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Highlights 27 
• Specialized functional networks in the human cerebral cortex, evident in resting-28 

state fMRI, support sensory, motor, cognitive, and affective functions and evolve 29 
throughout the lifespan. 30 

• Existing studies have focused on age-specific networks for infants, but less on to 31 
what extent adult networks can describe infant functional connectivity (FC). 32 

• Analysis revealed a subset of areas in infants showing adult-like network 33 
organization, with within-network FC exhibiting less variation across age and 34 
higher reliability across scans. 35 

• These areas are posited near locations with low variability in functional network 36 
identity in adults, suggestive of the relationship between developmental 37 
sequence and interindividual variability in functional network organization. 38 
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Abstract  43 
The human cerebral cortex contains groups of areas that support sensory, motor, 44 

cognitive, and affective functions, often categorized as functional networks. These areas 45 
show stronger internal and weaker external functional connectivity (FC) and exhibit 46 
similar FC profiles within rather than between networks. Previous studies have 47 
demonstrated the development of these networks from nascent forms present before 48 
birth to their mature, adult-like topography in childhood. However, analyses often still 49 
use definitions based on adult functional networks. We aim to assess how this might 50 
lead to the misidentification of functional networks and explore potential consequences 51 
and solutions. 52 

Our findings suggest that even though adult networks provide only a marginally 53 
better than-chance description of the infant FC organization, misidentification was 54 
largely driven by specific areas. By restricting functional networks to areas showing 55 
adult-like network clustering, we observed consistent within-network FC both within and 56 
across scans and throughout development. Additionally, these areas were spatially 57 
closer to locations with low variability in network identity among adults. Our analysis 58 
aids in understanding the potential consequences of using adult networks "as is" and 59 
provides guidance for future research on selecting and utilizing functional network 60 
models based on the research question and scenario. 61 

 62 
1. Introduction  63 

At the meso-scale, the human cerebral cortex consists of specialized functional 64 
modules (Power et al., 2011; Yeo et al., 2011) that work together as large-scale 65 
functional networks to support sensory, motor, higher-cognitive, and affective functions 66 
(Petersen & Sporns, 2015; Wig, 2017). In adult humans, these large-scale networks 67 
exhibit relatively consistent spatial topographies across both acquisition paradigms (task 68 
and resting states) and individuals (Gratton et al., 2018), and are disrupted by disease 69 
(Fornito et al., 2015; Fox & Greicius, 2010). The modular composition of the brain 70 
serves to segregate information processing between distinct sensory modalities or 71 
cognitive domains (Grayson & Fair, 2017; Petersen & Sporns, 2015).  72 

Prior research has demonstrated that these functional networks develop across 73 
the lifespan from infancy through old age (Grayson & Fair, 2017; Sun et al., 2023; Wig, 74 
2017), paralleling the development of complex behavior functions (Grayson & Fair, 75 
2017; Petersen & Sporns, 2015). Preliminary forms of adult functional networks are 76 
already present in utero (Moore et al., 2024; Thomason et al., 2013; Turk et al., 2019). 77 
In addition, the existence of robust, bilateral segregated networks for somatomotor, 78 
primary auditory, primary visual, and extrastriate visual cortex have also been confirmed 79 
(Eyre et al., 2021; Fransson et al., 2007; Gao, Alcauter, Elton, et al., 2015, 2015; 80 
Smyser et al., 2010). Higher-order resting-state networks appear to be less mature in 81 
early infancy (Gao, Alcauter, Elton, et al., 2015; Gao et al., 2009). By the age of 1-2 82 
years, the default mode network becomes more adult-like in some studies (Gao, 83 
Alcauter, Elton, et al., 2015; Gao, Alcauter, Smith, et al., 2015; Gao et al., 2009) but 84 
remains localized in other studies (Eggebrecht et al., 2017; Kardan et al., 2022; Marrus 85 
et al., 2018; F. Wang et al., 2023).  86 

Due to these observations, researchers conducting analysis on infant 87 
neuroimaging data often face a dilemma of choosing a proper representation model for 88 
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their data. Some researchers used the adult network models when describing the 89 
relationships between functional connectivity (FC) in the brain and behavioral 90 
phenotypes in infants (Nielsen et al., 2022; Rudolph et al., 2018; Tooley et al., 2023) or 91 
when comparing between infants and adults (Yates et al., 2023). One argument for this 92 
choice is to encourage biological interpretability and facilitate communication across 93 
groups by adopting the same terminology across developmental stages. However, 94 
defining the functional networks using the exact adult topography may be inaccurate 95 
and cause the mixing of fMRI BOLD signals across different sub-networks (Smith et al., 96 
2011), thus lowering statistical power. Furthermore, some of the differences in FC might 97 
be confounded by the differences in network topography or network identity 98 
(Bijsterbosch et al., 2018, 2019).  99 

An alternative approach is to derive data-driven functional networks for specific 100 
developmental stages (Eggebrecht et al., 2017; Kardan et al., 2022; Marrus et al., 2018; 101 
Wheelock et al., 2019). While this would potentially mitigate the problem of poor FC 102 
representation within functional networks and help improve reproducibility, the utility and 103 
interpretability of those results are less apparent. Ultimately, the choice should be 104 
dependent on the research goal, but it is also important to understand how poorly the 105 
adult network topography fits data from infants – presumably, if the adult functional 106 
network topography is dramatically different from that in infants, then the application of 107 
the adult functional networks to infant studies would likely result in low reliability (Marek 108 
et al., 2022). Here, we aim to delve deeper into this problem, and examine to what 109 
extent the infant networks are similar to and different from the adult networks in terms of 110 
describing the underlying modular structure in their FC. 111 

In addition, converging evidence from different modalities suggests that the 112 
human cortex does not develop in a spatially uniform manner. Rather, regions within 113 
primary sensory and motor cortex mature earlier in their biological properties than 114 
regions in higher order association cortex (Ahmad et al., 2023; Flechsig, 1901; Garcia et 115 
al., 2018; Grayson & Fair, 2017; Hill et al., 2010; Sydnor et al., 2021; Truzzi & Cusack, 116 
2023). When the areas mature earlier, it leaves little room for future plasticity (Hill et al., 117 
2010), and hence may result in less interindividual variability or reduced susceptibility to 118 
environmental influences (Gao et al., 2017) and psychopathological factors (Sydnor et 119 
al., 2021). We hypothesized that some areas would demonstrate early signs of adult-120 
like organization, especially towards the sensorimotor end of the functional hierarchy 121 
(Gao, Alcauter, Elton, et al., 2015; Sydnor et al., 2021). We further hypothesized that 122 
areas with adult-like organization would overlap with areas of low interindividual 123 
variability in functional network assignments (Dworetsky et al., 2021; Gordon, Laumann, 124 
Adeyemo, et al., 2017; Gratton et al., 2018; Hermosillo et al., 2024; Kong et al., 2019; 125 
Langs et al., 2016; Seitzman et al., 2019). 126 

In the present work, we used one adult resting-state fMRI dataset with 120 127 
participants (aged 19-32 years) and one typically developing infant resting-state fMRI 128 
dataset with 181 participants (aged 8-60 months) to quantify how well the infant and 129 
adult networks can describe the modular structure in the adult and infant FC. In 130 
addition, we quantified the fit of the networks in each area and mapped out the spatial 131 
distribution of the strength of misidentification. Furthermore, we analyzed the age effect 132 
on within-network FC using all areas versus only the subset of areas with a stronger 133 
association to other areas in the same network than alternative networks to 134 
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demonstrate the potential consequences of model choice. Lastly, we compared the 135 
spatial distribution of our area subset to the spatial distribution of locations with the 136 
greatest group convergence in functional network identity across individuals. Our 137 
findings will help researchers working with infant neuroimaging data understand the 138 
pros and cons of using adult and infant functional network models, appreciate the 139 
current results in the literature, and provide recommendations for future research.  140 

 141 
2. Materials and Methods  142 
 143 
2.1. Data Collection  144 
 145 
2.1.1. Washington University 120 (WU 120) 146 

