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Background: Bladder cancer (BC) has attracted significant attention on account of its recurrence as well 
as mortality. Tumor recurrence plays a significant role in cancer patients’ individual treatment. Secreted 
phosphoprotein 1 (SPP1) has been recognized as a potential target for treating BC and served as a useful 
biomarker for prognosis; it is commonly tested by immunohistochemistry (IHC). However, this conventional 
method has the disadvantage of being time-consuming and costly. This study aimed to develop a molecular 
beacon (MB) for the detection of SPP1 messenger RNA (mRNA) for the recurrence prognosis of BC.
Methods: An MB was constructed and applied to image SPP1 mRNA level at both molecular and cellular 
level. The fluorescence spectra were recorded with a fluorescence spectrophotometer. The effect of SPP1 
MB toward the cell viability was performed by Cell Counting Kit-8 (CCK-8) assays. The SPP1 mRNA 
expression level was measured by quantitative real-time polymerase chain reaction (qRT-PCR). Cancer 
cells and tissues were analyzed with confocal fluorescence imaging. Correlation, sensitivity, and specificity 
parameters were calculated.
Results: It was demonstrated that both cancer cells and BC tissues expressed high signal which reflected 
the expression of SPP1. In addition, 42 cases were detected by MB and divided into two groups according 
to the fluorescence intensity. The results further suggested that highly expressed SPP1 could predict early 
tumor recurrence in BC.
Conclusions: The SPP1 MB could be applied as an appropriate approach to predict BC recurrence and 
patients’ prognosis.
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Introduction

Bladder cancer (BC) is the sixth most frequently diagnosed 
cancer and the second most prevalent urologic malignancy 
in men (1-3). A wide variety of treatment for BC including 

radical cystectomy (4), bladder-sparing therapy with 

transurethral resection (5), chemotherapy (6), radiotherapy (7),  

and immunotherapy (8) has been applied. However, the 

prognosis is poor with a survival rate of 30–50% for 
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patients with deeply invasive BC (9). In addition, common 
characteristics of patients with BC are high rates of 
recurrence as well as metastasis (10). Therefore, prognosis 
is crucial for clinical decision making and individualized 
treatment of patients with BC.

Secreted phosphoprotein 1 (SPP1) is an acidic arginine-
glycine-aspartate containing adhesive glycoprotein (11,12) 
which is secreted by different types of cells. Recently, SPP1 
has been reported to play crucial roles in tumor growth 
and metastasis including cell proliferation, adherence, and 
invasion (13,14). Furthermore, over expression of SPP1 
has been found in bladder (15), prostate (16), breast (17),  
colon (18), and lung cancers (19). Besides, the SPP1 
expression level in cancer is related to tumor stage and 
aggressiveness (20). Ahmed et al. reported that SPP1 
secreted by macrophages could combine with CD44s on the 
surface of cancer cells (11). Sjödahl et al. reported that SPP1 
expression could predict the efficacy of cisplatin-based 
neoadjuvant chemotherapy in certain patients (21). In view 
of this, SPP1 plays significant role in promoting invasion 
and growth. Therefore, SPP1 could serve as a biomarker 
for diagnosis as well as prognosis in a series of cancers.

A lot of assays involving northern blot (NB) (22,23), 

in situ hybridization (ISH) (24,25), and polymerase 
chain reaction (PCR) (26) have been proposed to detect 
endogenous messenger RAN (mRNA). The lung cancer 
PDCD4 mRNA has been determined by Zhen et al. via NB 
assay (27). ISH-technologies have been applied to analyze 
the level of KRAS mRNA in tissue (28). Kurrasch et al. have 
developed a method for the measurement of the content 
of G-protein signaling mRNA by PCR (29). Nevertheless, 
these methods mentioned above have several drawbacks 
including relatively time-consuming procedure, large 
sample consumption, and low sensitivity.

The fluorescent method has attracted great attention 
because of its relatively high sensitivity, low cost, appropriate 
selectivity, and convenience (30-35). In these systems, 
molecular beacon (MB) is applied to monitor the expression 
of nucleic acid in living cells (36-38). MB consists of three 
units: a fluorophore, a quencher, and a single-strand DNA. 
Both the fluorophore and quencher elements comprise 
a signaling unit. A single-strand DNA with loop-stem 
hairpin structure acts as a recognition unit. A weak signal 
is observed in the absence of a target owing to fluorescence 
resonance energy transfer between the fluorophore and 
quencher. The quencher of the probe endows its low 
background. Upon addition of a target, bright fluorescence 
can be observed after  conformational  transit ion. 
Consequently, the target could be determined in a single-
step process. In addition, no reverse transcription nor other 
helper strand are needed in the MB probe, thus reducing 
detection steps and gaining time. A series of fluorescence 
probes have been reported on regarding their capability in 
detecting the content of RNA including ribosomal RNA 
(rRNA) (39), mRNA (28), microRNA (miRNA) (40), and 
long non-coding RNA (lncRNA) (41), and have been used 
for diagnosis, prognosis, and identification of the tumor 
progression. Thus, the MB probe is a crucial tool to detect 
SPP1 mRNA for the prognostic assessment of the tumors.

