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There is notable discrepancy between experiments and coarse-grained model studies
regarding the thermodynamic driving force in polyelectrolyte complex coacervation:
experiments find the free energy change to be dominated by entropy, while simulations
using coarse-grained models with implicit solvent usually report a large, even dominant
energetic contribution in systems with weak to intermediate electrostatic strength.
Here, using coarse-grained, implicit-solvent molecular dynamics simulation combined
with thermodynamic analysis, we study the potential of mean force (PMF) in the
two key stages on the coacervation pathway for symmetric polyelectrolyte mixtures:
polycation–polyanion complexation and polyion pair–pair condensation. We show that
the temperature dependence in the dielectric constant of water gives rise to a substantial
entropic contribution in the electrostatic interaction. By accounting for this electrostatic
entropy, which is due to solvent reorganization, we find that under common conditions
(monovalent ions, room temperature) for aqueous systems, both stages are strongly
entropy-driven with negligible or even unfavorable energetic contributions, consistent
with experimental results. Furthermore, for weak to intermediate electrostatic strengths,
this electrostatic entropy, rather than the counterion-release entropy, is the primary
entropy contribution. From the calculated PMF, we find that the supernatant phase
consists predominantly of polyion pairs with vanishingly small concentration of bare
polyelectrolytes, and we provide an estimate of the spinodal of the supernatant phase.
Finally, we show that prior to contact, two neutral polyion pairs weakly attract each other
by mutually induced polarization, providing the initial driving force for the fusion of the
pairs.

polyelectrolyte complex coacervation | entropy | thermodynamic driving force |
coarse-grained simulation | polarization

Polyelectrolyte (PE) complex coacervation refers to an associative liquid–liquid phase
separation (LLPS) upon mixing oppositely charged polyelectrolyte solutions, which results
in the formation of a coacervate phase containing most of the polyions and a dilute
supernatant phase (1, 2). This electrostatically induced LLPS underpins a number of
important biological phenomena such as membraneless organelles in cells (3–6) and ocean
life adhesion (7–11) and is also being exploited in novel biomedical and biomimetic
applications such as drug delivery (12–14) and underwater adhesion (10, 15–19). In
the 6 decades since the pioneering theoretical work by Overbeek and Voorn (20),
significant progress has been made on both the theory/simulation and experiment fronts
in understanding the many effects on this LLPS, such as chain connectivity (21–30),
excluded volume (22, 25, 31–35), charge sequence (36–40), ion pairing (22, 41, 42),
charge asymmetry (43–47), temperature (48–53), pH (54–57), and solvent quality
(58–60). We refer readers to several excellent recent reviews (61–65). Despite these
advances, however, some fundamental questions remain in regard to the thermodynamic
driving force and the mechanism for coacervation.

There has been a notable discrepancy between experimental results and simulation
studies concerning the thermodynamic driving force. Thermodynamically, polyelectrolyte
complex coacervation can be considered a two-stage process: first, the complexation of
polycations and polyanions into polyion pairs, and second, the condensation of the
polyion pairs into the coacervate phase (66–71), with the first stage dominating the free en-
ergy change for the overall process. Based on isothermal titration calorimetry (72), Tirrell
and coworkers determined the thermodynamic driving forces for both stages and found
that for each stage the free energy change is dominated by entropy with negligible enthalpic
contribution (71, 73). The entropy dominance was also demonstrated by Schlenoff and
coworkers in complex coacervation for some common polyelectrolytes (74, 75). On the
other hand, coarse-grained computer simulation studies of the complexation of two
oppositely charged polyelectrolyte generally found substantial energy contribution in
the free energy change (76–80). In a seminal work, Ou and Muthukumar (76), using
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Langevin dynamics simulation, found that the process is energy
driven for electrostatic strength ξ = lB/l < 1.5, where lB is the
Bjerrum length and l is the spacing between charges along the
chain backbone. The electrostatic energy contribution remains
favorable up to ξ = 2.5. Similar results were reported in sim-
ulations from Rathee et al. (78) and from Singh and Yethiraj
(79). The discrepancy becomes especially obvious in the range
of ξ < 2 for which simulations predicted significantly favorable
energetic contributions, while experiments found the energetic
contribution to be generally small and unfavorable (75, 81).
Furthermore, in the relevant range of ξ values (1< ξ < 3) for
typical polyelectrolyte complex coacervation systems used in ex-
periments, the enthalpy change, while remaining relatively small,
changes sign from positive to negative with increasing ξ (75, 81);
this trend is opposite to that observed in the simulation of ref. 76.
Because of these differences, Schlenoff and coworkers (74, 75, 82)
raised serious concerns about the use of continuum electrostatics
to describe polyelectrolyte complex coacervation systems that
most simulations (and theories) rely on. This discrepancy between
experimental data and simulation results must be resolved in
order to continue using coarse-grained simulation/theory with
confidence to study the properties of polyelectrolyte complex
coacervation.

