively large value of the rmsds. Relevant to this observation, in

Figure 3. Relative individual contributions to electrostatic energy deviations by the ZD and RESA methods from the Ewald
electrostatic energy, averaged for 1,000 sample structures produced by MD with the PME method (Eq. 9). Solid blue, red, and black
bars are the contributions by the ZD method with the cutoff distance rc values = 12, 14, and 16 (Å), respectively, and the damping factor a = 0.0.
Hatched blue, red, and black bars are those with rc = 12, 14, and 16 (Å), respectively, with a = 0.1 (Å21). Open blue, red, and black bars are those
obtained by the RESA method with rc = 12, 14, and 16 (Å), respectively. The numbers in parentheses are the numbers of nucleotides in DNA, the
numbers of water molecules, and the numbers of Na+ and Cl2 ions. The error bars are the standard deviations for 1,000 samples.
doi:10.1371/journal.pone.0076606.g003

(10)
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order to analyze the dynamic properties of the DNA in more

detail, we examined the root-mean-square fluctuations (rmsf) of

the backbone atoms, averaged along the MD trajectories. For this

analysis, the double-stranded DNA snapshot structures with A-

and B-chains were first obtained at every 1 ps, and they were

superimposed on the initial crystal structure. Then, the average

value of each backbone heavy atom position rbb,i was calculated as

Srbb,iT. The rmsf value for the backbone atoms of the m’th

nucleotide was thus calculated as:

rmsfm~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i[m0th bb

S rbb,i{Srbb,iTð Þ2Ttrajectory

Nbb,m

vuuut ð11Þ

Here, Nb,m is the number of atoms located in the backbone of

the m’th nucleotide. The rmsf values for all of the nucleotides in

both the A- and B-chains are plotted by thick lines in Figure 6 for

the last 7 ns of the total 10 ns MD trajectories by the PME and ZD

methods, which are shown in Figure 5. In the same manner, the

rmsf values for the base heavy atoms were also calculated, and are

shown by thin lines in Figure 6.

The nucleotide flexibility reflected by the rmsf values depended

on the relative position in the double-stranded DNA chains. The

rmsf values of the terminal nucleotides were generally large for the

backbone atoms, including the sugar atoms, and the base atoms.

In particular, the 5’-terminal cytosine backbones were quite

flexible, for which the pyrimidine base rings frequently moved

during the MD simulations. In MD simulations for similar short

double-stranded DNA models with explicit water molecules, the

terminal flexibility was also found [29], which were emphasized

for cytidines [30]. Although the base atoms at both the termini

were fairly flexible, the base atoms within the 2nd to 11th

nucleotides were stable enough to give very small rmsfs less than

1 Å, due to the hydrogen bonds between the base-pairs and the

stacking interactions between the adjacent bases. Relatively small

fluctuations of the base against the backbone were found in an

intensive study of MD simulations on an oligonucleotide in the B-

DNA form [30].

Since the rmsf values obtained by both the PME and ZD

methods closely coincide in Figure 6, the flexible features observed

in the PME method are well reproduced in detail by the ZD

method. In fact, the Pearson correlation coefficients of the rmsf

values between the PME method and the ZD method were 0.944

Figure 4. Relative contributions of each nucleotide to the electrostatic energy deviations, determined by the ZD and RESA methods
from the Ewald electrostatic energy averaged for 1,000 sample structures produced by MD with the PME method (Eq. 10). The
parameters for the individual bars are the same as those in Figure 3. The numbers in parentheses are the numbers of nucleotide types. The error bars
are the standard deviations for 1,000 samples.
doi:10.1371/journal.pone.0076606.g004

Figure 5. The trajectories of the rmsd values of the backbone
heavy atoms of the double-stranded dodecamer DNA from
those atoms of the initial crystal structure, along 10 ns MD
simulations with the PME method (black line, rc = 12 Å and
a = 0.35 Å21) and with the ZD method (red line, rc = 12Å and
a = 0.0). Both methods started from the same initial structure.
doi:10.1371/journal.pone.0076606.g005

Zero-Dipole Summation Method for DNA
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and 0.977 for the backbone heavy atoms, and the base heavy

atoms, respectively. The overall correlation coefficient was 0.969

for all of the heavy atoms of DNA.

