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Under the hypothesis that olfactory neural epithelium gene expression profiles may be useful to look for disease-relevant neuronal
signatures, we examined microarray gene expression in olfactory neuronal cells and underscored Notch–JAG pathway molecules in
association with schizophrenia (SZ). The microarray profiling study underscored JAG1 as the most promising candidate. Combined
with further validation with real-time PCR, downregulation of NOTCH1 was statistically significant. Accordingly, we reverse-
translated the significant finding from a surrogate tissue for neurons, and studied the behavioral profile of Notch1+/− mice. We
found a specific impairment in social novelty recognition, whereas other behaviors, such as sociability, novel object recognition and
olfaction of social odors, were normal. This social novelty recognition deficit was male-specific and was rescued by rapamycin
treatment. Based on the results from the animal model, we next tested whether patients with psychosis might have male-specific
alterations in social cognition in association with the expression of NOTCH1 or JAG1. In our first episode psychosis cohort, we
observed a specific correlation between the expression of JAG1 and a face processing measure only in male patients. The
expression of JAG1 was not correlated with any other cognitive and symptomatic scales in all subjects. Together, although we
acknowledge the pioneering and exploratory nature, the present work that combines both human and animal studies in a
reciprocal manner suggests a novel role for the Notch–JAG pathway in a behavioral dimension(s) related to social cognition in
psychotic disorders in a male-specific manner.
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INTRODUCTION
Through the advancement of psychiatric genetics, many biological
pathways have been underscored in association with neuropsy-
chiatric disorders [1–6]. Some genes that were originally high-
lighted in studies with specific pedigrees may not be well
reproduced as major risk factors in genome wide association
studies (GWASs), which include genes for Notch signaling, in
particular NOTCH4, for schizophrenia (SZ) [7–13]. As a comple-
mentary approach to look for the molecular drivers of the
pathophysiology of neuropsychiatric disorders, molecular expres-
sion studies using tissue from patients and healthy subjects are
well appreciated [14–18]. Although expression levels of key
molecular drivers directly impact neurobiology, they are regulated
not only by cis-elements (which can be easily identified by genetic
studies) but also by trans-elements (which may not be identified
by genetic studies). Thus, expression studies can complement the
possible limitation associated with missing heritability or provide
key molecules underlying pathophysiology.
The Notch pathway is one of the major cell–cell-signaling

pathways regulating cell differentiation and development [19].
Mammals have four transmembrane Notch receptors (Notch1–4)

that bind two classes of ligands: Jagged (Jag1 and Jag2) and
Delta-like (Dll1, Dll3, and Dll4). Upon ligand binding, Notch
undergoes proteolytic cleavage releasing the Notch Intracellular
Domain (NICD), which then translocates to the cell nucleus to
modify gene expression. In the developing brain, Notch activation
inhibits neurogenesis, maintains the neural progenitor state, and
affects binary fate choices. The Notch pathway has mainly been
studied in the context of brain development, but may also play a
role in the adult brain [20].
Olfactory neural epithelium is easily accessible in living people

via nasal biopsy, and multiple research groups have utilized this
surrogate tissue to obtain molecular signatures relevant to the
brain [16, 21–23]. Using laser-captured microdissection, our team
has enriched neurons from the biopsied tissue [15, 24, 25]. In the
present study, we hypothesized that olfactory neural epithelium
gene expression profiles might be useful to look for disease-
relevant neuronal signatures, in particular obtaining possible
molecular leads to initiate a biological study for neuropsychiatric
disorders. Accordingly, we examined microarray gene expression
in the neural tissue and underscored Notch–JAG pathway
molecules in association with SZ. After finding downregulation
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of the Notch–JAG pathway molecules, we studied Notch1
heterozygous knockout mice and discovered a male-specific
impairment in social novelty recognition. Lastly, we returned to
humans to examine the sex-specific association of NOTCH1 or
JAG1 with clinical features, particularly paying attention to a
behavioral dimension in social cognition.