The large entropic driving force in polyelectrolyte complex
coacervation observed in experiments is commonly believed to
arise from the counterion release upon complexation between
oppositely charged polyelectrolyte chains (61–63, 76, 83). How-
ever, this counterion-release mechanism can only explain the en-
tropy dominance in the regime of strong electrostatic interactions
(ξ > 2.5), in which over 60% of the counterions are bound
to the uncomplexed polyions (76). As the electrostatic strength
decreases, the counterion-release entropy becomes less important
and is only a minor contribution to the overall free energy change
when ξ < 1.5. Thus, there is a missing entropy contribution that is
not accounted for in the coarse-grained simulations. In this article,
we will show that this missing entropy is rooted in the electrostatic
interaction used in the coarse-grained models.

To appreciate the role of entropy in electrostatics, we note that
in implicit solvent models with dielectric continuum treatment of
electrostatics, the interaction energy between two charges qi and
qj , separated by distance rij in a solvent of electric permittivity
ε, Eel =

∑
i,j

qiqj
4πεrij

, is in fact a potential of mean force (PMF)
with the solvent degrees of freedom averaged out. The dielec-
tric constant of water (the primary solvent used in coacervation
studies) is known to have significant temperature dependence
(84). The temperature-dependent dielectric constant has been
shown to be a major factor (50, 53) responsible for the lower
critical solution temperature behavior in some polyelectrolyte
complex coacervation systems (82, 85, 86). More importantly,
the temperature dependence of dielectric constant means the
electrostatic energy, Eel , has an entropic contribution (87, 88).
By interpreting Eel as a pure energy term in the thermodynamic
analysis of polyelectrolytes, previous works did not consider the
entropic contribution in this electrostatic energy. In this work,
we show that by properly accounting for the entropic contribu-
tion in Eel from the coarse-grained molecular dynamics simu-
lation, both stages of the polyelectrolyte complex coacervation
are found to be entropy driven with only minor contributions
from energy, consistent with known experimental results. Based
on the free energy calculation, we analyze the state of the dilute
phase and investigate the pathway of pair–pair condensation,
which is a key step in the pathway of the second stage in the
coacervation.

We start with the free energy F for the canonical system, which
is given in terms of the partition function Z as

F =−kBT ln(Z ) =−kBT ln

(∑
Γ

e−E [Γ]/kBT

)
, [1]

where kB , T , and E [Γ] are the Boltzmann constant, temperature,
and energy for microstate Γ, respectively. In a fully microscopic
model, the microstate Γ includes all degrees of freedom, and the
energyE [Γ] is the true energy, independent of temperature. How-
ever, in a coarse-grained model, such as implicit solvent models
commonly employed for studying electrolyte and polyelectrolyte
systems,Γ refers only to the reduced degrees of freedom, andE [Γ]
should be interpreted as a PMF, which is generally temperature
dependent. Regardless of the degree of coarse graining, the ther-
modynamic entropy S is given by

−S =
∂F

∂T
=−kB ln(Z )− kBT

∂ ln(Z )

∂T

=
F

T
− kBT

Z

∑
Γ

e−E [Γ]/kBT ·
(

E [Γ]

kBT 2
− 1

kBT

∂E [Γ]

∂T

)

=
F

T
− 〈E 〉

T
+

〈
∂E

∂T

〉
, [2]

i.e.,

− TS = F − 〈E 〉+ T

〈
∂E

∂T

〉
. [3]

Thus, for a fully microscopic model, the last term is zero, and
we recover the well-known relation −TS = F − 〈E 〉. However,
for coarse-grained models, the last term is generally nonzero and
therefore must be included in the calculation of the true, physical
entropy. For implicit-solvent models of electrolyte and polyelec-
trolyte systems, the temperature dependence of the energy is in the
electrostatic interaction Eel through the dielectric constant. The
nonelectrostatic part of the interaction contributes little to the free
energy change in this study, as shown in SI Appendix, Fig. S1. For
the electrostatic part,

〈
∂Eel

∂T

〉
=

〈
∂
∑

i,j
qiqj

4πεrij

∂T

〉

=

〈∑
i,j

qiqj
4πrij

〉
·
(
−1

ε2

)
· ∂ε

∂T

=−1

ε
· ∂ε

∂T
· 〈Eel〉. [4]