This dataset has been previously described in detail (Power et al., 2017). Briefly, 147 
data were collected from 120 healthy young adult subjects during relaxed eyes–open 148 
fixation (60 females, mean age = 25 years, age range = 19–32 years). All subjects were 149 
native speakers of English and right-handed. Subjects were recruited from the 150 
Washington University community and were screened with a self-report questionnaire to 151 
ensure that they had no current or previous history of neurological or psychiatric 152 
diagnosis, as well as no head injuries resulting in a loss of consciousness for more than 153 
5 minutes. Informed consent was obtained from all subjects. The study was approved 154 
by the Washington University School of Medicine Human Studies Committee and 155 
Institutional Review Board. 156 

Structural and functional MRI data were obtained with a Siemens MAGNETOM 157 
Trio Tim 3.0-T Scanner (Erlangen, Germany) and a Siemens 12-channel Head Matrix 158 
Coil. A T1-weighted sagittal magnetization-prepared rapid acquisition gradient-echo 159 
(MP-RAGE) structural image was obtained [time echo (TE) = 3.08 ms, time repetition, 160 
TR (partition) = 2.4 s, time to inversion (TI) = 1000 ms, flip angle = 8°, 176 slices with 1 161 
× 1 × 1 mm voxels]. An auto-align pulse sequence protocol provided in the Siemens 162 
software was used to align the acquisition slices of the functional scans parallel to the 163 
anterior commissure–posterior commissure plane of the MP-RAGE and centered on the 164 
brain. This plane is parallel to the slices in the Talairach atlas (Talairach & Tournoux, 165 
1988). 166 

During functional MRI data acquisition, subjects were instructed to relax while 167 
fixating on a black crosshair that was presented against a white background. Functional 168 
imaging was performed using a BOLD contrast-sensitive gradient-echo echo-planar 169 
imaging (EPI) sequence (TE = 27 ms, flip angle = 90°, in-plane resolution = 4 × 4 mm). 170 
Whole-brain EPI volumes (MR frames) of 32 contiguous, 4-mm-thick axial slices were 171 
obtained every 2.5 s. A T2-weighted turbo spin-echo structural image (TE = 84 ms, TR 172 
= 6.8 s, 32 slices with 1 × 1 × 4 mm voxels) in the same anatomical planes as the BOLD 173 
images was also obtained to improve alignment to an atlas. Anterior→Posterior (AP) 174 
phase encoding was used for fMRI acquisition. The number of volumes collected from 175 
subjects ranged from 184 to 724 (mean = 336 frames, 14.0 min). 176 

 177 
2.1.2. Baby Connectome Project (BCP) 178 

 Full-term (gestational age of 37-42 weeks) infants free of any major pregnancy 179 
and delivery complications were recruited as part of the Baby Connectome Project 180 
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(Howell et al., 2019). All procedures were approved by the University of North Carolina 181 
at Chapel Hill and the University of Minnesota Institutional Review Boards. Informed 182 
consent was obtained from the parents of all participants. In the final cohort used 183 
following fMRI data quality control (described below), we retained 313 MRI sessions 184 
from 181 individuals (95 females, 8-60 months, mean 19.1 months and standard 185 
deviation 8.3 months) (Supplementary Figure 1).  186 

All MRI images were acquired on a Siemens 3T Prisma scanner with a 32-187 
channel head coil at the University of Minnesota and at the University of North Carolina 188 
at Chapel Hill during natural sleep without the use of sedating medications. T1-weighted 189 
(TR=2400 ms, TE=2.24 ms, 0.8 mm isotropic; flip angle = 8°), T2-weighted images 190 
(TR=3200 ms, TE=564 ms, 0.8 mm isotropic), spin echo field maps (SEFM) (TR=8000 191 
ms, TE=66 ms, 2 mm isotropic, MB=1), and fMRI data (TR=800 ms, TE=37 ms, 2 mm 192 
isotropic, MB=8) were collected. A mixture of Anterior→Posterior (AP) and 193 
Posterior→Anterior (PA) phase encoding directions was used for fMRI acquisition in 194 
each session, but they were concatenated into one time series. An early subset of data 195 
was collected with a 720-ms TR (N = 95). The number of low-motion volumes collected 196 
from subjects ranged from 840 to 2100 (mean = 1306 frames, 16.9 min).  197 
 198 
2.2. fMRI analysis 199 
 200 
2.2.1. MRI data preprocessing 201 
 202 
2.2.1.1. MRI data preprocessing – WU120 203 

Functional images were first processed to reduce artifacts including (1) 204 
Correction of odd versus even slice intensity differences attributable to interleaved 205 
acquisition without gaps, (2) correction for head movement within and across runs, and 206 
(3) across-run intensity normalization to a whole-brain mode value of 1000. Atlas 207 
transformation of the functional data was computed for each individual using the MP-208 
RAGE scan. Each run was then resampled to an isotropic 3-mm atlas space (Talairach 209 
& Tournoux, 1988), combining movement correction and atlas transformation in a single 210 
cubic spline interpolation (Lancaster et al., 1995).  211 

Additional preprocessing steps were applied to the functional data to reduce the 212 
effect of high-motion frames. This was performed in two iterations. In the first iteration, 213 
the processing steps were (1) demeaning and detrending, (2), multiple regression 214 
including: whole-brain, ventricular cerebrospinal fluid (CSF), and white matter signals, 215 
and motion regressors derived by Volterra expansion and (3) a band-pass filter (0.009 216 
Hz < f < 0.08 Hz). Following the initial FC preprocessing iteration, temporal masks were 217 
created to flag motion-contaminated frames. Motion-contaminated volumes were 218 
identified by framewise displacement (FD), defined as the squared sum of the motion 219 
vectors (Power et al., 2012). Volumes with FD > 0.2 mm and segments of data lasting 220 
fewer than 5 contiguous volumes were censored. 221 

The data were then reprocessed in a second iteration, incorporating the temporal 222 
masks described above. This reprocessing was identical to the initial processing stream 223 
but ignored censored data. Data were interpolated across censored frames using least 224 
squares spectral estimation (Power et al., 2014) of the values at censored frames, so 225 
that continuous data could be passed through the band-pass filter (0.009 Hz < f < 0.08 226 
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Hz) without contaminating frames near high motion frames. Censored frames were 227 
ultimately ignored during functional connectivity matrix generation. 228 

Individual surfaces were generated from the structural images and the functional 229 
data was sampled to surface space (Glasser et al., 2013). First, following volumetric 230 
registration, anatomical surfaces for the left and right hemispheres were generated from 231 
each subject's MP-RAGE image using FreeSurfer's default recon-all processing pipeline 232 
(v5.0)(Fischl, 2012). This pipeline included brain extraction, segmentation, generation of 233 
white matter and pial surfaces, inflation of the surfaces to a sphere, and surface shape-234 
based spherical registration of the subject's “native” surface to the fsaverage surface. 235 
The fsaverage-registered left and right hemisphere surfaces were then brought into 236 
register with each other (Van Essen et al., 2012), resampled to a resolution of 164000 237 
vertices using Caret tools (Van Essen et al., 2001) and subsequently down sampled to 238 
a 32492 vertex surface (fs_LR 32k). The BOLD volumes were sampled to each 239 
subject's individual “native” midthickness surface (generated as the average of the white 240 
and pial surfaces) using the ribbon-constrained sampling procedure available in 241 
Connectome Workbench (v0.84) and then deformed and resampled from the 242 
individual's “native” surface to the 32k fs_LR surface. Finally, the time courses were 243 
smoothed along the 32k fs_LR surface using a Gaussian smoothing kernel (σ = 2.55 244 
mm). 245 
 246 
2.2.1.2. MRI data preprocessing – BCP 247 