MATERIALS/SUBJECTS AND METHODS
Microarray study of olfactory neural epithelium from SZ
patients and healthy controls
The cohort of chronic SZ. The study with the chronic SZ cohort
was approved by the Johns Hopkins School of Medicine
Institutional Review Board and performed in accordance with
the Code of Ethics of the World Medical Association. We obtained
written informed consent from adult participants aged 18 years or
older. Patients with chronic SZ were diagnosed based on the DSM-
IV [26] by a board certified psychiatrist (NGC), and the recruitment
chart was also reviewed by other psychiatrists (FCN, JMC, GN, TWS,
and AS). The average duration of illness of patients is 18.72 years
(SD= 10.78 years). Through this team approach, we constantly
monitored the inter-rater reliability in any assessment. The
patients were recruited from outpatient units in the Johns
Hopkins Schizophrenia Center. Healthy controls were recruited
from the general population through flyers posted at Johns
Hopkins Medicine and an ad hoc advertisement in a local
magazine. The inclusion and exclusion criteria for all study
participants were: (1) no history of traumatic brain injury with
loss of consciousness for >1 h; (2) no history of drug abuse within
6 months of the study; (3) no history of drug dependence within
12 months of the study, and (4) no history of untreated major
medical illnesses. We used 18 SZ patients and 18 healthy controls
for the molecular expression study (measured by microarray).
There is no genomic information, which is a limitation of this
cohort.

Microarray for the expression study of the chronic SZ cohort. We
have previously published the method for the microarray study
that was also employed in the present study [15, 25]. In short,
olfactory neural epithelium was obtained by nasal biopsy from
patients with chronic SZ and healthy controls. Neuronal epithe-
lium was enriched by laser capture microscopy. The microarray
study was performed using Affymetrix U133 Plus2.0. Data analysis
was performed using the Partek Genomics Suite software (version
6.5, Partek) and R (http://www.rproject.org/, version 3.1.1) with
Bioconductor packages (http://www.bioconductor.org/). Raw
intensities were normalized using the GC-robust multi-array
average. For differential gene expression analysis, one-way
analysis of variance (ANOVA) was used to test the mean
differences between two groups. The ANOVA p-values were
adjusted using the Benjamini–Hochberg procedure to control the
false discovery rate (FDR). The raw data are deposited in the Gene
Expression Omnibus archive at the National Center for Biotech-
nology Information
(GSE73129: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc =

GSE73129).

Real-time quantitative PCR. Gene expression was quantified using
real-time quantitative polymerase chain reaction (qPCR) with a
TaqMan Gene Expression Assay and ABI PRISM 7900HT Sequence
Detection System (Applied Biosystems, Foster City, CA, USA).
Primers and probes were purchased from Life Technology
(Carlsbad, CA, USA). Human glyceraldehyde-3-phosphate dehy-
drogenase (GAPDH) or β-actin was used as internal controls, and
measurement of the threshold cycle (Ct) was performed in
triplicate. Data were collected and analyzed with the Sequence
Detector Software version 2.2 (Applied Biosystems) and the
standard curve method. Relative gene expression was calculated

as the ratio of the genes to the internal control. Group differences
were compared with Student’s t-test.

Human primer sequences. JAG1-F: 5′-AGAGGCGGCCTCTGAA-
GAAC-3′
JAG1-R: 5′-AGCTCAGCAAGGGAACAAGG-3′
JAG2-F: 5′-TACCAACGACTGCAACCCTCT-3′
JAG2-R: 5′-TCAACACAGATGCCACCATTGT-3′
NOTCH1-F: 5′-CTGTGTCTGCCGACGCAC-3′
NOTCH1-R: 5′-CTCGGTTCCGGATCAGGAT-3′
NOTCH3-F: 5′-CAATAAGGACATGCAGGATAGCAA-3′
NOTCH3-R: 5′-GGCGGCCAGGAATAGGG-3′
NOTCH4-F: 5′-CGGAGCCGATAAAGATGCC-3′
NOTCH4-R: 5′-AGGAATAGCGGCGTCTGCT-3′
GAPDH-F: 5′-ACCACTTTGTCAAGCTCATTTCC-3′
GAPDH-R: 5′-TGCTGTAGCCAAATTCGTTGTC-3′
β−actin-F: 5′-GCACCCAGCACAATGAAGATC-3′
β−actin-R: 5′-GGAGTACTTGCGCTCAGGAGG-3′