The cross-correlations at the individual nucleotides for the

fluctuations of the backbone heavy atoms, and those of the base

heavy atoms, averaged along the trajectories, were also examined

by monitoring the following cross-correlation matrix element Cij:

Cij~
SDri

:DrjTtrajectoryffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SDr2

i Ttrajectory

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SDr2

j Ttrajectory

q ð12Þ

.

Here Dri is the displacement from the mean position of the

backbone and base atoms of the i’th nucleotide. A positive cross

correlation indicates in-phase displacement, while a negative

correlation is out-of-phase. In Figure 7, the averaged matrix

elements are plotted during the last 7 ns of the 10 ns MD

simulations shown in Figure 5. The upper triangle shows the

correlations obtained by the ZD method, and the lower triangle

shows those generated by the PME method. The local dynamic

correlations for the ZD method and the PME method coincide

very well even at the terminal nucleotides, which are very flexible.

The Pearson correlation coefficients of each Cij element between

the PME method and the ZD method were 0.976 and 0.983 for

the backbone heavy atoms and for the base heavy atoms,

respectively. The overall correlation coefficient was 0.982 for all

of the heavy atoms, including the backbones and bases. Typical

positive correlations are observed in Figure 7, in particular at the

base-pairs with stable hydrogen bonds and the adjacent bases with

stacking interactions. They correspond to the distinctive concerted

fluctuations, and these characteristic behaviors were captured by

both methods.

The results presented in Figures 5–7 indicate that the ZD

method provides the dynamic properties of an inhomogeneous,

highly charged molecular system as correctly as the MD

simulation with the conventional PME method.

The PME method devises the fast calculation protocol for the

Ewald summation by utilizing the fast Fourier transform, and has

been a standard in the electrostatic evaluation, in particular at an

early stage [31]. However, in the area of MD simulation on

nucleic acid, other protocols have been frequently applied [32,33],

followed by the pioneering works [34–36]. In fact, the atom-based

shifted force cutoff method has often been used [37–44], for which

the efficiency has been dictated through the systematic and

complete study by Norberg and Nilsson [30].

Although we admit these successes on this method, our concern

is its physical basis for the successful simulations. One possible

interpretation is due to the screening effect, but we still do not have

complete answer why and how it makes a difference in various

systems. Consistency between the handling of the electrostatic

interaction and the bonding interaction is also not perfectly

explained. While we have the idea that the shifted-force potential

should be assessed on only the 1–5 (1–4) non-bonded pairs [45],

we recognize the idea that they should be on all the pairs along

with the removal of the pure coulomb (not shifted) form of the all

bonding 1–2, 1–3 pairs. The latter handling conforms to the zero-

charge Wolf [19,20] and the zero-dipole methods [16,17]. In fact,

the revised no-damping Wolf method [46] is equivalent to the

shifted force method in view of the pairwise formula, whose

potential function can be expressed as VSF(rij){VSF(rc) with

VSF(r)~1=rzr=r2
c , having force 1=r2{1=r2

c . Nevertheless ambi-

guities in an actual conduct of such methods are already discussed

in Ref. [15,20].

Another effective cutoff method is the reaction field (RF)

method [47–49], which has a certain physical basis, in contrast. It

takes into account the interactions between each molecule and the

environment outside the cutoff sphere, or cavity, of the molecule.