MRI data were processed using the DCAN-Labs infant-abcd-bids-pipeline 248 
(v0.0.22) largely following steps described previously (Feczko et al., 2021). Structural 249 
MRI data underwent HCP-style processing (Feczko et al., 2021; Glasser et al., 2013), 250 
including ANTS N4 bias correction, ANTS denoising, T1/T2 distortion 251 
correction/registration, and finally ANTS SyN algorithm deformation alignment to an 252 
infant MNI template. In addition, a refined brain mask was generated from data that was 253 
segmented using in-house age-specific templates via Joint Label Fusion (JLF). The 254 
toddler-specific mask and segmentation were substituted into the FreeSurfer (Fischl, 255 
2012) pipeline and used to refine the white matter segmentation and guide the 256 
FreeSurfer surface delineation. The native surface data were then deformed to the 257 
fsaverage LR32k template via a spherical registration.  258 

For functional MRI preprocessing, a scout image (frame 16 in each run) was 259 
selected from the fMRI time series. The scout was distortion-corrected via spin-echo 260 
field maps, served as the reference for motion correction via rigid-body realignment 261 
(Feczko et al., 2021), and was registered to the native T1. Across-run intensity 262 
normalization to a whole-brain mode value of 10,000 was then performed. These steps 263 
were combined in a single resampling with the MNI template transformation from the 264 
previous step, such that all fMRI frames were registered to the infant MNI template. 265 
Manual inspection of image quality of structural and functional data was conducted to 266 
exclude sessions with bad data quality.  267 

To prepare the functional data for FC analysis, further processing steps were 268 
applied after sampling the BOLD data to the fsLR_32k surface space using steps 269 
described in 2.2.1.1. First, functional data were demeaned and detrended in time. 270 
Denoising was then performed using a general linear model with regressors including 271 
signal and motion variables. Signal regressors included mean CIFTI gray-ordinate time 272 
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series, Joint Label Fusion (JLF)-defined white matter, and JLF-defined CSF. Motion 273 
regressors included volume-based translational and rotational components and their 24-274 
parameter Volterra expansion. The movement of the head was measured by FD and an 275 
age-specific respiratory notch filter (0.28-0.48 Hz) was applied to the FD traces and 276 
motion parameter estimates to mitigate the effects of factitious head motion due to 277 
infant respiration (Fair, 2020; Kaplan et al., 2022). Frames were censored during 278 
demeaning/detrending if their post-respiratory filtering FD value exceeded 0.3 mm to 279 
generate the denoised beta values in the general linear model. Bandpass filtering was 280 
applied using a second-order Butterworth filter (0.008–0.09 Hz). To preserve the 281 
temporal sequence and avoid aliasing caused by missing time points during bandpass 282 
filtering, interpolation was used to replace missing frames, and residuals were acquired 283 
from the denoising general linear model. In addition, zero-padding was applied to both 284 
ends of the BOLD data prior to filtering to minimize the distortions in the edges of the 285 
time series. The data were originally minimally spatially smoothed with a geodesic 2D 286 
Gaussian kernel (σ = 0.85 mm). A further smoothing with a geodesic 2D Gaussian 287 
kernel (σ = 2.40 mm) was applied to give a final effective smoothing of σ = 2.55 mm to 288 
match the smoothing used in the adult dataset (WU 120). Finally, the timeseries were 289 
concatenated across all complete and partially completed scan runs with good data 290 
quality. The first 7 frames from each run, frames with > 0.2 mm FD post-respiratory 291 
filtering (Kaplan et al., 2022) and outlier frames whose across-vertex standard deviation 292 
was more than 3 median absolute deviations from the median of the low FD frames 293 
were censored and ignored for functional connectivity matrix construction. 294 
 295 
2.2.2. Functional Connectivity Matrix Construction 296 

The preprocessed BOLD timeseries data of each session were parcellated into 297 
333 non-overlapping areas using the Gordon parcellation (Gordon et al., 2016). This 298 
choice of parcellation was justified by recent work by our group that demonstrated that 299 
the Gordon parcellation had the best fit among a set of adult parcellations and 300 
performed comparably to most available infant parcellations in data from infants aged 301 
around 8-30 months (Tu et al., 2023). After that, a total number of frames equivalent to 302 
7.2 minutes of data (560 frames for TR = 0.72 and 600 frames for TR = 0.8) were 303 
randomly sampled from the full censored timeseries in each fMRI session. The 304 
Pearson’s correlation between the parcellated timeseries was computed to create a 333 305 
x 333 functional connectivity (FC) matrix. This matrix was then Fisher-Z-transformed. 306 
The group-average FC matrix was calculated as the mean FC across fMRI sessions.  307 
 308 
2.3. Infant and Adult Functional Networks Schemes 309 
 We used the Gordon network assignments (Gordon et al., 2016) for “Adult 310 
Networks” (Figure 1A) and Kardan network assignments (Kardan et al., 2022) for “Infant 311 
Networks” (Figure 1B). These networks were derived at the 333 area level using the 312 
same Infomap community detection algorithm (Rosvall & Bergstrom, 2010) optimized 313 
for identifying networks in FC data (Power et al., 2011). Among the 333 areas, some 314 
were originally assigned in communities fewer than 5 areas and considered unassigned 315 
(named “None” and “Unspecified”). These areas commonly fall under locations 316 
subjected to the biggest susceptibility artifact (Ojemann et al., 1997). We removed them 317 
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from all analyses and had 286 areas left for the adult networks (“Gordon”) and 328 318 
areas left for the infant networks (“Kardan”). 319 

The 12 Gordon networks include the auditory (Aud), cingulo-opercular (CON), 320 
parietal memory (PMN), default mode (DMN), dorsal attention (DAN), fronto-parietal 321 
(FPN), retrosplenial temporal (RTN), somatomotor hand (SMN hand), somatomotor 322 
mouth (SMN mouth), salience (Sal), ventral attention (VAN), and visual (Vis) networks. 323 
The 10 Kardan networks include somatomotor (SMN), temporal (Tem), posterior 324 
frontoparietal (pFPN), posterior default mode (pDMN), lateral visual (lVis), medial visual 325 
(mVis), dorsal attention (DAN), anterior fronto-parietal (aFPN), anterior default mode 326 
(aDMN).  327 
 328 
2.4. Functional Network Overlap  329 
 The overlap between a network in the Gordon networks and a network in the 330 
Kardan networks can be measured with the Dice coefficient, with 0 indicating no overlap 331 
and 1 indicating complete overlap. For this analysis, each network is represented with a 332 
333 x 1 vector with 1 for the areas in the network and 0 for the areas outside the 333 
network. 334 
 335 
2.5. Silhouette Index Calculation 336 
 Following prior procedures in the literature (Rousseeuw, 1987; Yeo et al., 2011), 337 
we calculated the silhouette index (SI) for each area with the correlation distance using 338 
the spatial similarity between the FC profiles (without the diagonal elements which refer 339 
to the meaningless self-connectivity):  340 
 341 

𝑆𝐼 =
𝑏 − 𝑎

max	(𝑎, 𝑏)	(𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	1) 342 

 343 
where b is the mean between-network correlation distance of the FC profiles, and a is 344 
the mean within-network correlation distance of the FC profiles. FC profiles here refer to 345 
the FC from each area to all other areas (i.e., one row in the FC matrix). 346 

Intuitively, the SI ranges from +1 to -1 with the sign indicating whether the area 347 
has a more similar FC profile to areas in its own network (+) or to areas in an alternative 348 
network (-). The magnitude indicates the confidence of this assignment, with a higher 349 
magnitude suggestive of strong confidence. The average SI for the FC in a network 350 
scheme was defined as the average SI across all areas. 351 

By default, the silhouette index compares the current network to the best 352 
alternative network, which also depends on the quality of alternatives. However, other 353 
researchers have chosen to use a similar metric that compares the average within-354 
network similarity to the average between-network similarity across all alternative 355 
networks, rather than just the best alternative (Ji et al., 2019). This approach tends to be 356 
less conservative and generally results in a higher silhouette index when calculated in 357 
this manner. We also calculated the silhouette index with the average of all networks 358 
rather than just the alternative network in the Supplementary Materials. 359 