Substituting Eq. 4 into the last term of Eq. 3 yields

− TS = F − 〈E 〉 − 〈Eel〉 ·
T

ε
· ∂ε

∂T
. [5]

Thus, when there is significant temperature dependence in the
dielectric constant, such as in the case of water, the last term in
Eq. 5 results in a substantial correction to the calculation of the en-
tropy and energy. We shall call this term the “electrostatic entropy”
(after dividing by the temperature), to indicate that this is the
entropy contained in the electrostatic interaction potential used
in coarse-grained model. The physical origin of this electrostatic
entropy is the reorganization of the solvent, particularly in the
orientation degrees of freedom of the dipolar solvent molecules.
In the Onsager theory for dielectric constant of liquids, the
temperature dependence is directly due to the orientation of the
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permanent dipoles (89). Although in real liquids such as water,
local structural correlations (such as due to hydrogen bonding)
result in modification of the dipolar contribution to the dielec-
tric constant (87, 90) and thus more complicated temperature
dependence than predicted by the Onsager theory, the dipolar
orientation remains the major root cause for the temperature
dependence of the dielectric constant. In SI Appendix, we provide
a simple explanation of the physical basis of the electrostatic
entropy based on the dipolar orientation of the solvent molecules.

Using the empirical temperature dependence of the dielectric
constant of water given by Malmberg and Maryott (84),

ε/ε0 = 87.74− 0.4008t + 9.398 · 10−4t2 − 1.410 · 10−6t3,
[6]

where t = T − 273.15 and ε0 is the vacuum electric permittiv-
ity, we find, at room temperature 298.15 K, (T/ε)(∂ε/∂T ) =
−1.3576, and so

TS =−F + 〈E 〉 − 1.3576〈Eel 〉. [7]

Since our interest in the thermodynamic analysis involves only
changes of thermodynamic functions between different states
under isothermal conditions, the more relevant equation is

TΔS =−ΔF +Δ〈E 〉 − 1.3576Δ〈Eel 〉. [8]

We note that this equation is unaffected whether or not the self-
energy of the ions is included in Eel since the self-energies of the
ions between the different thermodynamic states are unchanged
and will cancel out in taking the difference. From Eq. 8, we also
see that the true energy change ΔU should be ΔU =Δ〈E 〉 −
1.3576Δ〈Eel 〉. Thus, by properly accounting for the entropic
contribution in the electrostatic interaction, both the entropic
and energetic contributions in driving force will be altered. For
comparison in our later discussion, we will use the notation
ΔU † and ΔS † for the uncorrected energy and entropy change,
respectively.

We first examine the PMF ΔF (r) between two fully
charged polyions with opposite charges as a function of their
center-of-mass distance r in the absence of added salt (with
NC = NA = 60, ξ = 1.03; see details in Materials and Methods).
Fig. 1 shows a large free energy decrease as the two chains
approach each other, reaching a magnitude of about 400kBT
at close contact; this number is very close to that reported by
Ou and Muthukumar (76) under the same condition. Without
the entropic correction in the electrostatic interaction, Fig. 1B
shows that complexation is energy driven as most of the free
energy decrease comes from the energy, i.e., −ΔU † > TΔS †.
The small entropy increase is likely due to counterion release upon
complexation (76, 78). The value of the energy change between
the complex and the two separate chains is also in agreement with
that reported in ref. 76, and the general conclusion of energy
dominance is consistent with previous simulation findings for
ξ < 1.5 (76, 78, 79). However, when the entropic contribution
to the electrostatic interaction is accounted for, the complexation
becomes entirely entropy driven, as shown in Fig. 1C. The
corrected energy contribution is small and unfavorable, consistent
with the endothermic behavior observed in experiments (71).
SI Appendix, Fig. S2 shows that adding salt (0.01∼ 0.1M ) to the
system weakens the overall driving force as measured by PMF,
and the energetic contribution becomes negligible at higher salt
concentrations. With the entropic correction, all our results are
consistent with experimental observations (71, 75).

Although we have only presented results for ξ ≈ 1.03, Eq. 8
can be applied to previous simulation data based on continuum

A

B

C

Fig. 1. (A) PMF for the complexation of a polycation (orange) and a polyan-
ion (cyan) each with chain length N = 60. The small dots in Inset are the
corresponding counterions. (B) Components of the free energy without the
electrostatic entropy correction. (C) Components of the free energy with the
electrostatic entropy correction according to Eq. 8. The energy unit in all
curves is kBT at room temperature (298.15 K).

electrostatics to extract the electrostatic entropy in broader ranges
of ξ. In SI Appendix, Fig. S3, we show that using the simulation
data in ref. 76, after making the entropic correction in the elec-
trostatic term, the polycation–polyanion complexation becomes
strongly entropy driven with only minor energetic contributions
in the most experimentally relevant ranges of ξ(<3) for aqueous
systems, in agreement with experiments. Furthermore, after the
correction, the trend in the enthalpy change (turning from posi-
tive to negative) with increasing ξ in the range of 1< ξ < 3 is also
consistent with experiments (75, 81). Moreover, by comparing
the entropy change before and after the correction, we find that
the electrostatic entropy is the primary entropic driving force for
ξ < 1.7.