The region outside the cavity is viewed as a uniform, homoge-

neous dielectric continuum polarized via reacting with the

molecules inside the cavity. In spite of its success, only a few

applications of the RF method to double-stranded DNA system

were attempted. This may be because the assumption of the

homogeneity repels the application of this method to highly

heterogeneous media such as those including the DNA. Against

such low motivation, the RF method was utilized by Kastenholz et

al. to investigate the transition between the B and Z conformations

of DNA with explicit-solvent [50] and by Nina and Simonson for a

RNA hairpin in solution, obtaining several positive results [51]. In

particular, Ni and Baumketner [52] applied the RF method

successfully into a DNA tetradecamer with explicit solvent and

revealed the importance of the atom-based cutoff mode. The pros

and cons of the RF method are discussed in Ref. [15].

The ZD method utilizes the local feature for the electrostatic

neutrality, and its physical basis is discussed in detail in the

previous studies [15–17]. In the current study we have revealed at

first that the ZD method is successfully applied to the very

inhomogeneous and highly charged DNA system in explicit

solution. Detailed investigations of the energy accuracy, such as

Figure 6. The rmsf (root-mean-square fluctuation) values of the
backbone heavy atoms (thick solid lines with filled circles for
A-chain, and thick dotted lines with open circles for B-chain),
and that of the base heavy atoms (thin solid lines for A-chain,
and thin dotted lines for B-chain), averaged along the last 7 ns
of the total 10 ns MD trajectories shown in Figure 5 by the PME
method (black lines, rc = 12 Å and a = 0.35 Å21) and the ZD
method (red lines, rc = 12 Å and a = 0.0). The abbreviations are used
for deoxyribonucleotides: C, cytosine; G, guanine; A, adenine; T,
thymine.
doi:10.1371/journal.pone.0076606.g006
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done in the current study, have not been pursued in the above

methods for the application to DNA, to the best of our knowledge.

These indicate that the ZD method should be an alternation of the

electrostatic calculation method in DNA systems. This study

conducts the positive and successful MD simulation of a DNA

system, followed by crystal and liquid NaCl systems [16], a pure

TIP3P water system [17], and a membrane protein with lipid

bilayer molecules, explicit water molecules, and ions [18].

Finally, as a practical point, we discuss the computation

performance of the ZD method for the current DNA system.

The computation times required in single and parallel calculations

using the ZD method were evaluated, and they are shown in Table

1, in comparison with those of the PME method. For this purpose,

we focus on the real space part of the PME method in the same

manner for a homogeneous water system and a heterogeneous

GPCR system discussed previously [17,18], because the evaluation

of the reciprocal Fourier part highly depends on the parallel

algorithm and architecture. In general, the real space part of the

PME method with a shorter cutoff length requires a shorter

computational time than that of the ZD summation method.

However, as shown in Table 1, the differences between the results

of the distinct rc values in the practical cutoff region tend to be

small, as the number of processors increases. As well as the

accuracy, in view of the speed performance, the ZD method with

a = 0 has an advantage because of the elimination of the

complementary error function. The full PME method needs to

add the calculation of the reciprocal Fourier part. Thus, the

computation time required by the ZD method with a long rc value

could become shorter than that by the PME method including the

reciprocal space part.

Conclusions

The molecular simulation of DNA system via the atom-based

shifted-force cutoff method without using the lattice sum method

under the periodic boundary condition for evaluation of the

electrostatic interactions was unexpectedly successful [53]. How-

ever, this success was also achieved by both the RF method [52]

and the current ZD method. These studies suggest that non-Ewald

cutoff-based methods can be applied to highly charged and polar

systems if we employ them with certain proper methodologies. In

particular, we clarified this fact in an application of the ZD

method to an explicit solvent DNA model, by investigations of the

rmsd and rmsf of the heavy atoms, the cross-correlations in

fluctuations of the backbone heavy atoms, and the accuracy of the

energy.

In general, cutoff-based methods are attractive in view of their

simplicity, which enables fast MD calculations. An investigation

focusing on similarities or the relationship among these methods is

important, because it may lead us to capture common physics

framework underlying these otherwise theoretically different-

looking methods. This expectation is supported by the current

study using the ZD method. In fact, a physical assumption in the

ZD method regarding the existence of the neutralized subset in a

highly charged and polar DNA system was not trivial until a

realistic application was performed. Although the current study

provides a positive view for the validity of such an assumption, it

could be the case that the success is due to other physical logic.