Mouse model study
Notch1+/− mice. B6.129-Notch1tm1Con/J colony founders were
purchased from the Jackson Laboratory (stock 002797). We
generated the experimental mice by breeding heterozygous mice
with C57BL/6J mice and followed the genotyping protocol
recommended by the Jackson Laboratory. The Institutional Animal
Care and Use Committee at Johns Hopkins University approved all
protocols involving mice that were used in this study.

Behavioral testing. Behavioral testing was performed under
regular lighting starting at ~postnatal day 70 (P70) from least to
most stressful, beginning with locomotion in the open field (for
1 h), then the three chamber social interaction test, and lastly
prepulse inhibition (74, 78, 82, 86, 90 dB) of the startle response
(120 dB), with ~1 week between tests to reduce inter-trial
interference as previously described [27]. Elevated plus maze
was tested on a separate cohort of mice using a standard protocol
of recording number of entries and time spent in the open vs.
closed arms of the maze over 5 min. For the three chamber social
interaction test, experimenters blind to the genotypes recorded
sniffing time [28]. The novel object recognition test was
performed on a third cohort as previously described [29] with
1 h between exposure to two identical objects and testing with
one object replaced by a novel object. Habituation/dishabituation
to olfactory odors was performed as published [30] using cotton
swabs swiped in two different male stranger cages (#1, #2). The
tested mouse was exposed to social odor #1 three times followed
by three exposures to social odor #2, each exposure for 2 min. The
duration of sniffing the cotton tip was recorded. The social
interaction test and novel object recognition test were analyzed
with a two-way repeated measures analysis of variance (rmA-
NOVA). The other behavioral tests were analyzed with a Student’s
t-test. The sample size was determined based on our previous
experience with other mouse models.

Rapamycin treatment. Mice were treated with rapamycin mod-
ifying a published protocol [31]. In short, we injected rapamycin
dissolved in DMSO (5 mg/kg, i.p.) after the habituation session
over the 3 days preceding the social interaction test. We did not
use a randomization method to determine how mice were
allocated to experimental groups.

Correlation between the expression of Notch–JAG pathway
molecules and clinical phenotypes in first episode psychosis
(FEP) patients
The FEP cohort. The study with the FEP cohort was approved by
the Johns Hopkins School of Medicine Institutional Review Board
and performed in accordance with the Code of Ethics of the World
Medical Association. We obtained written informed consent from
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adult participants aged 18 years or older. FEP patients were
enrolled within 24 months after onset. Clinical diagnosis was
made by board certified psychiatrists (NGC, FCN, JMC, and TWS)
based on the DSM-IV [26], and the recruitment chart was also
reviewed by other psychiatrists (GN and AS). Through this team
approach, we constantly monitored the inter-rater reliability in any
assessment. The patients were recruited from outpatient and
inpatient units in the Johns Hopkins Schizophrenia Center. Healthy
controls were recruited from the general population through
flyers posted at Johns Hopkins Medicine and an ad hoc
advertisement in a local magazine. Further information about
the recruitment and eligibility criteria for this overall cohort can be
found in previous papers [32–43]. Given the possibility that
tobacco and cannabis use may change the expression profiles in
olfactory neuronal cells, we used 30 FEP patients and 48 healthy
controls who self-reported no tobacco or cannabis use for the
present study. Both clinical data and molecular expression data
from olfactory neuronal cells (measured by bulk RNA-Seq) were
available from all these subjects (Supplementary Table 1).
However, genome sequencing information is not available for
this cohort, which is a limitation.