The PMF of polycation–polyanion complexation can shed
useful light on the nature of the dilute phase in polyelectrolyte
complex coacervation, which has received considerably less
attention than the coacervate phase. In the calculation of phase
diagrams, most theories (20–22, 25, 26, 30–32, 91–98) assume
the polyions exist as dispersed chains in the dilute phase and
consequently predict unphysically low polymer concentration
in the supernatant phase. On the other hand, it has long been
suggested that the supernatant phase for symmetric polyelectrolyte
mixtures should consist primarily of polyion pairs under
physically relevant conditions (21, 66, 67, 99). This has been
explicitly demonstrated by field-theoretic simulation (100) and
theoretical calculation (43) for weakly charged polyelectrolytes
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in the absence of counterions and elaborated more recently for
the general polyelectrolyte complex coacervation in symmetric
mixtures (101). With the calculated PMF for polycation–
polyanion complexation, we can quantify the onset concentration
for polyion pairing from dispersed polycations and polyanions.

We consider the polycation–polyanion complexation as a
chemical reaction:

A+ C �AC , [9]
where A, C , and AC denote polyanion, polycation, and
polyanion–polycation pair, respectively. The equilibrium constant
Keq is given by

Keq =
ρAC

ρA · ρC
=

QAC

QAQC
, [10]

where ρα is the concentration of the α specie and Qα is the
corresponding internal partition function (102). The ratio of the
partition functions on the right-hand side of Eq. 10 is related to
the PMF by

QAC

QAQC
= 4π

∫ rmax

0

r2e−ΔF(r)/kBTdr , [11]

where rmax is the range of the attractive well of the PMF.
Noting that ΔF (r) increases steeply with r , the integral is
dominated by contributions near the minimum (r = 0), and we
may expand ΔF (r) to linear order by writing ΔF (r)/kBT =
ΔF (0)/kBT + a(r/σ), with a being the local slope near
the minimum. For the PMF given in Fig. 1, Eq. 11 yields
an approximate value for the equilibrium constant Keq ≈
(8π/a3)σ3e−ΔF(r)(0)/kBT ≈ 10174nm3 ≈ 10150L. If we take
the onset concentration for the complexation to be ρ∗AC = ρ∗A =
ρ∗C , then we obtain ρ∗A = ρ∗C ≈ 10−174M , an unfathomably
small number. The onset concentration increases by many orders
of magnitude with increasing salt concentration, but even for
the highest salt concentration we studied (∼0.1M ), ρ∗A is still
unphysically low. Thus, except at very high salt concentrations,
a dilute mixture of polyanions and polycations will consist of
polyion pairs, practically devoid of uncomplexed polyelectrolyte
chains.

The value of the complexation free energy obtained from
our simulation is comparable to those measured in experiments.
On a per monomer basis, the ∼400kBT free energy drop per
chain shown in Fig. 1 amounts to 17 kJ/mol per monomer.
This number falls in the range of the experimentally reported
values (10 to 30 kJ/mol) of the complexation free energy for
a series of polyanion and polycation pairs (71, 75). Given the
simplicity of the coarse-grained model employed in our work, this
level of agreement is quite heartening. In SI Appendix, we briefly
discuss the effects of chain length and length asymmetry in the
pairing free energy for polycation–polyanion complexation (see
SI Appendix, Fig. S4).

Since the dilute phase of a symmetric mixture of polyanions
and polycations is essentially devoid of uncomplexed chains, the
relevant species are the polycation–polyanion pairs, whose con-
densation eventually results in the coacervate. Here we consider
the elementary process of the fusion of such polyion pairs. In
Fig. 2A, we show the PMF between two polyion pairs, each
containing one polycation and one polyanion that are both fully
charged and have the same chain length N = 100, at different
added salt concentrations Cs = 0M ∼ 0.15M .