In this work, a fluorescence probe based on MB was 
proposed for the determination of SPP1 in both BC 
cells and tissues. The conformational transition in this 
fluorescence probe was induced with the presence of 
SPP1 mRNA, the loop was opened, and a bright green 
fluorescence was observed. Moreover, the SPP1 probe 
could be employed to provide important information for 
the prediction in terms of the recurrence of BC. Therefore, 
this proposed approach provided a platform to detect SPP1, 
demonstrating crucial potential in prognostic judgment of 
BC patients based on SPP1-related gene expression. We 
present this article in accordance with the MDAR reporting 

Highlight box

Key finding
• We have developed a molecular beacon (MB) to detect the secreted 

phosphoprotein 1 (SPP1) messenger RNA (mRNA) with high 
sensitivity and selectivity both in cells and tissues. The present 
study suggests that SPP1 MB could be applied as an appropriate 
approach to predict bladder cancer (BC) recurrence and patient 
prognosis.

What is known and what is new?
• SPP1 has been reported to play crucial roles in tumor growth 

and metastasis including cell proliferation, adherence, and 
invasion. SPP1 expression could predict the efficacy of cisplatin-
based neoadjuvant chemotherapy in certain patients. However, 
the majority of previous research has been driven towards 
immunohistochemical expression of SPP1.

• Here, we develop an MB for the detection of SPP1 mRNA for the 
recurrence prognosis of BC.

What is the implication, and what should change now?
• SPP1 MB could be applied as an appropriate approach to 

predict BC recurrence and patients’ prognosis according to the 
fluorescence signal.

• Future research may include larger sample sizes from more medical 
centers.
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checklist (available at https://tau.amegroups.com/article/
view/10.21037/tau-23-432/rc).

Methods

Reagents

Cell Counting Kit-8 (CCK-8) was obtained from Solarbio 
Science & Technology Co., Ltd. (Beijing, China) Primary 
antibody against SPP1 was purchased from Abcam Inc. 
(ab214050; Cambridge, MA, USA). Unless otherwise stated, 
no further purification was required for other reagents and 
chemicals purchased from Sigma-Aldrich (St. Louis, MO, 
USA).

DNA sequences designed in this work (Table S1) were 
provided by Sangon Biotech (Shanghai, China).

Instruments

The fluorescence spectra were recorded using a Hitachi 
F-4500 fluorescence spectrophotometer. Microplate reader 
(Infinite M200 PRO; Tecan Life Sciences, Grödig, Austria) 
was used to measure the absorbance of CCK-8. Confocal 
laser scanning microscopy images were collected using 
confocal laser scanning microscope (CLSM; LSM 710; 
Zeiss, Oberkochen, Germany).

Cells culture

T24 cells were obtained from American Type Culture 
Collection (ATCC; Manassas, VA, USA) and then were 
maintained by Dulbecco’s modified Eagle medium 
(DMEM) containing 10% fetal bovine serum (FBS) and 
1% penicillin/streptomycin. T24 cells were incubated in a 
humidified incubator at 37 ℃ containing 5% CO2. Before the 
experiment, cell density was quantified by a hemocytometer.

Cytotoxicity assay

The effect of SPP1 MB toward the cell viability was 
demonstrated by CCK-8 assays. T24 cells at a density 
of 5×103/mL cells were plated in 96-well plates and 
incubated overnight. Subsequently, the cells were incubated 
with different concentrations of SPP1 MB (0–10 µM). 
After 24 hours, CCK-8 solution (20 µL) was added into  
96-well plates incubated for 1 hour in a humidified 
incubator. The absorbance of CCK-8 at 450 nm was 
measured by microplate reader.