In order to obtain a confidence interval for the average SI across individual 360 
sessions, we used a bootstrap 95% confidence interval estimate in 1000 random draws 361 
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of individual sessions from the full sample (N = 120 for WU120 and N = 313 for BCP) 362 
with replacement.  363 
 364 
2.6. Identify the Subset of Areas with Similar Network Organization to the Gordon 365 
Networks in Infants 366 
 A positive SI indicates that the area has a more similar FC profile to areas in its 367 
own network. We obtained the subset of areas that had a similar network organization 368 
to other areas defined in the Gordon network scheme in infants by only retaining the 369 
areas with a positive SI in the group-average infant FC. We refer to this set of positive 370 
SI areas as ‘Gordon Subset’.  371 
 372 
2.7. Distance Between High Consensus Regions of Interests (ROIs) and the 373 
“Gordon Subset” Areas 374 

To quantify the spatial distribution similarity between the locations of low 375 
interindividual variability and the “Gordon Subset” areas, we calculated the Euclidean 376 
distance between the high consensus cortical ROIs and the centers of the Gordon 377 
areas. We used published coordinates of 153 high consensus ROIs calculated 378 
previously by identifying locations that demonstrated consistent network assignment 379 
across a large majority (i.e. ≥ 75%) of subjects in the Dartmouth dataset (N = 69 380 
subjects, 56 female, average age 20.2 years)(Gordon et al., 2016) when a template-381 
matching procedure (Gordon, Laumann, Adeyemo, et al., 2017) was applied to identify 382 
individual network assignments (Dworetsky et al., 2021).  383 
 For each of the “high consensus” ROIs, we found their distance to the nearest 384 
“Gordon Subset” area and their distance to an alternative Gordon area. An average of 385 
this difference was recorded and named “distance difference”. A negative distance 386 
difference indicates that on average, the high consensus regions were closer to the 387 
“Gordon Subset” area centers than to the alternative Gordon areas. To account for the 388 
potential effect of differences in number of areas between the “Gordon Subset” areas (N 389 
= 166) and the alternative areas not in the subset (N = 120), we randomly assigned the 390 
166 out of 286 areas a label of “Gordon Subset” and repeated the analysis above 1000 391 
times to obtain a null distribution.   392 
 393 
2.8. Moving Average Analysis Across Age 394 
 To examine the FC fit to different network schemes across infancy, we used a 395 
moving average analysis across age. For this analysis, we limited our data to the 281 396 
sessions collected at the age of 8-27 months because the data became very sparse and 397 
less evenly distributed after 27 months (Supplementary Figure 1). We first sorted the 398 
fMRI sessions by age at scan. Sessions were arranged chronologically by age, and FC 399 
averages were computed for consecutive windows of 20 sessions, with each window 400 
representing the mean age within it. This window was then shifted by one session at a 401 
time until all 281 sessions were accounted for. Subsequently, we calculated the average 402 
similarity index (SI) using the same method. 403 
 404 
2.9. Age effect of within-network FC 405 

To test the hypothesis that the subset of areas has relatively stable within-406 
network FC across chronological age in infants, we compared the age effect on within-407 
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network FC when the networks include only the subset versus full set of areas. The age 408 
effect of within-network FC was quantified with a Spearman’s correlation (𝜌). The 409 
significance of the difference between the correlation between chronological age and 410 
within-network FC in the subset versus full set of areas is calculated with a Z-test on 411 
Fisher-Z-transformed r values. 412 

 413 
2.10. Intraclass Correlation Coefficient 414 

To assess the differences in reliability of within-network edges for using the 415 
Gordon networks with all areas versus the subset of areas. We quantified the test-retest 416 
reliability of FC with intraclass correlation coefficient (ICC). We assessed the 417 
consistency among measurements under the fixed levels of the session factor (Tozzi et 418 
al., 2020), referred to as ICC ‘C-1’ (McGraw & Wong, 1996) or ICC (3,1) (Shrout & 419 
Fleiss, 1979). 420 

For this analysis, we re-calculated the FC matrices for each individual with two 421 
non-overlapping time windows of data from each session. “Test” and “re-test” were 422 
defined as the first 6 min and last 6 min of low-motion data, separated by at least 1.2 423 
min low motion data in between to reduce the impact of temporal autocorrelation (i.e. 424 
total > 13.2 min low-motion data). Only 167 sessions had enough low-motion data for 425 
this analysis. First, the FC values in the upper triangle of each subject’s connectivity 426 
matrix were entered as rows in two large matrices (one matrix for “test” and another for 427 
“re-test”, one row per subject in each matrix). Then, the corresponding columns of these 428 
matrices were compared to obtain an ICC value for each edge. The mean and standard 429 
error of the mean of the ICCs within each of the Gordon networks were calculated for 430 
the full and subset of the areas. 431 
 432 
2.11. Group consistency and differential power of FC edges  433 

Prior studies suggested that it was possible to identify individuals using FC in 434 
infants from the BCP dataset (Hu et al., 2022; Kardan et al., 2022). To assess which FC 435 
edges (i.e. connections between a pair of areas) are more consistent across individuals 436 
versus distinct across individuals, we calculated the group consistency (𝜙) and 437 
differential power (DP) measures (Finn et al., 2015). We aim to describe the distribution 438 
of highly consistent edges and highly differentiating edges with respect to adult and 439 
infant network models. For this analysis, we only use the one session from each of the 440 
115 unique subjects with at least 13.2 min low-motion data. Given two sets of 441 
connectivity [𝑋!"#], [𝑋!"$] obtained from the two resting scan windows (R1 and R2) after 442 
z-score normalization, the edgewise product vector φ! 	was computed as 443 

 444 
φ! 	(𝑒) = 	𝑋!"#(𝑒) ∗ 𝑋!"$(𝑒), 𝑒 = 1,… ,𝑀	(𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	2)  445 

 446 
where i indexed the subject, e indexed the edge, and M indexed the total number of FC 447 
edges. The sum of φ! over all edges is the correlation between [𝑋!"#], [𝑋!"$]. The group 448 
consistency 𝜙 was computed as the mean of φ! across all subjects. We defined the 449 
edges with the top 10% 𝜙 values to be “highly consistent”.  450 
 Similarly, the edgewise product vector φ!% 	was calculated between patterns from 451 
different subjects, for example: 452 

 φ!% 	(𝑒) = 	𝑋!"#(𝑒) ∗ 𝑋%"$(𝑒), 𝑒 = 1,… ,𝑀, 𝑖 ≠ 𝑗	(𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	3)  453 
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𝑃!(𝑒) = 	𝑃Dφ!% 	(𝑒) > φ!! 	(𝑒)	𝑜𝑟	φ%! 	(𝑒) > φ!! 	(𝑒)D	(𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	4)  454 
𝐷𝑃	(𝑒) = ∑ {−ln	(𝑃!(𝑒))}! 	(𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	5)  455 

 456 
We defined the edges with the top 10% DP values as “highly differentiating”. 457 

 458 
3. Results (currently 1643 words) 459 
 460 
3.1. Adult and Infant functional connectivity clustering were best described by the 461 
adult and infant network assignments respectively 462 

Gordon networks (adult) (Figure 1A) and Kardan networks (infant) (Figure 1B) 463 
assignments demonstrate a reasonable degree of agreement: Normalized Mutual 464 
Information (NMI) = 0.5 for the overlapping 281 areas after excluding the “None”/ 465 
“Unspecified” network in both adult and infant network assignments. The CON, pDMN, 466 
aDMN, SMN, mVis and lVis networks in the Kardan networks tend to have a large dice 467 
overlap with a single Gordon network, but Tem, DAN, pFPN, aFPN have a match to 468 
multiple Gordon networks (Supplementary Figure 2).   469 