Such reconsiderations may also be required for both the force shift

method, whose physical base is still unclear, and the RF method,

whose success under the homogeneity assumption is not yet

Figure 7. The cross-correlation matrix elements in the fluctuations of (A) the DNA backbone heavy atoms, and (B) the base heavy
atoms, averaged along the trajectories of the last 7 ns of the total 10 ns MD simulations. The cross correlation values from 1.0 to –1.0 are
colored red (positive) to blue (negative). The lower triangles show the values obtained by the PME method (rc = 12 Å and a = 0.35 Å21), and the upper
triangles show the correlations provided by the ZD method (rc = 12 Å and a = 0.0), respectively. The A- and B-chains are indicated with the nucleotide
abbreviated names.
doi:10.1371/journal.pone.0076606.g007

Table 1. Execution time (sec) for 1 step MD simulation of the
DNA system by the ZD method and by the real space part of
the PME (RPME) method.

Method: rc, a n = 1 n = 8 n = 16 n = 32

ZD: 10, 0 1.3643 0.2659 0.1890 0.1613

ZD: 12, 0 1.6518 0.3044 0.2051 0.1796

ZD: 12, 0.1 1.9662 0.3443 0.2241 0.1870

ZD: 14, 0 2.0404 0.3544 0.2326 0.1877

RPME*: 10, 0.35 1.5401 0.2881 0.1964 0.1819

RPME*: 12, 0.35 1.9559 0.3359 0.2244 0.1943

Cutoff length rc (Å) and damping factor a (Å21) are indicated; n is the number of
processors. *: Execution time with a single processor (n = 1) for the reciprocal
part of the PME method was 0.14 sec.
doi:10.1371/journal.pone.0076606.t001
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completely understood. It is crucial to pursuit a general logic and

provide a new physical view for explaining the success of non-

Ewald methods and facilitate their theoretical advances.
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4. Pérez A, Luque FJ, Orozco M (2007) Dynamics of B-DNA on the microsecond
time scale. J Am Chem Soc 129: 14739–14745.
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26. Pérez A, Marchan I, Svozil D, Sponer J, Cheatham TE III, et al. (2007)
Refinement of the AMBER force field for nucleic acids: Improving the

description of a/c conformers. Biophys J 92: 3817–3829.

27. Fukunishi Y, Mikami Y, Nakamura H (2003) The filling potential method: A
method for estimating the free energy surface for protein-ligand docking. J Phys

Chem B 107: 13201–13210. Available: http://presto.protein.osaka-u.ac.jp/

myPresto4/index_e.html.

28. MacKerell AD Jr (1997) Influence of magnesium ions on duplex DNA

structural, dynamic, and salvation properties. J Phys Chem B 101: 646–650.

29. Roy S, Thakur AR (2010) 20ns molecular dynamics simulation of the

antennapedia homeodomain-DNA complex: water interaction and DNA

structure analysis. J Biomol Struct Dyn 27: 443–455.

30. Norberg J, Nilsson L (2000) On the truncation of long-range electrostatic

interactions in DNA. Biophys J 79: 1537–1553.

31. York DM, Yang WT, Lee H, Darden TA, Pedersen LG. (1995) Toward the

accurate modeling of DNA: The importance of long-range electrostatics. J Am

Chem Soc 117: 5001–5002.

32. Cheatham TE III, Kollman PA (2000) Molecular dynamics simulation of nucleic

acids. Annu Rev Phys Chem 51: 435–471.

33. MacKerell AD Jr, Nilsson L (2008) Molecular dynamics simulations of nucleic

acid-protein complexes. Curr Opin Struct Biol 18: 194–199.

