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Abstract: The cell membrane is a complex and highly regulated system that is composed of lipid
bilayer and proteins. One of the main functions of the cell membrane is the regulation of cell
entry. Cell-penetrating peptides (CPPs) are defined as peptides that can cross the plasma membrane
and deliver their cargo inside the cell. The uptake of a peptide is determined by its sequence and
biophysicochemical properties. At the same time, the uptake mechanism and efficiency are shown to
be dependent on local peptide concentration, cell membrane lipid composition, characteristics of the
cargo, and experimental methodology, suggesting that a highly efficient CPP in one system might
not be as productive in another. To better understand the dependence of CPPs on the experimental
system, we present a review of the in vitro assays that have been employed in the literature to evaluate
CPPs and CPP-cargos. Our comprehensive review suggests that utilization of orthogonal assays will
be more effective for deciphering the true ability of CPPs to translocate through the membrane and
enter the cell cytoplasm.

Keywords: cell-penetrating peptides (CPPs); in vitro assays; penetration; internalization;
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1. Introduction

The cell membrane is an asymmetric phospholipid bilayer with aminophospholipids mostly at
the inner (cytoplasmic) leaflet and cholinephospholipids preferentially at outer (exoplasmic) side [1,2].
Proteins that are embedded in the lipid bilayer can facilitate signal transduction or function as
transporters, enzymes, or joining proteins. The key function of the cell membrane is to create
a physiological barrier allowing compartmentalization and to tightly regulate cell entry. As a result,
exogenous compounds including therapeutic peptides, antibodies, siRNA, and nanoparticles cannot
easily access the inside of the cell that harbors 60–70% of the human proteome [3]. To overcome
this challenge, cell-penetrating peptides (CPPs) are exploited as versatile delivery vehicles to cross
cell membrane.

CPPs are cationic, amphipathic, or hydrophobic peptides of 5–39 amino acid in length [4,5].
The most widely studied CPPs are truncated version (Tat48–60 and Tat49–57) of trans-activator of
transcription (Tat) protein from HIV-1 [6–9] and penetratin (16 residues) from the homeodomain of
Drosophila antennapedia [10–12]. Energy-independent direct translocation and energy-dependent
endocytosis are generally accepted as the main internalization mechanisms of CPPs [13–15].
Nevertheless, the mechanisms of CPP-cargo cell entry have remained controversial. One point
of view is that the same CPP can employ multiple cell entry mechanisms depending on the peptide
local concentration, avidity, cell membrane lipid composition, and cell type [16–18]. However,
alterations in physiochemical properties of a peptide, even as slight as conjugation to a dye, has been
shown to influence the mechanisms and efficiency of the uptake [19]. This has led to the second point
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of view that CPP and cargo are one unit where the physiochemical properties of the CPP, the cargo
(fluorescence dye or any functional moiety), and their combination can influence delivery pathways
and their final destination.

Among over ten thousand CPPs described in the literature, only a few Tat-based therapeutic
peptides have reached the advanced stages of clinical trials [8,9,20]. Utilization of CPPs as “trojan horses”
has been limited due to their entrapment in the endosomes upon cell entry [21–23]. This limitation
promoted a tremendous effort to optimize the potency of CPP-cargos and the discovery of new
CPPs with greater innate and specific delivery performance inside the cell [23–26]. However,
difficulties in discriminating cytoplasmic uptake from endosomally trapped molecules have hampered
the identification of true CPPs for therapeutic purposes. These difficulties have also limited our
understanding of the physiochemical parameters that determine final intercellular localization of
CPP-cargos. Therefore, extensive attempts have been made to develop cell- and lipid vesicle-based
assays that can determine cell entry and cytoplasmic localization. These assays that include intracellular
fluorescence detection by microscopy and/or flow cytometry, transcriptional reporter system, and mass
spectrometry are discussed in this review [4]. Critical factors in assay development, such as material
generation and sensitivity of detection should be also taken into careful consideration. In this review,
in vitro cell-based assays and an in-depth review of recent strategies to utilize lipid vesicles for study
of CPPs are discussed. Advantages and limitations of each approach are also summarized. Table 1
presents an overview of CPPs mentioned in this review paper.

Table 1. List of CPPs used in various assays.

CPP Sequence Length MW PI Charge at pH 7 Ref.