Next, we asked how closely the network assignments matched the similarity of 470 
FC profiles within and between different networks and quantified it with the silhouette 471 
index (SI; Rousseeuw, 1987; Yeo et al., 2011). We used the average FC across 120 472 
adult sessions and the average FC across 313 infant sessions. We found that adult FC 473 
had a more modular organization (Figure 1C) when grouping into adult networks (Figure 474 
1A) than infant networks (Figure 1E). The average SI for areas assigned to adult 475 
networks in adult FC (0.333, 95% bootstrap CI = [0.3088, 0.3417]) was much higher 476 
than the average SI for areas assigned to infant networks in adult FC (0.009, 95% 477 
bootstrap CI = [-0.0015, 0.0168]). In contrast, the opposite was observed for infant FC, 478 
with a higher average SI for areas assigned to infant networks in infant FC (0.336, 95% 479 
bootstrap CI = [0.3280, 0.3397], Figure 1F) than the average SI for areas assigned to 480 
adult networks in infant FC (0.049, 95% bootstrap CI = [0.0406,0.0560], Figure 1D). 481 
Furthermore, the results were also qualitatively validated across individual sessions, 482 
with a much higher SI of adult networks than infant networks on adult FC (Cohen’s d = 483 
1.215, p < 0.001) (Supplementary Figure 3C), and a much higher SI of infant networks 484 
than adult networks on infant FC (Cohen’s d = 2.744, p < 0.001) (Supplementary Figure 485 
4C). Taken together, the adult networks better describe the modular organization in 486 
adult FC than infant FC, and the infant networks better describe the modular 487 
organization in infant FC than adult FC. However, the SI is comparable for adult FC and 488 
infant FC using the best network model, suggesting the presence of the modular 489 
organization in both cohorts.  490 

Notably, some areas tend to have a positive SI for areas assigned to adult 491 
networks regardless of the FC age group (Figure 1G & I). Since the spatial distribution 492 
of SI across sessions (Supplementary 3A-B & 4A-B) was relatively consistent, it is 493 
unlikely that the low SI magnitude in infants was purely driven by high interindividual 494 
variability.  495 
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 496 

 
Figure 1. Adult and Infant functional connectivity ordered by the adult and infant networks. 
A) 12 adult networks, B) 10 infant networks, C) average adult FC sorted by adult networks, 
D) average infant FC sorted by adult networks, E) average adult FC sorted by infant 
networks, F) average infant FC sorted by infant networks, G) SI of parcels with adult network 
assignments in adults, H) SI of parcels with adult network assignments in infants, I) SI of 
parcels with infant network assignments in adults, J) SI of parcels with infant network 
assignments in infants. Network abbreviations: auditory (Aud), cingulo-opercular (CON), 
parietal memory (PMN), default mode (DMN), dorsal attention (DAN), fronto-parietal (FPN), 
retrosplenial temporal (RTN), somatomotor hand (SMN hand), somatomotor mouth (SMN 
mouth), salience (Sal), and ventral attention (VAN), visual (Vis), somatomotor (SMN), 
temporal (Tem), posterior frontoparietal (pFPN), posterior default mode (pDMN), lateral 
visual (lVis), medial visual (mVis), anterior fronto-parietal (aFPN), anterior default mode 
(aDMN).  
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3.2. A subset of areas demonstrates adult-like network organization throughout 497 
development 498 
 An SI above zero for an area indicates that its FC profile more closely resembles 499 
those of other areas in the same network than those in any alternative network within a 500 
given network scheme (e.g., adult Gordon networks). Therefore, we selected the subset 501 
of areas with an SI above zero when the adult networks were applied to the infant FC 502 
(166 areas in total, Figure 2A). These areas fell into all 11 out of the 12 Gordon 503 
networks (i.e., all except for PMN), with the whole RTN, SMN mouth and Sal networks 504 
retained, and the remaining 8 networks partially retained (Figure 2B). We validated that 505 
the areas with SI above zero are highly consistent across bootstrap samples, with 156 506 
out of the 166 areas having SI above zero in at least 950 out of 1000 bootstraps 507 
(Supplementary Figure 6). 508 

As expected, the average SI for areas assigned to adult networks in infant FC 509 
was much higher using the subset of areas than all areas (0.388, 95% bootstrap CI = 510 
[0.3792, 0.3925]; Figure 2C). The average SI for areas assigned to adult networks in 511 
adult FC was also marginally higher using the subset (0.419, 95% bootstrap CI = 512 
[0.3925,0.4300]) (Supplementary Figure 7A), suggesting that this subset captured the 513 
areas that are most coherently organized into the adult networks in both infants and 514 
adults. Compared to “Gordon Full” (286 areas, Figure 1A), “Gordon Subset” was 515 
disproportionally enriched in the SMN networks (SMN hand and SMN mouth) (Figure 516 
2D). As expected, the within-network FC was significantly higher across infant sessions 517 
(paired t-test, FDR-corrected p < 0.05) for all 8 partially retained networks compared to 518 
full networks, with little change in variability (Figure 2E). Similarly, the within-network FC 519 
was significantly higher across adult sessions (paired t-test, FDR-corrected p < 0.05) for 520 
all seven out of eight partially retained networks, and significantly lower across adult 521 
sessions for FPN. In general, the within-network FC differences between “Gordon Full” 522 
and “Gordon Subset” were larger in infants than in adults (Table 1). 523 

 524 
Table 1. Cohen’s d of the within-network FC differences in Gordon Full V.S. Gordon 525 
Subset. 526 

 Aud CON DMN DAN FPN SMN 
hand 

VAN Vis 

Infant 
FC 

-2.41 -0.29 -1.80 -2.23 -1.54 -2.81 -2.64 -2.91 

Adult 
FC 

-1.13 -0.31 -0.46 -1.47 0.70 -1.09 -1.53 -2.10 

 527 
It was implied from the results above that the difference in within-network FC 528 

between adults and infants would be smaller when using the “Gordon Subset” 529 
compared to the “Gordon Full”. We tested this directly using a two-sample t-test (Figure 530 
3, Table 2). We found that in seven out of the eight partially retained Gordon networks 531 
the adult FC was significantly higher (FDR-corrected p < 0.05) than the infant FC with 532 
the “Gordon Full” area set (Figure 3A). On the other hand, only five out of the eight still 533 
demonstrated significantly higher within-network FC (FDR-corrected p < 0.05) in adults 534 
compared to infants, and two out of the eight demonstrated significantly lower within-535 
network FC (FDR-corrected p < 0.05) (Figure 3B).   536 
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 537 
Table 2. Cohen’s d of the within-network FC differences in adults V.S. infants 538 

 Aud CON DMN DAN FPN SMN 
hand 

VAN Vis 

Gordon 
Full 

2.35 2.35 0.80 2.11 0.23 1.04 0.03 1.22 

Gordon 
Subset 

1.04 1.88 0.13 1.04 -0.26 0.43 -0.34 0.94 

 539 
Additionally, we found that the effect of chronological age on within-network FC 540 

within the infant cohort was also reduced when the “Gordon Subset” was used in place 541 
of “Gordon Full” (Supplementary Figure 8). The details are reported in the 542 
Supplementary Materials. 543 

Taken together, this suggested that while the within-network FC within “Subset” 544 
was higher than within “Full” in both infant and adult datasets, using the “Subset” 545 
compared to “Full” reduced the difference across age. 546 

 547 

 
Figure 3. Violin plot of within-network average FC in the Gordon networks. A) within-network 
average FC using the full sets of areas in adults and infants. B) Within-network average FC using 
the subset of areas in adults and infants. FDR-corrected p for two-sample t-tests. * p < 0.05, ** p 
< 0.01, *** p < 0.001. 
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3.4. Adult versus infant network across 1-2-year-olds 548 
 Next, we asked whether there was any variation between how the different 549 
network schemes fit the infant FC at various stages between 1 to 2 years (Gordon adult 550 
networks and Kardan infant networks). In addition, we also applied the Gordon and 551 
Kardan network sorting on the subset of 166 areas in Figure 2A. Using a moving 552 
average approach across infant ages, we found a consistent order of the network 553 
schemes, with the Gordon (Subset), Kardan and Kardan (Subset) having a similar 554 
average SI, and Gordon networks having a much lower average SI (Figure 4A). When 555 
comparing 1 year (Figure 4B) and 2 years (Figure 4C). We found a marginal increase in 556 
the average SI for the Gordon networks, even though the 95% bootstrap confidence 557 

interval across 1000 bootstraps did not overlap (Supplementary Figure 9).  558 
3.5. The subset of areas with adult-like network organization is in spatial 559 
proximity to the high consensus regions across adult individuals  560 