Assessment of positive and negative symptoms. Patients com-
pleted the Scale for the Assessment of Negative Symptoms (SANS)
[44] and Positive Symptoms (SAPS) [45]. Study clinicians (NC, FCN,
JMC, TWS) performed the assessments.

Assessment of general neurocognition. Patients completed a two-
hour battery of neuropsychological tests to assess neurocognitive
function. Composite scores based on five dimensions, i.e.,
processing speed, verbal memory, visuospatial memory, ideational
fluency, and executive function were used for the analyses
[37, 46].

Assessment of emotional face processing in social cognition.
Patients underwent a facial affect recognition task and face
memory task with the Karolinska Directed Emotional Faces (KDEF)
displaying happy, angry, sad, or neutral faces [47]. In the first task,
facial affect recognition, participants were instructed to identify
the correct expression out of the four options. In the second task,
face memory, the participants had to identify whether each face
had already appeared in the first task. Accuracy and response time
were evaluated for each task, i.e., four domains were addressed:
recognition accuracy, recognition response time, memory accu-
racy, and memory response time. See the methodological details
in the past publications [39, 40].

Bulk RNA-Seq data for the expression study of the FEP cohort. Total
RNA was isolated from olfactory neuronal cells using the RNeasy
Plus Mini Kit (Qiagen). RNA quality was assessed on the Agilent
Fragment Analyzer using a RNA High Sensitivity kit (DNF-472) and
quantified using a Qubit 4 RNA BR kit (Thermo Fisher). RNA
libraries were prepared with 500 ng total RNA. Library generation
was accomplished using the NEBNext Ultra II Directional RNA
Library Prep Kit for Illumina (E7760 and E7490) following the
NEBNext Poly(A) mRNA Magnetic Isolation Module protocol.
Libraries were enriched using 11 cycles of PCR amplification.
Library quality and quantification were assessed on the Agilent
Fragment Analyzer using a High Sensitivity NGS Kit (DNF-474) and
a Qubit 4 RNA BR kit (Thermo Fisher). Samples were then
normalized to 4 nM and pooled in equimolar amounts. Paired-End
Sequencing was performed using Illumina’s NovaSeq6000 S4 200
cycle kit.
FastQC was used to check the quality of reads [48]. High quality

data were obtained from raw data by using cutadapt to remove
adapters, primers, and reads with low quality (option -q 10) or
shorter than 20 nt [49]. Hisat2 (option --dta) was used to map the
clean reads to the human genome, version GRCh38 (Genome

Reference Consortium Human Build 38). Stringtie was used to
assemble and merge transcripts and estimate transcript abun-
dance [50]. A Python script (prepDE.py) provided by the Stringtie
developer was used to create count tables for differential
expression analysis. Principle component analysis was conducted
to control the quality of the data, and no outlier was detected
(Supplementary Fig. 1). Fragments Per Kilobase of transcript per
Million mapped reads (FPKM) were calculated to quantify the
expression levels of genes for downstream analysis.

BrainSeq database. The BrainSeq database has been developed
by Lieber Institute, which provides expression data and eQTL data
(http://eqtl.brainseq.org). These were based on the RiboZero RNA-
seq data in the dorsolateral prefrontal cortex from 286 SZ patients
and 265 healthy controls, and seminal publications were made
with this dataset [51, 52].