Penetratin RQIKIWFQNRRMKWKK 16 2246.76 12.8 6.94 [27–36]

Tat (48–60) GRKKRRQRRRPQ 12 1621.92 13.18 7.94 [23,28,29,36–42]
Tat (49–57) RKKRRQRRR 9 1339.62 13.18 7.94

Transportan GWTLNSAGYLLGKINLKALAALAKKIL 27 2841.48 10.7 3.94 [28,36]

MAP
(KLAL) KLALKLALKALKAALKLA 18 1877.47 11.14 4.94 [28,36]

R8K RRMKWKKK 8 1160.5 12.52 5.94 [30]

8K KKKKKKKK 8 1043.41 11.39 7.94 [38]

8R RRRRRRRR 8 1267.52 13.33 7.94 [43]

9R RRRRRRRRR 9 1423.7 13.38 8.94 [29,36,42,44,45]

Ypep YTFGLKTSFNVQ 12 1404.59 9.19 0.94 [46]

MPG GALFLGFLGAAGSTMGAWSQPKKKRKV 27 2807.36 11.85 4.94 [47,48]

Pep-1 KETWWETWWTEWSQPKKKRKV 21 2848.26 10.36 2.94 [48]

Pβ GALFLGFLGAAGSTMGAWSQPKKKRKV 27 2807.36 11.85 4.94 [48]

TP2 PLIYLRLLRGQWC 13 1630.01 9.48 1.88 [49]

TP10 AGYLLGKINLKALAALAKKIL 21 2182.76 10.7 3.94 [36,45]

2. Cell-Based In Vitro Assays

Cellular internalization of the CPP can be detected using three strategies where (1) CPP is
conjugated to a tag or a functional moiety, (2) mammalian cells are engineered to express a specific
protein that is used to detect cytoplasmically localized CPP, or (3) the combination of first and second
approaches is utilized. In this section, intracellular detection of fluorescence by microscopy and
flow cytometry, protein complementation, phenotypic alteration induced by a functional group, and
transcriptional reporter system are discussed. Gene delivery approaches are also examined to highlight
the recent advancement in assay development. The main focus of all these assays is to distinguish
CPPs that enter cytoplasmic domain of the cell from the ones that are entrapped in the endosomes.

2.1. CPPs as Vehicles of Biotin or Fluorescent Entities

Laser scanning confocal fluorescence microscopy and flow cytometry have been heavily used
to quantify cellular uptake of fluorochrome or biotin conjugated CPPs [50–53]. Fluorescent tags
and biotin can be conjugated by the standard N-hydroxysuccinimide (NHS), isothiocyanate, or click
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chemistry to peptides [54–56]. One limitation of direct conjugation such as NHS is the inability to
control distribution and quantity of dyes on a single peptide. Thus, the high intensity of fluorescence
inside the cell may be misleading and might be due to low concentration of CPP with high amount
of conjugated dye. To improve this, site-specific labeling methods were developed. For example,
phage coat protein such as PIII or PVIII, was engineered to display a sequence containing LPETG,
a recognition motif for prokaryotic enzyme Sortase. Sortase cleaves after a Thr residue and forms
an intermediate with the phage, which is resolved upon covalent bond formation with α-amine
of a fluorophore labeled poly-glycine peptide. As the result, a site-specific fluorophore labeling is
achieved [57]. Such site-specific labeling techniques can be employed in CPP studies to improve
intracellular uptake quantification.