Because the two polyion pairs have no net macromolecular
charges, the primary driving force for their fusion comes from the
tendency to decrease the interfacial free energy (43, 101). Con-
sequently, the free energy of fusion is considerably less than the

A

B

C

Fig. 2. Thermodynamics driving force for the condensation of two
polycation–polyanion pairs under different added salt conditions for N = 100.
(A) PMF ΔF . (B) Corrected entropy contribution (Eq. 8). (C) Corrected energy
contribution. The energy unit in all curves is kBT at room temperature
(298.15 K).

free energy of the polycation–polyanion complexation discussed
earlier; see Fig. 2A and compare with Fig. 1. A few representative
structures along the fusion pathway are shown in the insets of
Fig. 2A, where we see two isolated globules at long distances, going
through an elongated connected state, to the final fused larger
globule.

As in the case of polycation–polyanion complexation, we find
that the fusion between two polyion pairs is also driven by entropy
(when the corrected entropy expression is used), as shown in
Fig. 2 B and C. The energy contribution is slightly unfavorable
for the salt-free system (still with counterions) and becomes less
with increasing salt concentration. Although the fusion of two
polyion pairs is only part of the overall coacervation process,
the trend observed in our simulation is consistent with the en-
thalpy change during the second stage of coacervation obtained
in experiments (71, 73), in that the measured enthalpy change is
small and slightly unfavorable, and its magnitude decreases with
added salt. Without the entropic correction in the electrostatic
interaction, SI Appendix, Fig. S5 shows the energetic contribution
is significant and comparable to the entropic contribution, which
is inconsistent with the slightly endothermic nature of the second
stage in coacervation reported in refs. 71, 73.

The PMF between two polyion pairs allows us to estimate
the spinodal of the supernatant phase. To this end, we write the
osmotic pressure of the supernatant phase due to the polymers as
a virial expansion,

Π= kBT (ρ+ B2 · ρ2 + B3ρ
3 + . . .), [12]
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where B2 and B3 are the second and third osmotic virial coeffi-
cients, respectively. B2 is related to the PMF by (103)

B2 =−2π

∫
(e−ΔF(r)/kBT − 1)r2dr . [13]

Fitting the PMF as a straight line with slope a in the range of
the interaction r ≤D , where D ≈ 14σ is the onset distance for
appreciable interaction (roughly the onset of contact between the
two polyion pair globules, which appears insensitive to the salt
concentrations we have examined), B2 is estimated to be

B2 ≈−
[
4π

a3
σ3e−ΔF(0)/kBT − 2π

3
D3

]
. [14]

Invoking the spinodal condition ∂Π/∂ρ= 0 and ignoring the
contribution from the third virial coefficient [which is presumably
positive and not very large (66, 67)], we estimate the concentra-
tion of the polyion pairs at the spinodal to be

ρs ≈−1/(2B2). [15]

For the chain length and salt conditions studied here, the sec-
ond term on the right-hand side of Eq. 14 is only a small fraction
(≤2%) of the first term. Therefore, the spinodal concentration is
roughly

ρs ≈ a3

4πσ3
eΔF(0)/kBT . [16]

In the supernatant phase at undersaturated concentrations, and
at the binodal, the solution consists primarily of isolated polyion
pairs, with much lower concentration of two-pair complexes and
higher-order clusters (101). From the PMF shown in Fig. 2A, we
can obtain the equilibrium constant for the dimerization from two
polyion pairs,

ρ2
ρ21

≈ (8π/a3)σ3e−ΔF(0)/kBT , [17]

where ρ1 and ρ2 are the concentration of the polyion pairs
and that of the dimers of these pairs (hereafter termed two-
pair complex), respectively. As the concentration of polyion pairs
ρ1 increases, ρ2 increases according to Eq. 17. For sufficiently
high ρ1, the concentration of the two-pair complexes becomes
comparable to that of the polyion pairs. This happens when
ρ1 ≈ a3

8πσ3 e
ΔF(0)/kBT . Up to a numerical factor of order 1,

this is just the spinodal condition given in Eq. 16. This result
is not surprising: since the fusion of two polyion pairs does
not involve any kinetic barrier, the only free energy barrier to
coacervation is due to the translational entropy loss of the polyion
pairs in forming two-pair complexes and higher-order clusters, if
we consider the cluster size as the reaction coordinate to nucleation
(101, 104). When ρ2 ≈ ρ1, the free energy barrier to cluster
growth vanishes—this is the condition of spinodal.