34. Brooks CL III, Pettitt BM, Karplus M (1985) Structural and energetic effects of

truncating long ranged interactions in ionic and polar fluids. J Chem Phys 83:

5897–5908.

35. Steinbach PJ, Brooks BR (1994) New spherical-cutoff methods for long-range

forces in macromolecular simulation. J Comput Chem 15: 667–683.

36. MacKerell AD Jr, Wiorkiewicz-Kuczera J, Karplus M (1995) An all-atom

empirical energy function for the simulation of nucleic acids. J Am Chem Soc

117: 11946–11975.

37. Sen S, Nilsson L (2001) MD simulations of homomorphous PNA, DNA, and

RNA single strands: Characterization and comparison of conformations and

dynamics. J Am Chem Soc 123: 7414–7422.

38. Norberg J, Nilsson L (2002) Molecular dynamics applied to nucleic acids. Acc

Chem Res 35: 465–472.

39. Pastor N (2005) The B- to A-DNA transition and the reorganization of solvent at

the DNA surface. Biophys J 88: 3262–3275.

40. Wang Y, Reddy S, Beard WA, Wilson SH, Schlick T (2007) Differing

conformational pathways before and after chemistry for insertion of dATP

versus dCTP opposite 8-OxoG in DNA polymerase beta. Biophys J 92: 3063–

3070.

41. Pande V, Nilsson L (2008) Insights into structure, dynamics and hydration of

locked nucleic acid (LNA) strand-based duplexes from molecular dynamics

simulations. Nucl Acids Res 36: 1508–1516.

42. Heddi B, Foloppe N, Oguey C, Hartmann B (2008) Importance of accurate

DNA structures in solution: The Jun-Fos model. J Mol Biol 382: 956–970.

43. Pan Y, Nussinov R (2009) Cooperativity Dominates the Genomic Organization

of p53-Response Elements: A Mechanistic View. PLOS Comput Biol 5:

e1000448.

44. Wang Z, Zeng X, Deng Y, He N, Wang Q, et al. (2011) Molecular dynamics

simulations of end-tethered single-stranded DNA probes on a silica surface. J

Nanosci Nanotechnol 11: 8457–8468.

45. Levitt M, Hirshberg M, Sharon R, Daggett V (1995) Potential energy function

and parameters for simulations of the molecular dynamics of proteins and

nucleic acids in solution. Comput Phys Commun 91: 215–231.

46. Fennell CJ, Gezelter JD (2006) Is the Ewald summation still necessary? Pairwise

alternatives to the accepted standard for long-range electrostatics. J Chem Phys

124: 234104.

47. Onsager L (1936) Electric moments of molecules in liquids. J Am Chem Soc 58:

1486–1493.

48. Barker JA, Watts RO (1973) Monte Carlo studies of the dielectric properties of

water-like models. Mol Phys 26: 789–792.

49. Tironi IG, Sperb R, Smith PE, van Gunsteren WF (1995) A generalized reaction

field method for molecular dynamics simulations. J Chem Phys 102: 5451–5459.

50. Kastenholz MA, Schwartz TU, Hünenberger PH (2006) The transition between

the B and Z conformations of DNA investigated by targeted molecular dynamics

simulations with explicit solvation. Biophys J 91: 2976–2990.

51. Nina M, Simonson T (2002) Molecular dynamics of the tRNAAla acceptor stem:

Comparison between continuum reaction field and particle-mesh Ewald

electrostatic treatments. J Phys Chem B 106: 3696–3705.

52. Ni B, Baumketner A (2011) Effect of atom- and group-based truncations on

biomolecules simulated with reaction-field electrostatics. J Mol Model 17: 2883–

2893.

53. Hansson T, Oostenbrink C, van Gunsteren W (2002) Molecular dynamics

simulations. Curr Opin Struct Biol 12: 190–196.

Zero-Dipole Summation Method for DNA

PLOS ONE | www.plosone.org 9 October 2013 | Volume 8 | Issue 10 | e76606