Statistical analyses. Statistical analyses for clinical data were
conducted by using STATA 15 and R version 3.5.3.
Multivariable regression analyses were performed to examine

the correlation between the expression (FPKM) of NOTCH1/JAG1
and clinical test scores (positive and negative symptoms,
neurocognition, and social cognition) collected from the FEP
cohort. Analyses were conducted for males and females sepa-
rately. Age, race, and diagnosis (control or patient) were controlled
for the analysis for the pooled group (including both FEP patients
and controls); age and race were controlled for the analysis for the
control group; while age, race, chlorpromazine equivalent dose
estimated by the Defined Daily Doses method [53], and duration
of illness were controlled for the analysis for the patient group. A
permutation test was performed to evaluate statistical signifi-
cance.
Multivariable regression analyses were also performed to

examine a possible difference between males and females in
variables (e.g., JAG1 expression and memory accuracy). In the
analyses, we defined JAG1 expression or memory accuracy as a
dependent variable; sex as an independent variable; as well as
age, race, and diagnosis (for the pooled group), age and race (for
the control group), and age, race, chlorpromazine equivalent dose,
and duration of illness (for the patient group), as covariates.

RESULTS AND DISCUSSION
Downregulation of Notch–JAG pathway molecules in olfactory
neurons from patients with SZ compared with healthy
controls
We first collected microarray data of laser-captured olfactory
neurons and compared gene expression profiles between patients
with chronic SZ and healthy subjects. We previously analyzed this
dataset for a different scientific aim [15]. Intriguingly, the Notch
ligand JAG1 was a top hit (the significance ranking was sixth out of
22,574 differentially expressed genes), which was significant after
multiple testing correction (FDR < 0.05) (Table 1). Different probes
for JAG1 consistently indicated downregulation in SZ patients. In
the Dll ligand family, only DLL1 was detected and was not
changed in the microarray analysis. In addition to the significant
downregulation of JAG1, we also observed lower expression of
JAG2, NOTCH1, NOTCH3, and NOTCH4 (with no change for
NOTCH2) in SZ (Table 1). However, they did not survive multiple
testing correction. Thus, we aimed to confirm these observations
for JAG1, JAG2, NOTCH1, NOTCH3, and NOTCH4 by qPCR. We
observed consistent downregulation in all the molecules tested
when we normalized their expression with either β-actin or
GAPDH (Table 1). Among them, downregulation of NOTCH1 was
the most robust (70% downregulation) and statistically significant
(microarray: p-value= 0.02; qPCR β-actin normalization: p-value=
9.90E−03; and qPCR GAPDH normalization: p-value= 0.02)
(Table 1). We also looked for publicly available gene expression
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data from postmortem brain collection from SZ patients and
controls (the BrainSeq database). We found the downregulation of
NOTCH1 (p-value= 0.0014) and JAG1 (p-value= 0.011) in the
dorsolateral prefrontal cortex, but these were not FDR-significant.
There were significant correlations between SNPs (NOTCH1 and
JAG1) and their expression levels: 94 SNPs of NOTCH1 and 291
SNPs of JAG1 were significantly correlated with expression levels
after multiple comparison correction. However, these SNPs did not
reach the significant levels in the GWASs for SZ. Altogether, we
hypothesized that the Notch–JAG pathway, through expression
changes, may be associated with at least some specific
pathological dimensions underlying SZ.

Behavioral deficits in Notch1 heterozygote knockout mice
Only a few studies have addressed the influence of the Notch–JAG
pathway on higher brain function in adulthood and, as far as we
are aware, comprehensive studies in this context are limited to
Notch1 genetic models mainly for learning and memory [54].
Notch1 homozygote knockout mice are embryonically lethal, but
heterozygous knockout mice survive to adulthood [55]. Further-
more, as described above, our expression study of olfactory
neurons found NOTCH1 to be significantly and robustly down-
regulated in SZ patients compared with healthy controls. Thus, we
decided to use Notch1 heterozygote knockout (Notch1+/−) mice to
shed light on the functional implication of the overall Notch1
pathway in higher brain function in adulthood.
Contrary to our expectation, Notch1+/− mice displayed almost

no abnormality in several representative dimensions for higher
brain function. We did not observe any deficits in the open field,
prepulse inhibition, elevated plus maze, and novel object
recognition (Table 2). In contrast, they displayed deficits only in
social novelty recognition in the three chamber social interaction

test. In this test, Notch1+/− mice showed normal sociability (that is,
preference for a stranger over the empty side) (Fig. 1A), but were
impaired in social novelty recognition, not displaying a preference
to a novel mouse over a familiar mouse (Fig. 1B). Notch1+/− mice
showed normal novel object recognition (Fig. 1C), so we can
conclude that the novelty recognition deficit is specific to a social
context.