Confocal fluorescence imaging

A total of 4×104 T24 cells were inoculated in a 35 mm glass-
bottom dish and cultivated for 24 hours. The T24 cells were 
washed in phosphate-buffered saline (PBS; 0.1 M, pH 7.4)  
thrice and left in fresh Opti-MEM. After 2 hours, 6 µL 
Lipofectamine 3000 reagent (Thermo Fisher, Waltham, 
MA, USA), or 8.4 µL 100 µM SPP1 MB was added into a 
1.5 mL tube, and then 140 µL Opti-MEM were added and 
was left for 5 minutes at room temperature. Thereafter, 
the above two solutions were mixed and allowed to stand 
for 20 minutes. The mixture solution was added into glass-
bottom dish for 4 hours. Cells were washed with PBS thrice 
and were added to 1 mL PBS prior to confocal imaging. 
The T24 cells were observed by laser confocal microscope 
(Zeiss LSM 710) with a 40× objective. The images were 
captured with appropriate excitation for 4',6-diamidino-2-
phenylindole (DAPI; 405 nm) and SPP1 MB (488 nm).

Quantitative real-time PCR (qRT-PCR) analysis, clinical 
sample analysis, and immunohistochemistry (IHC)

The detailed process is described in Appendix 1.

Human biological samples

The tissue samples were collected from the Second Hospital 
of Tianjin Medical University (Tianjin, China). The study 
was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013). The study was approved by 
the Tianjin Medical University Management Committee 
and Ethics Committee (No. KY2021K113) and the 
requirement for individual consent for this retrospective 
analysis was waived.

Statistical analysis

An unpaired t-test using GraphPad Prism 8.0 (GraphPad 
Software, San Diego, CA, USA) with Welch’s correction 
was used to assess the endpoints. All statistical tests were 
two-tailed and a P value <0.05 was considered significant.

Results

The design and feasibility of MB for the determination of 
SPP1 mRNA

We successfully designed and synthesized the special 
MB which composed of 3 units: single-strand DNA, a 

https://tau.amegroups.com/article/view/10.21037/tau-23-432/rc
https://tau.amegroups.com/article/view/10.21037/tau-23-432/rc
https://cdn.amegroups.cn/static/public/TAU-23-432-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TAU-23-432-Supplementary.pdf
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fluorophore (FAM), and a quencher (Dabcyl). The specific 
structure and detailed workflow are shown in Figure 1. 
Further, it was found that this designed probe could be 
employed to analyze the expression of SPP1 mRNA in 
a biological environment. As shown in Figure 2A, the 
fluorescence was weak in various solutions. However, the 
signal of hairpin (curve black) increased 8.57 folds in the 

presence of target, demonstrating that SPP1 mRNA could 
hybridize with hairpin (Figure 2B).

In vitro and vivo response and specificity of SPP1 MB

After verification, the feasibility of the probe design 
was demonstrated to be capable of target concentration 
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Figure 1 The design of the MB and its detection process. (A) Schematic illustration of the design of MB for the determination of SPP1 
mRNA. (B) Schematic illustration of MB for the detection of SPP1 mRNA in tissue. SPP1, secreted phosphoprotein 1; MB, molecular 
beacon; mRNA, messenger RNA; adj., adjacent.
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the feasibility of the SPP1 MB for the detection of SPP1 mRNA. SPP1 MB (6 µM) was incubated in the presence or absence of target 
at 37 ℃ for 4 h. a.u., arbitrary units; ATP, adenosine 5'-triphosphate; SPP1, secreted phosphoprotein 1; MB, molecular beacon; mRNA, 
messenger RNA.
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determination (Figure 3A,3B). The nonlinear relationship 
between the signal and concentration of target range from 
10 nM to 1 μM was obtained. The fluorescence signal versus 
the content of target demonstrated a good relationship 

ranging of 10–600 nM (Figure 3C). Even though at the 
lowest levels (10 nM), detectable fluorescence signals were 
observed. Subsequently, we assessed the specificity of SPP1 
MB. As displayed in Figure 4, strong fluorescence intensity 
was observed in the MB-treated target analyte.

In vivo studies have found that the probe exhibits no overt 
toxicity toward T24 cells even with the MB up to 10 µM  
(Figure 5A). When the concentration of SPP1 mRNA 
changes in living cells, the MB can accurately react to the 
corresponding cellular environment (Figure 5B-5E).

Human tissues imaging and clinical prognosis based on the 
fluorescence signal of SPP1 MB

The SPP1 MB was successfully applied to determine the 
SPP1 mRNA level in the BC and adjacent normal tissues 
(Figure 6A-6D). The results above were in good agreement 
with the results obtained from conventional IHC staining 
(Figure 7) and qRT-PCR (Figure S1). Furthermore, the 
SPP1 highly expressed group demonstrated a comparatively 
high risk of recurrence (Figure S1, Figure 8).