Assays that use dye-labeled peptides with quenching models were revised to reduce non-specific
interaction. For example, highly fluorescent 7-nitrobenz-2-oxo-1,3-diazol (NBD) fluorophore was
used to label CPPs such as penetratin. NBD is irreversibly inactivated in to nonfluorescent
7-amino-2,1,3-benzoxadiazol-4-yl in the presence of dithionite [58]. Internalization of NBD-penetratin
was tested in human leukemia K562 cells at either 37 ◦C or 4 ◦C, followed by a treatment of dithionite
at 4 ◦C. Any portion of the CPP that was not internalized (extracellular and membrane bound) was
inactivated upon addition of the cell impermeable dithionite at 4 ◦C, hence fluorescence was only
due to the internalized peptide [27]. In a different study, Hallbrink and colleagues labeled the CPP
with a fluorescence quencher 3-nitrotyrosine (CPP-nitroY-C) and coupled it to a non-penetrating
cargo (LKANL) bearing the 2-amino benzoic acid (Abz) fluorophore (Abz-C-LKANL) via a disulfide
bond. Penetratin, transportan, Tat, or MAP (KLAL) were used as CPPs. The cellular uptake of
Abz-C-LKANL was indicated as an increase in fluorescence intensity when the disulfide bond in
the construct (CPP-quencher-S-S-cargo fluorophore) was reduced in the intracellular domain due
to the reducing environment [28]. The internalization assay was performed in 96-well plates with
application of peptide complex at concentrations ranging 0.1–10 µM in Bowes human melanoma
cells. Dithiothreitol (DTT) was added to the wells to reduce external peptide-cargo and the overall
fluorescence intensity was used as the max value. The internalized CPP-S-S-cargo was measured
proportionally as fractions to the total amount of constructs added. Fluorophore-quencher pair such as
TAMRA-QSY7 [59] has also been employed to monitor polypeptides entry into endosomal vesicles
where activated fluorescence, caused by dequenching, was measured. Considering the low pH and
reducing environment of the endosomal and lysosomal vesicles and the fact that fluorescence intensity
was measured by a spectrometer in these studies, final destination of CPP-cargo remains undefined
and additional work is needed to verify endosomal escape of CPPs.

The use of fluorescent tags, although the primary method to detect peptide and peptide-cargo
inside the cells, has many limitations. Direct dye-attachment may create artifacts due to degradation
and self-quenching in low pH environment such as endocytic vesicles [17]. The fluorescent dyes
and biotin, conjugated to CPPs, do not share similar properties as therapeutic cargos. Therefore,
effectiveness of CPPs as vehicles of therapeutic cargos remains somewhat unclear [60]. Detection
of the internalized CPPs by confocal imaging has its own limitations. First, certain methods of cell
fixation might cause artificial signal or re-localization/redistribution of the fluorescent dye [61], if
immunostaining is conducted on fixed cells. Second, the microscopic detection is strongly dependent
on the accessibility of antibody to the target and/or streptavidin to biotin inside the cell. Measurements
of fluorescent intensity might be influenced by the use of automatic or manual intensity scaling,
causing a misleading signal of uptake. The drawbacks of cell fixation and antibody accessibility can be
overcome by using live cell imaging to detect and monitor the uptake of the fluorescence tagged CPP.
In order to differentiate cytosolic entry of CPP-cargo, fluorescent cell-permeable trackers are needed to
outline the cytosolic domain from other organelles. This approach requires a careful evaluation to
avoid nonspecific background signals, physiological artifacts, cytotoxicity, and most importantly, any
interference between the cell-permeable trackers and CPP-cargo entry.
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Continuous innovation in the field of protein chemistry can have a positive impact in the
CPP-related research. Fluorescent proteins with photoswitching behavior in acidic compartments
compared to the cytosol have been used to study autophagic flux and endocytosis in transfected
mammalian cells. Ratiometric response induced by the pH sensitive fluorescent proteins can be
measured in different cellular compartments by fluorescent microscopy and/or flow cytometry.
For example, pH-stable enhanced GFP (eGFP) was fused to a pH-sensitive RFP [62,63] to detect
protein levels in various cellular compartments. Similarly, fusion of a pH-stable cyan fluorescent
protein (FP) variant mTurquoise2 to a highly pH-sensitive enhanced yellow fluorescent protein eYFP
(pH-lemon) [64] had enabled protein quantification in different compartments. In acidic cellular
compartments such as endosomes and lysosomes, yellow fluorescence would be reduced while the
cyan fluorescence would be enhanced due to the reduced Forster resonance energy transfer (FRET)
efficiency. Thus far, the pH sensitive probes have not been employed as cargos of CPPs and their
function in the context of CPP is yet to be determined.

2.2. CPPs as Vehicles of Split Protein for Fragment Complementation

Few functional proteins can be dissected into two inactive fragments. These conditional
split-protein assembly was developed with ubiquitin, dihydrofolate reductase (DHFR), β-lactamase,
TEV protease, chorismite, thymidine kinase, firefly luciferase, and green fluorescence protein (GFP) [65].
Fluorescence or luminescence complementation is the most common strategy to reconstitute a functional
protein upon spatial proximity of the two split parts.