The results for the spinodal concentration are shown in Fig. 3
for the four salt concentrations studied. The spinodal concen-
tration increases with added salt, following the same trend as
the binodal shown in both theoretical and experimental phase
diagrams; the binodal for the present system, which is not available
from these two-pair calculations, is expected to lie below the
curve shown in Fig. 3. Between the binodal and the spinodal,
the system is in the metastable state, from which coacervation
proceeds by nucleation and growth, with vanishing barrier at the
spinodal. In practice, the metastable state can no longer exist when

Fig. 3. Spinodal concentration of the polymers for the dilute branch under
different added salt conditions. The polymer concentration is measured using
the total number of monomers.

the nucleation barrier becomes a few kBT due to the enhanced
fluctuation near the spinodal (101, 105–107).

While the PMF becomes significant for r �D (the contact
distance), a close inspection of the curves in Fig. 2A reveals a
faint attraction at r >D . This attraction arises from the mutually
induced polarization of the two polyion-pair globules. To quantify
this induced polarization effect, we examine the fluctuation in the
net dipole of each globule, as well as the overall dipole of the two-
globule system.

For each pair, the electric dipole moment is given by 	Pα =∑
i qα,i	rα,i , where qα,i is the charge on monomer i and rα,i is its

vector position, and the sum is over all monomers in pair α (α=

1, 2). The total dipole of the system is then 	P = 	P1 + 	P2. We
calculate the projection of these dipole moment onto the center-
of-mass vector between the pairs:

P||,α = 	Pα · R̂12, [18]

where R̂12 is the unit vector of the center of mass between the two
pairs defined as R̂12 = (	Rc,2 − 	Rc,1)/|	Rc,2 − 	Rc,1|, with 	Rc,α

being the instantaneous center of mass position of pair α. Because
of symmetry, 〈P||,α〉= 0. Thus, we quantify the fluctuation by the
second moment 〈P2

||,α〉 and 〈P2
||〉. Furthermore, we calculate the

dipole correlation between the two pairs 〈P||,1P||,2〉

〈P||,1P||,2〉=
1

2
[〈P2

||〉 − 〈P2
||,1〉 − 〈P2

||,2〉]. [19]

In Fig. 4 A and B, we show the fluctuation in the total
dipole moment and the dipole–dipole correlation between the two
polyion pairs. We see that the system dipole fluctuation becomes
appreciable at r/σ � 20, indicating mutually induced polariza-
tion well beyond the contact distance. This induced polarization
is more easily seen in the correlation 〈P||,1P||,2〉 shown in Fig. 4B.
The large increase in the correlation as r decreases below 20σ indi-
cates that the dipoles from the two polyion pairs point in the same
direction. Furthermore, the polarization increases with increasing
salt concentration; this can be understood by the decrease in
the density of the polyion-pair globule (SI Appendix, Fig. S7) and
the accompanying decrease in the interfacial tension with added
salt (93, 108), which makes the globule more deformable. The
globule shape anisotropy follows similar trend as the polarization
(SI Appendix, Fig. S6).

Beyond the fusion between two polyion pairs, coacervation
involves the condensation into larger clusters which eventually
leads to macroscopic phase separation. It is therefore of interest
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A

B

Fig. 4. (A) Fluctuation of the longitudinal component of the polarization 〈P2
||〉

as a function of the center-of-mass distance between the two pairs, relative
to that at infinite distance. The markers represent the simulation data, and
the curves are fitted to guide the eye. (B) Polarization correlation between the
two polyion globules 〈P||,1P||,2〉 as a function of the center-of-mass distance
between the two pairs at r/σ ≥ 14, where the two pairs weakly attract each
other prior to contact. The curves are fitted to guide the eye.

to examine how the structural properties evolve as the cluster size
increases. To this end, we study and compare clusters with sizes
ranging from 1 to 10 polyion pairs.

Fig. 5 A–D show the polymer radial density profile. For each
cluster, the polymer density within the cluster decreases with
increasing salt, consistent with the behavior of the density on the
coacervate branch of the phase diagram observed in experiments
and predicted by theories. Thus, the structure of the interior of
these clusters is similar to the bulk coacervate phase. Interestingly,
the polymer density in the interior of the clusters deceases
with increasing cluster size, as shown in the comparison in
Fig. 5 A–D, where the four figures share the same ordinate coor-
dinate (y axis); this is seen more clearly in SI Appendix, Fig. S7.
The higher density for smaller clusters is due to the effect
of the interfacial tension, which results in increased Laplace
pressure inside the cluster with decreasing cluster radius R
according to ΔPL = 2γ/R, where γ is the surface tension. In
addition, visual inspection of the cluster morphology shows
that the smaller clusters tend to be more rounded, implying a
higher interfacial tension. Indeed, by examining the decay of
the density profile in Fig. 5 A–D, we can see that the larger
clusters have larger interfacial width. All these observations
are consistent with theoretical predictions from a recent
study (108).