Figure 4 Specificity evaluation of the SPP1 MB for the 
determination of SPP1 mRNA. PM, SM, TM, (n=3). a.u., arbitrary 
units; PM, perfect match; SM, single-base mismatched strand; TM, 
three-base mismatched strand; SPP1, secreted phosphoprotein 1; 
MB, molecular beacon; mRNA, messenger RNA.
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Figure 5 Intracellular detection of SPP1 mRNA using SPP1 MB. (A) Cytotoxicity of SPP1 MB toward T24 cells after treated with varying 
concentration of T24 SPP1 MB of various concentration ranging from 0–10 µM for 24 h. CLSM images of mRNA in T24 cells under different 
conditions. Cells were pretreated with (B) PBS, (C) Cor., and (D) LPS for 2 h. Detailed process was described in materials and methods (2.5). (E) 
The relative fluorescence intensity of Cor., Ctr., and LPS (n=3). Scale bar: 20 μm. SPP1, secreted phosphoprotein 1; MB, molecular beacon; 
LPS, lipopolysaccharide; Ctr., control, PBS; PBS, phosphate-buffered saline; Cor., cordycepin; DAPI, 4',6-diamidino-2-phenylindole; 
mRNA, messenger RNA; CLSM, confocal laser scanning microscope.

Discussion

Working principle of MB for the determination of SPP1 
mRNA

The strategy for the determination of SPP1 mRNA is 
shown in Figure 1. The SPP1 MB was composed of three 
units: single-strand DNA, FAM, and Dabcyl, respectively. 

FAM was the fluorophore with green emissive, whereas 
Dabcyl was the quencher which was used to quench the 
fluorescence of FAM. The single-strand consists of two 
elements: the loop of DNA served as a recognition element 
which is complementary to SPP1 mRNA, whereas the stem 
of DNA which could hybridize each other. Both FAM and 
Dabcyl were employed as a signal unit. MB was capable of 
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hybridizing with target to form a double strand, resulting 
in the conformational change of probe. As a result, the 
distance between the fluorophore and quencher increased 
accompanied with disruption of Forster resonance energy 

transfer (FRET), leading to bright fluorescence. The 
signal intensity of FAM which was detected at 520 nm was 
capable of employing as a signal for the determination of 
SPP1 mRNA. Furthermore, the probe could be employed 

Figure 6 CLSM images of (A) BC adjacent tissue (adj. cancer) and (B) BC treated with SPP1 MB. Human BC tissues were fixed by formalin 
before experiment. The slides were treated with 100 µL 6 µM SPP1 MB for 4 h at 37 ℃. Subsequently, the slides were washed 3 times 
with PBS and were examined by laser confocal microscope (Zeiss LSM 710 with a 40× objective). The relative fluorescence intensity of (C) 
adjacent tissue and (D) BC. Scale bar: 20 µm. DAPI, 4',6-diamidino-2-phenylindole; MB, molecular beacon; adj., adjacent; CLSM, confocal 
laser scanning microscope; BC, bladder cancer; SPP1, secreted phosphoprotein 1; PBS, phosphate-buffered saline.
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to detect the SPP1 mRNA expression in tumors for BC 
prognosis.

Feasibility of target gene detection

The stability of MB was first investigated via fluorescence 
spectra before practical application, then we carried an 
experiment that mimics physiologic conditions. As shown in 
Figure 2A, the fluorescence was weak in various solutions. 
Then, the probe was subjected in physiologic conditions 
for 2 hours, and very minor change of the fluorescence 
signal was observed demonstrating relative high stability 
in physiologic conditions. The signal of hairpin (curve 
black) increased 8.57 folds in the presence of a target, 
demonstrating that SPP1 mRNA could hybridize with 
hairpin (Figure 2B). On the contrary, no significant changes 
in the fluorescent signal (curve red) were visualized without 
a target, indicating that no reaction occurred. These results 
suggested that this designed probe could be employed 
to analyze the expression of SPP1 mRNA in a biological 
environment.

In vitro response of SPP1 MB

After verification, the feasibility of the constructed probe 
was demonstrated to be able to determine the concentration 
of target. Subsequently, the in vitro studies for SPP1 
mRNA detection through the probe were performed by 

fluorescence spectra and polyacrylamide gel electrophoresis 
(PAGE). The fluorescence recovery effect was evaluated 
through adding varied concentrations of analyte into the 
SPP1 MB. In the presence of analyte, the signal (Figure 3A) 
gradually increased with the target ranging from 10 nM to  
1 µM. The maximum fluorescence intensity of MB was 
about 7.5 times that of SPP1 MB without analyte. As shown 
in Figure 3B, the nonlinear relationship between the signal 
and concentration of target in the range from 10 nM to 1 µM 
was obtained. The fluorescence signal versus the content of 
target demonstrated a good relationship ranging from 10 
to 600 nM (Figure 3C), the formula is F = 8.57 × C + 1,845, 
with a correlation coefficient square equal to 0.9921. Since 
a detectable fluorescence signal could be observed at the 
minimum content (10 nM), the limit of hairpin towards 
SPP1 mRNA was 10 nM, which is comparable with that 
reported previously (42).