Male-specific deficits of social novelty recognition in Notch1
heterozygote knockout mice
Intriguingly, the social novelty recognition deficit was sex-specific;
Notch1+/− females showed normal preference for a stranger
mouse (Fig. 2A). On the other hand, Notch1+/− males were
impaired not only in recognizing novel males (the standard test
shown in Fig. 1B), but also when tested unconventionally against
novel females (Fig. 2B). Notch1+/− males showed normal
habituation and dishabituation to social odors, so the social
novelty recognition deficit is not due to an olfactory impairment
(Fig. 2C), a critical experiment given the involvement of the
Notch–JAG pathway in the development and function of the
olfactory system [56, 57]. Based on this result, one copy of Notch1
is sufficient for a normal response to social odors. Our finding of
normal olfaction in Notch1+/− male mice may not contradict our
expression data showing NOTCH1 downregulation in human
olfactory neurons since they are used as a surrogate tissue from
living patients to estimate molecular signatures of neurons in the
brain. Inspired by the beneficial effects of rapamycin in mouse
models that show deficits in social behaviors, we treated the
Notch1+/− males with rapamycin (5 mg/kg) over the 3 days of
habituation preceding the social interaction test [31]. After
treatment with rapamycin, the social novelty recognition deficit
in Notch1+/− male mice was ameliorated (Supplementary Fig. 2).

Table 2. Selective behavioral deficits of Notch1+/− males only in a social novelty recognition behavior, but not in other behavioral paradigms.

RDoC domain construct Behavior Test Result

Arousal/Regulatory systems Arousal Locomotion Open field No difference

Sensorimotor systems Sensorimotor gating Prepulse inhibition

Negative valence Potential threat (anxiety) Anxiety-like Open field

Elevated plus maze

Cognitive systems Object novelty recognition Novel object recognition

Systems for social processes Sociability Three chamber social interaction

Social novelty recognition Impaired

Significant results are highlighted in bold.

Table 1. Microarray and quantitative real time-PCR results of the Notch–JAG pathway gene expression in human olfactory neural epithelium from
healthy controls (HC) and chronic schizophrenia patients (SZ).

Gene Microarray RT-PCR

β-actin normalization GAPDH normalization

Mean t-test Mean t-test

Fold p-value HC SZ SZ/HC p-value Sig HC SZ SZ/HC p-value Sig

JAG1 0.82 2.77E−06 8.5 6.3 0.74 0.19 ns 7.1 5.5 0.78 0.34 ns

JAG2 0.74 0.03 29.6 17.6 0.59 4.63E−02 * 26.6 16.4 0.62 0.1 ns

NOTCH1 0.7 0.02 3.9 1.2 0.31 9.90E−03 ** 3.3 1.1 0.34 0.02 *

NOTCH3 0.81 0.03 195.7 100.3 0.51 0.05 ns 178.4 98.9 0.55 0.1 ns

NOTCH4 0.64 9.39E−03 53 27.6 0.52 0.06 ns 43.1 22.8 0.53 0.1 ns

Significant results (Sig) are highlighted as follows: *p < 0.05; **p < 0.001.
ns not significant.
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Male-specific deficits in social cognition in FEP patients
Given that only male Notch1+/− mice displayed a social novelty
recognition deficit, we hypothesized that the Notch-JAG pathway
may have a specific role in social cognition only in male humans.
To address this question, we studied how the JAG1 or NOTCH1
expression level may correlate with higher brain function in living
patients. Unfortunately, we did not conduct deep phenotyping for
the cohort of chronic SZ patients and healthy controls described
above, from which we had obtained the expression data on laser-
captured olfactory neurons. However, we have established
another cohort in which FEP patients and healthy controls are
characterized with deep phenotyping (symptomatic assessment,
neurocognition, and social cognition) and olfactory neuronal cells
enriched from nasal tissue (Supplementary Table 1) [32–43]. These
olfactory neuronal cells have also been used as a surrogate tissue
to estimate neuronal signatures by multiple groups, including ours
[23, 58–60]. We collected bulk RNA-Seq data from olfactory
neuronal cells and calculated FPKM values to assess the
expression levels of NOTCH1 and JAG1.
We first assessed whether the expression level of NOTCH1 or