We next examine the salt partition inside and outside the
clusters. Fig. 5 E–H shows the density profile ρi of the small

ions (counterion + salt), normalized by the ion density outside the
cluster ρIi . The salt is lower inside the cluster, suggesting a negative
tie line in the phase diagram, which is consistent with most
theories and experiments. Interestingly, the ion concentration
shows a peak just outside of the cluster at low salt concentrations
(salt-free and Cs = 0.05M ); this feature is in agreement with the
theoretical prediction in ref. 108.

In conclusion, by focusing on the elementary process of
the complexation between a polycation and a polyanion
and the subsequent fusion of two polyion pairs, we have
elucidated the driving force and pathway in polyelectrolyte
complex coacervation in symmetric polyelectrolyte mixtures.
By accounting for the electrostatic entropy, which is implicit
in the coarse-grained models, we resolve an apparent discrepancy
between experiments and previous coarse-grained simulations
regarding the thermodynamic driving force. Our analysis shows
that both the polycation–polyanion complexation and the pair–
pair condensation are driven almost entirely by entropy, in
agreement with experimental results. For fully charged PE with
moderately long chain lengths, we estimate that under most
conditions away from the critical point, the concentration of
uncomplexed polyions is vanishingly small; the supernatant
phase consists predominantly of polyion pairs. From the PMF
between two polyion pairs, we are able to estimate the spinodal
concentration of the supernatant phase. Finally, we show there
exists a weak attraction between two macromolecular neutral
polyion-pair globules prior to contact due to mutually induced
polarization; this action-at-a-distance provides the initial driving
force for the fusion of the polyion pairs, eventually leading to the
formation of macroscopic coacervate phase.

While the prevailing view in the polyelectrolyte community
holds that counterion release is the primary entropic contri-
bution to the thermodynamic driving force for polyelectrolyte
coacervation (61–63, 72, 76), our results show that a significant
entropic component in the free energy change comes from the
temperature dependence in the dielectric constant of water,
and this electrostatic entropy is the main contribution to the
overall entropy change in the regime of weak to intermediate
electrostatic strength. More generally, our results emphasize that
coarse-grained effective potentials inherently include entropic
contributions (109) due to solvent reorganization, and care must
be taken when interpreting experimental thermodynamic data
using coarse-grained simulations.

We end our discussion with a few remarks on the limitations
of the simulation model used here (and in many other coarse-
grained simulations of electrolyte and polyelectrolyte systems).
The treatment of ion–ion interactions using a uniform bulk
dielectric constant has two clear drawbacks. First, it does not
capture the discrete nature of the solvent molecules at short ion–
ion separations. Second, high polymer and salt concentration will
result in changes in the local dielectric permittivity. The first effect
would require a model with explicit solvent, while the second
would require a better description of the local polarization due
to polymer or ion enrichment. Although computational methods
for including both effects exist (110–112) (in addition to fully
atomistic models), accounting for these effects in the context of
polyelectrolyte complex coacervation is computationally demand-
ing and is beyond the scope of our work. A closely related effect
is the change in the local hydration structure of the ions due to
high temperature and strong binding by multivalent ions (75,
113–120), which can result in substantial entropy changes related
to water release (121). Such an effect cannot be described with
a simple dielectric continuum treatment. However, within the
framework of the primitive model for electrolytes/polyelectrolytes,
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Fig. 5. (A–D) Radial monomer density profile for neutral polyion clusters with varying sizes at different salt concentrations. (E–H) Corresponding small-ion
density profile for each cluster.

it is possible to capture many of the structural features of polyelec-
trolyte complex coacervation due to divalent ions (122–124) by
introducing a phenomenological binding energy (125). Despite
these considerations, we note that the implicit-solvent, dielectric
continuum description of charged systems has been very successful
in modeling a wide range of systems involving electrolyte and
polyelectrolyte solutions even at fairly high salt concentrations
(126). In view of the overall agreement between our simulation
results and experimental findings, we expect that for weak-to-
moderate electrostatic strengths with monovalent salt ions at
room temperature, these additional effects will modify but not
fundamentally alter the main results of this work.

Materials and Methods

The monomers and small ions in our simulation are represented as beads inter-
acting with the shifted-truncated Lennard-Jones potential of the form Uij

WCA(rij) =

4εij[(
σij
rij
)12 − (

σij
rij
)6 + 1

4 ]with a cutoff distance rcut = 21/6σij. We setσij = σ

and εij = kBT . Neighboring beads along the polymer chains are subjected to
the FENE potential given by Uij

FENE(rij) =
1
2 KbondR2

0 ln[1 − (
rij
R0
)2], with Kbond =

30kBT/σ2 and R0 = 1.5σ. All the beads have the same mass m and size σ. This
setup reproduces a good solvent condition for neutral polymers. With kBT being
the energy scale in these potentials, these nonelectrostatic interactions should
be considered as entropic in nature. However, since they contribute minimally to
the PMF (SI Appendix, Fig. S1), the precise designation of these nonelectrostatic
interaction energies is immaterial.