Specificity of SPP1 MB

As many similar sequences existed among the RNA family, 
determination of the specificity of MB toward target 
was essential. To do so, the SPP1 MB was incubated 
with single-stranded nucleic acid including target, single 
base mismatches, and three base mismatches at same 
concentration. As displayed in Figure 4, strong fluorescence 
intensity was observed in the MB-treated target analyte. 
For the one-base mismatched sequence, slight enhancement 
of fluorescence intensity was observed. The change of the 
signal was low after treatment with three base mismatches. 
Therefore, only a target could induce a significant 
fluorescent signal, whereas not only one-base mismatch 
but also three-base mismatch yielded small interference 
for SPP1 mRNA determination. Thus, the above results 
demonstrated that the SPP1 MB was capable of detecting 
SPP1 mRNA with high specificity.

Intracellular detection of SPP1 mRNA using SPP1 MB

The MB could be employed to determine mRNA in vitro. 
Before the detection of SPP1 mRNA expression by MB, 
the cytotoxicity of MB was examined by utilizing CCK-8  
assay. The probe exhibits no overt toxicity toward T24 cells 
even the MB up to 10 µM (Figure 5A). Figure 5B shows 
the confocal laser fluorescence images of T24 cells after 
incubation with SPP1 MB at 37 ℃ for 2 hours. Obvious 
fluorescence was observed in cancer cells, demonstrating 
that MB could efficiently enter into cells. In addition, the 
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cell was pretreated with cordycepin to decrease mRNA 
expression. As displayed in Figure 5C, the fluorescence 
decreased in comparison to that of the untreated cells. 
For further imaging the SPP1 content in cancer cells, the 
SPP1 mRNA expression in cancer cells was increased after 
treatment with lipopolysaccharides (LPSs). Subsequently, 
a distinct signal was visualized from the cells treated with 
LPS (Figure 5D). The relative fluorescence intensity is 
shown in Figure 5E. The above results were consistent 
with the results of PCR after treatment with cordycepin 
and LPS. Thus, the fluorescence intensity in living cell was 
changed with the concentration of SPP1 mRNA, indicating 
the capability of MB to image SPP1 mRNA in living cells.

mRNA imaging using MB for clinical prognosis

In view of MB having shown good biocompatibility 
and capability to detect SPP1 mRNA, we performed 
tissue imaging on samples of patients with BC. Thus, 
the difference in expressions of SPP1 mRNA in the BC 
and adjacent normal tissues were assessed. As displayed 
in Figure 6A,6B, discrepant fluorescence signals were 
observed and measured in adjacent normal and BC tissues 
after incubation with SPP1 MB, demonstrating that the 
latter expressed a higher SPP1 mRNA. As indicated by 
the fluorescence intensity analysis of these tissue slices  
(Figure 6C,6D), the fluorescence signal in BC was 1.09, 
which was approximately 6.8-fold more than that in 
adjacent tissues. The results above were in good agreement 
with the results obtained from IHC (Figure 7) and q-PCR 
(Figure S1). Furthermore, the SPP1 MB was successfully 
applied to determine the SPP1 mRNA level in tumor 
tissues. As demonstrated in Figure S2, BC tissues were 
divided into two groups according to fluorescence intensity. 
Figure 8 shows that the SPP1 highly expressed group was 
observed to have a comparatively high risk of recurrence. 
Thereby, SPP1 MB is an efficient method when applied to 
predict BC patients’ prognosis.

Conclusions

In summary, SPP1 has been demonstrated as a potential 
therapeutic target for BC. Herein, we have developed 
a MB to detect the SPP1 mRNA with high sensitivity 
and selectivity both in cells and tissues. Compared with 
adjacent tissues, the BC tissues have higher expression of 
SPP1. Moreover, patients with a highly expressed SPP1 
mRNA level are associated with early recurrence and the 

fluorescence signal is inversely correlated with BC patients’ 
prognosis. Hence, the present study suggested that SPP1 
MB could be applied as an appropriate approach to predict 
BC recurrence and patients’ prognosis.
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