GFP and its variants such as eYFP have been extensively optimized to enhance solubility,
reconstitution efficiency, and to reduce background signals [66,67]. In the natural state, the proteins
are assembled into a barrel shaped structure composed of 11 strands of β-sheets that allows peptidyl
backbone cyclization and formation of a fluorescence chromophore. GFP can be split between
strand seventh and eighth [68] or strand tenth and eleventh [67,69,70]. Similarly, eYFP can be split
between the seventh and the eighth [71,72], eighth and the ninth [73,74], or tenth and the eleventh
β-sheet strands [75,76]. Co-incubation of the two fragments of GFP in trans results in efficient
reconstitution of GFP chromophore bond and restores GFP fluorescence. Smaller complementary
fragments, such as strand 11 (s11) of the GFP have been used as cargos of CPPs while the larger
fragments were engineered for cytoplasmic expression in mammalian cells (Figure 1A). The split
assembly ensures that complementation occurs only when the CPP-GFPs11 enters the cytoplasmic area
to form the full length GFP molecule [77–79]. The split GFP assay offers several advantages; it confirms
true cytoplasmic localization through GFP complementation fluorescence; cytoplasmic entry can be
monitored in real-time and in a quantitative manner by flow cytometry, and it can easily be adapted to
a high-throughput assay format. Sensitivity of the assay can be influenced by the expression level
of GFPs1–10 fragment in the cytosol. As a result, signal threshold in individual cells caused by GFP
fluorescence depends on the number of CPP-cargo delivered inside the cells and the expression level
of GFPs1–10 fragment.
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Figure 1. Schematic of CPPs as vehicles of split protein and functional tags. Mammalian cells are 
engineered to express a specific protein in cytoplasmic domain. The cargo delivery is facilitated by 
CPP and detected in cytoplasmic by (A) Split-GFP complementation assay, (B) BirA-based cytosolic 
delivery assay, (C) Chloroalkane penetration assay, and (D) NanoClick assay. Dibac: 
Dibenzoazacyclooctyne; N3: azide-modification (click, click-reaction by Dibac and azide 
functionalized molecules). 

2.3. CPPs as Vehicles of Functional Tags 
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that occurs solely in the cytoplasm. In this approach, substrate conversion and/or product formation 
should be easily detected. Utilization of multi-functional tags (SNAP-, CLIP- and ACP-tags) [80–82] 
that have been used for labeling soluble or cell surface proteins has been limited in CPP evaluation 
due to their large size and bulky structure. On the other hand, few known short tags that act as a 
specific enzyme substrate have poor efficiency. For example, serine in the 11-residue peptide “ybbR 
tag” (DSLEFIASKLA) was identified as a substrate for Sfp phosphopantetheinyl transferase [83] 
with only 17% labeling efficiency [84]. Characteristics of the tag, enzymatic efficacy, substrate 
specificity, and feasibility of labeling inside mammalian cells is consequential in this approach. This 
section will describe three technologies for evaluation of CPPs that have escaped endosomal 
entrapment. All technologies exploit an enzymatic reaction that occurs in the cytosol.  

Verdurmen and colleagues developed a biotin ligase-based assay to measure cytosolic delivery 
[85–87]. Biotin ligase (BirA) biotinylates lysine residue in the Avi-tag (GLNDIFEAQKIEWHE) [88]. 
Various cells lines, such as SKBR3, MCF7, HT29, and HEK293 were engineered to stably overexpress 
E. coli derived BirA in the cytosol [89] (Figure 1B). Avi- and HA-tagged CPPs carrying eGFP 
(Avi-HA-CPP-eGFP) were added to the BirA expressing cells. Cells were then lysed, and the 
cytosolic delivery was quantified by western blots using fluorescently labeled streptavidin relative 
to the uptake of the HA tag. The design was improved by Hoffmann and co-workers with an 
additional step of adding sodium pyrophosphate (PPi) to stop the BirA reaction prior to cell lysis 
and streptavidin capture. The platform was applied in discovery of novel CPPs from a random 
peptide library displayed on T7 phage [90]. The cytoplasmic biotinylation differentiated CPPs from 
the peptides that did not internalize or were trapped in the endosomes. As a result of ten 
independent selection campaigns using different cell lines, thousands of CPPs were identified. These 

Figure 1. Schematic of CPPs as vehicles of split protein and functional tags. Mammalian cells are
engineered to express a specific protein in cytoplasmic domain. The cargo delivery is facilitated by CPP
and detected in cytoplasmic by (A) Split-GFP complementation assay, (B) BirA-based cytosolic delivery
assay, (C) Chloroalkane penetration assay, and (D) NanoClick assay. Dibac: Dibenzoazacyclooctyne;
N3: azide-modification (click, click-reaction by Dibac and azide functionalized molecules).