To quantify the spatial distribution similarity between the locations of low 561 
interindividual variability in network identity (“high consensus cortical ROIs”) (Dworetsky 562 
et al., 2021) and the “Gordon Subset” areas, we calculated the Euclidean distance 563 
between the centers of the “Gordon Subset” areas (Figure 5A) and the alternative “not 564 
Gordon Subset” areas (Figure 5B) by 3.9 mm (~1 voxel). To rule out the possibility that 565 
this difference was driven by the differences in the number of areas, we repeated the 566 
same analysis by permuting “Gordon Subset” (N = 166) versus “not Gordon Subset” (N 567 
= 120) labels 1000 times to generate a null distribution. We found that the actual 568 
difference (3.9 mm) was significantly higher than the null (p < 0.001, permutation 569 
testing) (Figure 5C). 570 

 

Figure 4. Moving average analysis with the adult networks, the subset of the adult 
networks, and the infant networks. A) Average SI of the average FC in a window for different 
network assignments. B) Average SI of the window around 1 year old sorted by different 
network assignments. C) Average SI of the window around 2 years old sorted by different 
network assignments. 
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 571 

 572 
3.6. Within-network FC edges in the subset of areas has a higher test-retest 573 
reliability and a higher consistency across subjects 574 
 Comparing FC computed from non-overlapping time windows in the same 575 
session demonstrated that the subset parcels had significantly higher within-session 576 
reliability than the full parcel set. In particular, the four out of eight networks with partially 577 
retained parcels exhibited higher average ICC with the parcel subset than the full parcel 578 
set (two-sample t-test, FDR-corrected p < 0.05): Aud (Cohen’s d = 0.68), DMN (Cohen’s 579 
d = 0.13), DAN (Cohen’s d = 0.55), and VAN (Cohen’s d = 0.43) (Figure 6)   580 

To examine whether the contribution of FC edges to individual identification 581 
varied across the within- and between-network blocks by the three network schemes, 582 
we also quantified the FC group consistency (𝜙) and differential power (DP) (Finn et al., 583 
2015). Consistent with previous literature, we observed that a large percentage (~50%) 584 
of FC edges in the within-network blocks tend to be highly consistent in all three 585 
network schemes, as opposed to between-network blocks (~6%) (Supplementary 586 
Figure 10; Supplementary Table 1). The sensorimotor networks especially had a large 587 
proportion of highly consistent within-network FC edges (Supplementary Table 1-2). 588 
Moreover, using adult networks defined by the subset of areas (“Gordon Subset”), the 589 
percentage of high consistent edges within network increased dramatically for all eight 590 
partially retained networks (Supplementary Table 2), suggesting that the adult network 591 
spanned by our subset over-represented areas with highly consistent FC between them.  592 

On the other hand, within-network blocks tend to have only a slightly larger 593 
percentage of highly differentiating FC edges (~15%) than between-network blocks 594 
(~10%) (Supplementary Table 3), with both increased and decreased proportion of 595 
highly differentiating edges when using the “Gordon Subset” instead of “Gordon Full”.  596 
 597 

 
Figure 5. Compare the subset of parcels with adult-like network organization to high-
consensus regions. A) The subset of parcels with adult-like network organization overlayed 
with high-consensus regions. B) The remaining parcels overlayed with high-consensus 
regions. C) The average Euclidean distance between the high-consensus regions and the 
closest parcel center. Dashed line: the actual difference between the distances in panel A 
and panel B. Histogram: the difference between the distances with parcels randomly 
assigned to be in the adult-like (panel A) and not adult-like (panel B) groups 1000 times.  
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4. Discussion  598 
 599 
4.1. Infant FC has a modular structure distinct from adult FC 600 

We observed that for infants at 8-60 months, brain areas did exhibit some degree 601 
of clustering in average FC profiles according to the adult network assignments (average 602 
SI>0), although much weaker than that in adult FC. This observation is consistent with 603 
prior literature where a modular organization of FC was detected in preterm-born (Cao et 604 
al., 2017; van den Heuvel et al., 2015) and in utero fetal baby brains (Thomason et al., 605 
2014; Wheelock et al., 2019), with a decent degree of similarity to the modular 606 
organization in the adult FC (van den Heuvel et al., 2015). Furthermore, it seemed that 607 
instead of being less modular and more random, the infant FC data were better described 608 
with notably different but related modular organization, including fragmented anterior and 609 
posterior segments of higher-order association networks (Eggebrecht et al., 2017; Eyre 610 
et al., 2021; Kardan et al., 2022; Marrus et al., 2018). 611 
 612 
4.2. Identification of functional network cores that are stable across development 613 

We found that a subset of the areas tended to exhibit more of an adult-like network 614 
FC clustering pattern, forming the “network cores” of adult networks. While the unique 615 
and evolving modular organization in infant FC has been an interesting and important 616 
topic of study (F. Wang et al., 2023; Wen et al., 2019, 2020), it is also desirable to note 617 
their similarities to older children and adults (Fransson et al., 2007; Gao, Alcauter, Elton, 618 
et al., 2015). The difference in within-network FC across ages was reduced when this 619 
subset was used instead of the full set of brain areas. The FC within this subset of regions 620 
was also more consistent across sessions and individuals. These areas likely form the 621 
early scaffold for what will eventually become the adult networks (Grayson & Fair, 2017).  622 
 623 

 
Figure 6. Reliability of within-network edges using the full versus subset of parcels. 
Reliability of within-network edges across two non-overlapping 6-minute windows. Bars 
show the mean of the ICC and error bars show the standard error of the mean. * p < 0.05, ** 
p < 0.01, *** p < 0.001. p-values are FDR-corrected following two-sample t-tests. 
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4.3. The role of childhood experience in shaping the development of functional 624 
networks 625 

Our results hinted that interindividual variability in functional network topography 626 
might have a developmental origin. To a first approximation, the spatial topography of the 627 
network cores we found resembled that of the locations with low interindividual variability 628 
in network identity (Dworetsky et al., 2021; Gordon, Laumann, Gilmore, et al., 2017; 629 
Hermosillo et al., 2024), while the areas that are subject to misidentification in infants 630 
resembled integration zones with a high degree of network overlap (Hermosillo et al., 631 
2024) and network hubs with a high participation coefficient (Power et al., 2013).  632 

One potential explanation for this observation is that some parts of the brain 633 
matured in utero and, thus, showed limited plasticity after birth, while other parts continue 634 
to develop throughout childhood. In line with this, mature synaptic density, cortical 635 
thickness, and gray matter density were reached earlier in low-expanding regions (e.g. 636 
V1 and Heschl’s gyrus) than in high-expanding regions (DLPFC) (Hill et al., 2010). There 637 
might be biological or evolutionary reasons to have parts of the adult networks maturing 638 
later, such as to limit the prenatal resources on regions most important for early survival 639 
and increase the influence of postnatal experience on other regions (Hill et al., 2010). In 640 
addition, the regional variability of network stability might also be linked to variability in 641 
the expression of excitatory and inhibitory features across the cortex (Sydnor et al., 2021). 642 
The idea that areas with higher FC variability had more behavioral significance is further 643 
reinforced by research demonstrating that behavioral and cognitive domain features could 644 
be better predicted from FC in cortical areas with high FC variability (Mueller et al., 2013). 645 
Recognition of the regional variability in functional network stability across development 646 
in future research is important, as they may become useful biomarkers for 647 
psychopathology (Sydnor et al., 2021), as well as therapeutic targets for brain stimulation 648 
interventions (Correll et al., 2021).  649 