JAG1 was different between FEP patients and healthy controls;
however, the expression levels were not significantly different.
Although the data are different from the chronic SZ cohort, these
results are within our anticipation. It is known that some biological

measures will show differences between chronic SZ patients and
controls but may look similar between FEP patients and matched
controls [61–63]. In these cases, investigators have speculated that
the reason for not detecting a significant difference between FEP
patients and controls may be because some pathological
signatures are not strong enough during early stages of the
disease. Even in such cases, a correlation between phenotypic and
molecular changes at the pre-symptomatic level can be expected.
Thus, we tested the correlation between gene expression in

olfactory neuronal cells and multiple clinical/neuropsychological
scales. These include the SAPS [45], SANS [44], general neurocog-
nition using a composite score based on five dimensions, i.e.,
processing speed, verbal memory, visuospatial memory, ideational
fluency, and executive function [32, 33, 37, 46], and emotional face
processing in social cognition [39, 40, 47]. We did not observe a
correlation between the molecular expression (JAG1 or NOTCH1)
and symptomatic changes as assessed by the SAPS and SANS or
the scales of general neurocognition (Supplementary Table 2).
However, in a facial affect recognition task and face memory task
with the KDEF [47], in which recognition accuracy, recognition
response time, memory accuracy, and memory response time
were measured, we observed a negative correlation between JAG1
expression and memory accuracy in male FEP patients (p-value=
0.03) (Table 3). This correlation was not observed in female FEP

Table 3. Correlation of JAG1 and NOTCH1 expression with emotional face processing measures in the FEP cohort.

Group Sex Gene Clinical variable Correlation coefficient p-value

FEP Male NOTCH1 Memory accuracy −0.395 0.293

Memory response time −0.134 0.752

Recognition accuracy −0.019 0.960

Recognition response time −0.083 0.831

JAG1 Memory accuracy −0.716 0.030

Memory response time 0.686 0.060

Recognition accuracy −0.563 0.114

Recognition response time 0.664 0.051

FEP Female NOTCH1 Memory accuracy −0.057 0.904

Memory response time −0.670 0.100

Recognition accuracy −0.239 0.606

Recognition response time −0.702 0.079

JAG1 Memory accuracy 0.019 0.968

Memory response time −0.609 0.147

Recognition accuracy 0.390 0.388

Recognition response time −0.314 0.493

HC Male NOTCH1 Memory accuracy −0.016 0.949

Memory response time −0.234 0.350

Recognition accuracy 0.040 0.875

Recognition response time −0.313 0.207

JAG1 Memory accuracy 0.141 0.578

Memory response time 0.382 0.118

Recognition accuracy 0.060 0.813

Recognition response time −0.183 0.468

HC Female NOTCH1 Memory accuracy 0.136 0.509

Memory response time −0.122 0.554

Recognition accuracy −0.051 0.805

Recognition response time 0.277 0.171

JAG1 Memory accuracy −0.152 0.460

Memory response time −0.154 0.452

Recognition accuracy 0.348 0.082

Recognition response time −0.167 0.415

Significant results are highlighted in bold (p < 0.05).
FEP first episode psychosis, HC healthy controls.

H. Jaaro-Peled et al.

6

Translational Psychiatry           (2022) 12:99 



patients, in male healthy controls, or in female healthy controls
The correlation between JAG1 expression and memory accuracy
remained significant in males (p-value= 0.04) when combining
FEP patients and healthy controls, but not in females (Fig. 3). Note
that there were no significant sex differences in either JAG1
expression or memory accuracy (Supplementary Table 3).