The polyelectrolytes are linear chains with every monomer carrying a unit
charge +e or −e. Each charged polymer bead has a corresponding counterion
bead carrying the opposite unit charge. Salt ions are modeled as monovalent
beads having the same identity as the counterions. The long-range electrostatic
interaction is given by Eij

el = kBT
lBqi qj

rij
, where the Bjerrum length is given by

lB = e2/(4πεkBT). For water at T = 298.15 K, lB ≈ 0.7 nm. This value is roughly
the diameter of common hydrated monovalent ions in water (127). Therefore, we
setσ = lB in our simulation. The average equilibrium bond length is l ≈ 0.97σ;
thus, the electrostatic strength ξ = lB/l ≈ 1.03. At this ξ, without considering

the electrostatic entropy, the complexation of two oppositely charged PEs was
reported to be energy driven in previous simulations (76, 78).

All our simulations are performed in the canonical ensemble with a Langevin
thermostat using the LAMMPS (Large-scale Atomic/Molecular Massively Parallel
Simulator) platform. The simulation time scale is given by τ =

√
mσ2/kBT =

1. The positions and velocities of the beads are updated with an integration
time step Δt = 0.01τ . For the PMF calculation of the two-chain systems, the
simulation box is set to 130σ × 130σ × 130σ. This is the same setup as that
in refs. 76 and 78. For the two-pair systems, the simulation box is 45σ × 45σ ×
45σ. Note that each polycation–polyanion pair exists as a neutral globule, which
allows us to use a smaller box size to study the pair–pair condensation PMF. Each
structural unit (a polyelectrolyte chain or polyion pair) is equilibrated for 105τ
(107 time steps) before performing the PMF calculations. The PMF calculations
are carried out by the adaptive bias force algorithm (128, 129) implemented
in LAMMPS (130). The coordinate of the PMF is taken to be the center-of-mass
distance between the two structural units (chains or pairs). The distance range
r is 0σ ∼ 65σ for the two-chain case and 0σ ∼ 25σ for the two-pair case. To
improve the efficiency of the PMF calculations (129), the distance range is divided
into 10 consecutive windows. Each window is further divided into bins with equal
width 0.5σ for the two-chain case and 0.2σ for the two-pair system. For each
window, we perform the simulation for 2 × 106τ to get convergence. To avoid
nonequilibrium effects, we use the scheme documented by Miao et al. (131) to
set the sampling time prior to applying the adaptive bias force in each bin. The
PMF is calculated on the fly by integrating the biased force between neighboring
bins. The PMF in most windows reaches convergence before 2 × 105τ , after
which the relative free energy change in each window is less than 1% for an
additional time duration of 105τ .

Data, Materials, and Software Availability. All study data are included in the
article and/or SI Appendix.

ACKNOWLEDGMENTS. This research is supported by funding from Hong Kong
Quantum AI Lab Ltd. We thank the general computation time allocated by the
resources of the Center for Functional Nanomaterials, which is a US Department
of Energy Office of Science User Facility, at Brookhaven National Laboratory
under Contract DE-SC0012704. We thank Prof. M. Muthukumar for bringing our
attention to his forthcoming book.

PNAS 2022 Vol. 119 No. 36 e2209975119 https://doi.org/10.1073/pnas.2209975119 7 of 9

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2209975119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2209975119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2209975119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2209975119/-/DCSupplemental
https://doi.org/10.1073/pnas.2209975119


1. F. W. Tiebackx, Gleichzeitige Ausflockung zweier Kolloide. Z. Chem. Ind. Koll. 8, 198–201 (1911).
2. B. de Jong, H. R. Kruyt, Coacervation. Proc. R. Acad. Amsterdam 32, 849–856 (1929).
3. C. P. Brangwynne, P. Tompa, R. V. Pappu, Polymer physics of intracellular phase transitions. Nat. Phys.

11, 899–904 (2015).
4. T. J. Nott et al., Phase transition of a disordered nuage protein generates environmentally responsive

membraneless organelles. Mol. Cell 57, 936–947 (2015).
5. S. Alberti, A. Gladfelter, T. Mittag, Considerations and challenges in studying liquid-liquid phase

separation and biomolecular condensates. Cell 176, 419–434 (2019).
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