We did not observe a strong over-representation of sensorimotor networks 650 
compared to association networks in our stable network cores, despite the literature 651 
suggesting that sensorimotor networks mature early than association networks (Gao, 652 
Alcauter, Elton, et al., 2015; Sydnor et al., 2021). The network cores spanned both 653 
sensorimotor and association networks along the functional hierarchy of the neocortex 654 
(Flechsig, 1901; Mesulam, 1998; Sydnor et al., 2021). One potential limitation is that our 655 
infant cohort was older than eight months and significant earlier neurodevelopmental 656 
changes along the sensorimotor-association hierarchy might have happened before eight 657 
months (Bethlehem et al., 2022; Flechsig, 1901). Another possibility is that the 658 
sensorimotor functional networks definition was inaccurate, e.g. the auditory network 659 
might incorporated parts of secondary somatosensory regions (Raju & Tadi, 2024), 660 
making the areas within the network less similar in their FC profile. 661 
 662 
4.4. Using a subset of areas to improve statistical power and interpretability 663 
 There are pros and cons of using a pre-existing functional network model and a 664 
data-driven functional network model for infant neuroimaging research. Studies of 665 
functional networks in infants have often implemented unsupervised methods (i.e. 666 
clustering or similar types of community detection algorithms) to find age-specific modules 667 
and called them “functional networks” (Eggebrecht et al., 2017; Kardan et al., 2022; 668 
Marrus et al., 2018; Molloy & Saygin, 2022; Myers et al., 2024; Sylvester et al., 2022; F. 669 
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Wang et al., 2023; Wen et al., 2019, 2020). These identified modules were by definition 670 
a good representation of the organizational structure in the data and may help address 671 
the problem of reproducibility in brain-wise association studies (Hermosillo et al., 2024; 672 
Marek et al., 2022). However, unlike the adult networks that have been extensively 673 
validated with behavioral task data to corroborate their “functional” roles (Power et al., 674 
2011; Wig, 2017; Yeo et al., 2011), those age-specific modules often lack biological 675 
support for their functions, making the relevance to a broader developmental context less 676 
obvious. On the other hand, using the adult-network topography directly on infants 677 
neglects the infant-specific organizational features and risks including spurious variability 678 
in measurements (be they from fMRI, EEG, or fNIRS), leading to reduced effect size and 679 
power (Hermosillo et al., 2024), or an exaggerated difference across development. For 680 
example, our results in section 3.2 suggested that differences in within-network FC across 681 
age groups might be partially attributed to the misspecification of functional network 682 
identity. 683 

Here, we proposed an alternative strategy that used a subset of areas representing 684 
the stable “network cores” across infancy and adulthood for studying trajectories of FC 685 
during development. This approach strikes a balance between 686 
interpretability/comparability across cohorts, and reliability/reproducibility. This idea of 687 
using a subset of the brain areas to define ROIs as an approach to improve statistical 688 
power has been proposed in the literature (Dworetsky et al., 2021; Hermosillo et al., 2024). 689 
However, instead of focusing the subset of brain areas with interindividual variability, we 690 
focused on excluding the subset of brain areas that had a network misidentification in the 691 
infant cohort. Alternatively, depending on the research question at hand, one might be 692 
interested in focusing on the areas that are unstable across development, which may 693 
have behavioral or clinical significance as mentioned in section 4.3. 694 
 695 
4.5. Precision Functional Mapping in Developmental Cohorts Using Adult Group 696 
Priors Needs to Be Practiced with Caution 697 
 As demonstrated in our results, on average the adult functional networks did not 698 
well represent the organization of infant FC into internally similar clusters, which might 699 
have important implications for research using an adult functional network model to 700 
generate individual-specific functional networks in the developmental cohort. Recent 701 
research has recognized idiosyncratic details and reliable features in functional network 702 
topography across human individuals qualitatively different from group-average estimates 703 
(Gordon et al., 2015; Gordon, Laumann, Gilmore, et al., 2017; Gratton et al., 2018; 704 
Laumann et al., 2015). Those features are stable across sessions (Seitzman et al., 2019), 705 
as well as task versus rest states (Kraus et al., 2021). The individual differences in 706 
association network topography also predict individual differences in executive function 707 
(Cui et al., 2020). However, reliable identification of individualized functional networks 708 
with unsupervised clustering or community detection procedures requires extended data 709 
acquisition. For example, with the Infomap algorithm (Power et al., 2011; Rosvall & 710 
Bergstrom, 2008), more than 90 minutes of data is required to achieve an average 711 
network overlap dice coefficient of > 0.75 (Gordon, Laumann, Gilmore, et al., 2017). 712 
Therefore, several semi-supervised methods have been developed to derive individual 713 
functional networks (Cui et al., 2020; Gordon, Laumann, Adeyemo, et al., 2017; Hacker 714 
et al., 2013; Kong et al., 2019; D. Wang et al., 2015) using adult networks as priors. 715 
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However, those approaches generally assumed that the individual functional networks 716 
were highly similar to the adult group average. This assumption might not be suitable for 717 
developmental cohorts: as we demonstrated here, on average, the adult functional 718 
networks poorly represented the organization of the infant FC into internally coherent 719 
clusters. Two unwanted consequences might arise from this observation. First, the 720 
network templates generated by averaging the FC profiles within a poorly defined network 721 
might be noisy and inaccurate. Second, the algorithms may incorrectly force a categorical 722 
label for locations that poorly matched all available networks. Future studies using adult-723 
based priors in developmental cohorts should keep those limitations in mind and develop 724 
strategies to mitigate them. 725 
 726 
4.6. Limitations and Future Directions 727 
 Our infant fMRI data were collected during natural sleep while adult networks were 728 
derived from awake resting state data. Since sleep and the level of arousal are known to 729 
modify the FC structure in adults (Chang et al., 2016; Mitra et al., 2017; Tagliazucchi et 730 
al., 2012), and that FC patterns in asleep 6 and 12 months old infants more closely 731 
resemble FC patterns in asleep adults (Mitra et al., 2017), the difference in modularity 732 
and hence in the quality of clustering as measured by the silhouette index between adult 733 
and infant FC using the adult Gordon network might be smaller if the infant fMRI data 734 
were collected during an awake state. Other differences in the acquisition and processing 735 
of the two datasets might introduce confounds, too. Additionally, while we observed little 736 
age effect on within-network FC, this could be due to the narrow age range of our sample 737 
(mostly between 1 and 3 years). Moreover, we used an adult area parcellation (Gordon 738 
et al., 2016) for the adult (Gordon et al., 2016) and infant (Kardan et al., 2022), which was 739 
slightly inferior to an age-specific parcellation for the toddler group to describe the local 740 
area organization at this age based on our preliminary analysis. The mixing of fMRI 741 
signals within the ill-defined areas might contributed to some of the low SI observed in 742 
those areas. In the future, the same analysis strategy could be applied directly to 743 
vertex/voxel level data for higher precision.   744 
 Future studies could examine the cellular, molecular, and genetic properties of the 745 
areas that have already developed an adult-like organization in infancy to fully understand 746 
the biological underpinning of our observation. Furthermore, given that we expect that 747 
using the subset of areas that form relatively stable network organization across 748 
development would improve statistical power for brain-wide association studies (Marek 749 
et al., 2022) using FC, future studies with larger samples and well-defined behavior 750 
measures with reliability tests used in prior literature can be used to test this hypothesis 751 
(Hermosillo et al., 2024; Marek et al., 2022). Moreover, it would be interesting to 752 
investigate whether the same “network cores” exist in subcortical structures, such as the 753 
thalamus. One plausible hypothesis is that the topography and diversity of thalamocortical 754 
projection may relate to the variability of functional network stability across the neocortex. 755 
 756 
4.7. Conclusion 757 
 We found that despite the large differences in FC organization between infants 758 
and adults on average, there existed a subset of cortical areas whose FC profiles 759 
demonstrated adult-like network organization even in infants. These areas were spatially 760 
closer to previously locations of high consensus in network identity across adult 761 
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individuals than alternative areas. Additionally, within-network FC defined with the subset 762 
of areas was higher in magnitude and more reliable across scans, individuals, and 763 
development. We proposed the use of adult networks defined by the subset of areas with 764 
an adult-like network relationship as a complementary approach of studying infant FC 765 
than using age-specific functional networks derived from data-driven methods. This would 766 
strengthen reliability, yet at the same time encourage interpretability and comparability 767 
across developmental stages. The biological basis of the regional variability of functional 768 
network stability, as well as its psychopathological and behavioral impacts may become 769 
interesting topics for future research. 770 
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Supplementary Materials 1164 
 1165 
Supplementary Results 1166 
S1. Silhouette index of adult networks in infant FC with the mean in all alternative 1167 
networks 1168 