The significance of the present study: from a newly generated
hypothesis through mouse and human studies to further
validation
By uniquely and effectively combining studies from both human
and mouse models we now propose a new working hypothesis
that the Notch–JAG pathway may be specifically involved in a
specific dimension of social cognition in a sex-dependent manner.
In this exploratory and hypothesis-generating work, the mechan-
istic dissection of this hypothesis is beyond the scope. However,
we wish to emphasize the involvement of the Notch–JAG pathway
molecules specifically in the dimension of social cognition, but not
in many other symptomatic or cognitive domains in both human
and mouse studies. Furthermore, in both mouse and human
studies the association with Notch1 existed only for the social
memory phase of the test, and not for the more affective phase of
the test. A mouse model of Notch1 haploinsufficiency may be a
good tool to address the potential mechanism.

Mice in which Notch1 has been conditionally deleted by
crossing with the αCaMKII-Cre line also show a social novelty
recognition deficit (no information on sex) [64], suggesting that
deletion of Notch1 from forebrain pyramidal neurons post-
natally is sufficient to impair this behavior. This also implies
that the deficit is not due to effects on early development. We
showed that a short rapamycin treatment before the social
interaction test could ameliorate the social novelty recognition
deficit, again implying a role for Notch1 in adulthood. Although
one of pharmacological actions by rapamycin is associated
with an inhibition of mTOR, the relationship between the
Notch and mTOR pathways has been reportedly complex and
context-dependent. Instead of extending superficial specula-
tions, we take the experimental results with rapamycin as a
proof that adult behavioral deficits elicited by Notch1
haploinsufficiency are treatable by an intervention in the
adult stage.
Nevertheless, a mechanistic involvement of alterations in the

Notch–JAG pathway for male-specific social cognition remains
an important question for future investigations. There have
been some biological assessments of the Notch–JAG pathway
in patients with neuropsychiatric disorders. For example,
attenuated Notch signaling has been reported based on
measures in plasma in SZ and bipolar disorder [65]. An
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Fig. 3 Correlations between JAG1 expression and memory accuracy in the FEP cohort. A There was a significant correlation observed in
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abnormal expression pattern of NOTCH-related genes, includ-
ing reduced JAG1 expression, was also reported in the
dorsolateral prefrontal cortex and amygdala of suicide victims
[66]. Clinical studies, particularly those that directly explore the
pathological regions in the brain, will be useful when
combined with animal studies in which a region-specific
knockout approach for Notch1 and related molecules are
employed. Through these translational studies, we may be able
to define important brain regions and circuitry associated with
the Notch–JAG pathway in social cognition in a male-specific
manner.
We have to acknowledge that there are some gaps between the

data from the chronic SZ cohort and those from the FEP cohort,
although we could extract an important common message from
them. As we described above, some differences are related to the
levels of disease progression. In general, chronic patients with SZ have
a higher accumulative dose of antipsychotics, which may affect gene
expression to some extent. Age difference and other factors may also
be involved. These are potential limitations of the present study.
Biopsied cells from living subjects enable almost real-time

correlation studies of molecular profiles with clinical phenotypes
in the same individual, avoiding the many confounds of
postmortem tissue [15, 16, 60, 67]. In this study, we used olfactory
neuronal cells that are easily and safely accessible in living
subjects, and nevertheless represent neuronal molecular signa-
tures to a reasonable extent [23, 68]. We acknowledge that the
olfactory resource may not fully address region specific and
neuron-subtype specific questions associated with the brain.
Therefore, biopsied tissue and postmortem brain have comple-
mentary significance. We also believe that studying molecular
expression in biopsied tissues relevant to neuronal signatures is
complementary to GWAS studies, in particular when they are
moving in the direction of looking at the genomic impact on
specific behavioral constructs [69].
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