When the SI was calculated with respect to the mean in all alternative networks 1169 
rather than the mean of the best alternative network, they were still moderately 1170 
correlated with the SI reported in the main results (Pearson’s r = 0.74, p <0.001). 1171 
However, since the mean of similarity to all alternative networks (especially to the ones 1172 
spatially distant from the area in question) would tend to be lower than the best 1173 
alternative, the SI is positively shifted with almost all parcels having SI > 0 1174 
(Supplementary Figure 5). 1175 
S2. Age effect on within-network FC is smaller in magnitude with the subset of 1176 
areas in the Gordon network 1177 
 If the subset of areas with adult-like network configuration tends to be more 1178 
stable across infant development, then they will have a relatively stable within-network 1179 
FC across chronological age. We computed within-network FC across age using full 1180 
versus subset of areas. For the eight networks that were partially retained, five networks 1181 
demonstrated a significant correlation between within-network FC and age (p < 0.05, 1182 
Spearman’s r): the within-network Aud, SMN hand and Vis networks were negatively 1183 
correlated with age and the within-network FC in DAN and the FPN were positively 1184 
correlated with age. The age effect was greater in magnitude with the full set of areas 1185 
(Figure 3A) than with only the partially retained areas (Figure 3B) for the SMN hand 1186 
network, although not significant when comparing the Fisher-Z-transformed r values (Z 1187 
= 1.588, one-sided p = 0.056). Similar results were found for other networks, where the 1188 
age effect was less negative for Aud, SMN hand and Vis networks, and less positive for 1189 
DAN and FPN, but none of them had a significant (p < 0.05) Z-test. To examine the 1190 
robustness of our result to the selection of data samples, we generated 1000 1191 
bootstrapped samples of the infant sessions. We found that the sign of the difference 1192 
was consistent across bootstrap samples (i.e., on average the networks using the 1193 
subset of areas were less correlated with age than the full set of areas) (Figure 3C). The 1194 
mean and 95% confidence interval for the bootstrap showed a mean difference in 1195 
Fisher-Z-transformed r values for full versus subset was -0.1139 [-0.1721,0.0129] for 1196 
Aud, -0.1386 [-0.1684, -0.0814] for SMN hand, 0.0020 [-0.0887, 0.0348] for Vis, -0.0205 1197 
[-0.0120, 0.1439] for DAN and 0.0089 [0.0071, 0.0511] for FPN (Figure 3C). 1198 
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Supplementary Figure 1. Distribution of age and sex  

BCP (N = 181) 
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  1202 

Supplementary Figure 2. Dice overlap between the Gordon Networks (Adult) and the 
Kardan Networks (Infant). Network abbreviations: auditory (Aud), cingulo-opercular 
(CON), parietal memory (PMN), default mode (DMN), dorsal attention (DAN), fronto-
parietal (FPN), retrosplenial temporal (RTN), somatomotor hand (SMN hand), 
somatomotor mouth (SMN mouth), salience (Sal), and ventral attention (VAN), visual (Vis), 
somatomotor (SMN), temporal (Tem), posterior frontoparietal (pFPN), posterior default 
mode (pDMN), lateral visual (lVis), medial visual (mVis), anterior fronto-parietal (aFPN), 
anterior default mode (aDMN).  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2024. ; https://doi.org/10.1101/2024.07.31.606025doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.31.606025
http://creativecommons.org/licenses/by-nc-nd/4.0/


  1203 C 

Supplementary Figure 3. Silhouette index (SI) of adult and infant networks on individual 
adults’ FC. A) SI across adult networks (Gordon, 286 areas). B) SI across infant networks 
(Kardan, 328 areas). C) average SI of adult and infant networks across areas on individual 
adults’ FC. *** p < 0.001 in paired t-test. D) Pearson’s correlation of SI of adult networks on 
group average FC and the mean of SI on individual FC across 286 areas. E) Pearson’s 
correlation of SI of infant networks on group average FC and the mean of SI on individual 
FC across 328 areas.  

A 

D 

B 

D 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2024. ; https://doi.org/10.1101/2024.07.31.606025doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.31.606025
http://creativecommons.org/licenses/by-nc-nd/4.0/


  1204 

Supplementary Figure 5. Correlation between silhouette index calculated with the 
best network or with all alternative networks. 
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Supplementary Figure 6. Frequency of SI > 0 across 1000 bootstraps. 
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Supplementary Figure 7. Adult FC using the Gordon Subset. A) The sorted 
average FC in infants with the subset of areas. B) The average within-network 
FC with full (left) versus subset (right) across sessions. 
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Supplementary Figure 8. Correlation between age and within-network FC in using the subset of 
areas versus the full set of areas. A) Scatter plot of within-network FC versus age for SMN hand 
network defined with the full set of areas. B) Scatter plot of within-network FC versus age for SMN 
hand network defined with the subset set of areas. C) The within-network FC for three networks is 
negatively correlated with age (Aud, SMN hand, Vis), and the within-network FC for two networks 
is positively correlated with age (DAN, FPN). The x-axis is the Fisher-Z-transformed Spearman’s 
correlation (r) between within-network FC using the full set of areas and age. The y-axis is the 
Fisher-Z-transformed Spearman’s correlation (r) within-network FC using the subset of areas and 
age). Each data point represents a bootstrap sample of sessions (N = 1000). Red line shows the 
line of least-squared fit in A-B and the line of identity in C. 

B 

C 

A SMN hand (Gordon Full) SMN hand (Gordon Subset) 

𝜌(Subset) = -0.10, 
p(Subset) = 0.08 

𝜌(Full) = -0.22, 
p(Full) = 0.001 
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C 

A 

D 

Supplementary Figure 9. Bootstrapped distributions of average silhouette Index at 1 year 
and 2 years (N = 1000 bootstrapped samples). A) Gordon networks. B) Gordon networks 
but with the subset of areas in Figure 2A. C) Kardan networks. D) Kardan networks but with 
the subset of areas in Figure 2A. 

1 year 
2 year 
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Supplementary Figure 10. Fraction of high consistency (ϕ) and high differential power (DP) edges 
(top 10%) across Gordon Full (A-B), Gordon Subset (C-D), Kardan (E-F). 
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  1210 Supplementary Table 1. Percentage of highly consistent (f) edges across 
different network assignment schemes 

  
Gordon Full Gordon Subset Kardan 

within-network 44.1% 63.1% 49.5% 

between-network 8.3% 6.5% 5.4% 
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  1211 Supplementary Table 2. Percentage of highly consistent (f) edges across 
different network assignment schemes. The eight partially retained networks 
were bolded and had an asterisk. 

 
within-network Gordon Full Gordon Subset 

Aud* 41.30% 84.21% 

CON* 35.64% 61.73% 

PMN 40.00% / 

DMN* 43.17% 59.07% 

DAN* 31.45% 65.17% 

FPN* 43.12% 50.84% 

RTN 100% 100% 

SMN hand* 61.45% 72.82% 

SMN mouth 89.29% 89.29% 

Sal 33.33% 33.33% 

VAN* 38.34% 60.94% 

Vis* 45.89% 65.17% 
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1212 Supplementary Table 3. Percentage of high differential power (DP) edges 
across different network assignment schemes. 

  
Gordon Full Gordon Subset Kardan 

within-network 16.50% 14.73% 12.79% 

between-network 10.81% 10.98% 9.93% 
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 1213 Supplementary Table 4. Percentage of high differential power (DP) edges 
across different network assignment schemes. The eight partially retained 
networks were bolded and had an asterisk. 

 
within-network Gordon Full Gordon Subset 

Aud* 7.97% 10.53% 

CON*  8.33% 4.94% 

PMN 50.00% / 

DMN* 10.73% 11.59% 

DAN* 30.24% 47.19% 

FPN* 15.58% 13.91% 

RTN 7.14% 7.14% 

SMN hand* 17.92% 15.82% 

SMN mouth 21.43% 21.43% 

Sal 0% 0% 

VAN* 14.62% 12.02% 

Vis* 24.97% 18.43% 
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