2.3. CPPs as Vehicles of Functional Tags

Cytosolic localization of a CPP can be validated if its cargo undergoes an enzymatic reaction
that occurs solely in the cytoplasm. In this approach, substrate conversion and/or product formation
should be easily detected. Utilization of multi-functional tags (SNAP-, CLIP- and ACP-tags) [80–82]
that have been used for labeling soluble or cell surface proteins has been limited in CPP evaluation
due to their large size and bulky structure. On the other hand, few known short tags that act as a
specific enzyme substrate have poor efficiency. For example, serine in the 11-residue peptide “ybbR
tag” (DSLEFIASKLA) was identified as a substrate for Sfp phosphopantetheinyl transferase [83] with
only 17% labeling efficiency [84]. Characteristics of the tag, enzymatic efficacy, substrate specificity,
and feasibility of labeling inside mammalian cells is consequential in this approach. This section
will describe three technologies for evaluation of CPPs that have escaped endosomal entrapment.
All technologies exploit an enzymatic reaction that occurs in the cytosol.

Verdurmen and colleagues developed a biotin ligase-based assay to measure cytosolic
delivery [85–87]. Biotin ligase (BirA) biotinylates lysine residue in the Avi-tag
(GLNDIFEAQKIEWHE) [88]. Various cells lines, such as SKBR3, MCF7, HT29, and HEK293 were
engineered to stably overexpress E. coli derived BirA in the cytosol [89] (Figure 1B). Avi- and HA-tagged
CPPs carrying eGFP (Avi-HA-CPP-eGFP) were added to the BirA expressing cells. Cells were then lysed,
and the cytosolic delivery was quantified by western blots using fluorescently labeled streptavidin
relative to the uptake of the HA tag. The design was improved by Hoffmann and co-workers with an
additional step of adding sodium pyrophosphate (PPi) to stop the BirA reaction prior to cell lysis and
streptavidin capture. The platform was applied in discovery of novel CPPs from a random peptide
library displayed on T7 phage [90]. The cytoplasmic biotinylation differentiated CPPs from the peptides
that did not internalize or were trapped in the endosomes. As a result of ten independent selection
campaigns using different cell lines, thousands of CPPs were identified. These novel CPPs were
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evaluated in cell-based screening assays such as GFP complementation assay. Hits were optimized for
potency and half-life extension [90].

The second technology utilizes HaloTag to interrogate cytosolic localization in chloroalkane
penetration assay (CAPA) [29,91]. Halo-tag in the cytosol of cells can be covalently conjugated to any
chloroalkane conjugated CPPs, if the CPP-cargo has found its way to the cytosol [92–94]. This is followed
by the addition of a chloroalkane-dye for binding to the unreacted free HaloTag. The dye intensity
reversely correlates to the cytosolic CPP levels and could be quantified by flow cytometry (Figure 1C).
Chloroalkane tagged Tat, penetratin and nona-arginine (9R) showed concentration-dependent cytosolic
localization after 4 hours with CP50 values at 3.1, 0.82, and 0.3 µM, respectively. CP50 was defined
as the concentration at which 50% cell penetration was observed under assay conditions. The CP50

values were comparable to values obtained for the same CPPs in the assay where MALDI-MS was
used to detect internalized peptides [50].

The third strategy, NanoClick, was developed by combining the HaloTag technology and in-cell
copper-free Click chemistry. The cytosolic uptake of azide-tagged CPPs was monitored quantitively
by a NanoBRET signal in cells [95]. In this assay, Dibenzoazacyclooctyne-chloroalkane (DiBac-CA)
was applied to cells expressing NanoLuc-HaloTag in the cytoplasmic domain. This was followed by
application of azide-modified CPPs to anchor the intracellular HaloTag. Subsequent introduction
of azido-dye and NanoLuc substrate to cells allowed the detection of a BRET signal that reversely
correlated with the concentration of the azide-CPP in the cytosol (Figure 1D).

All strategies are great approaches to detect CPPs that are localized to cell cytoplasm.
Special attention should be paid to ensure that internalization and cytoplasmic localization are
due to the CPP and not the tag, as tags may also lead to potential artifact due to degradation. Different
linkers, connecting CPP to its cargo, may also have an effect on the molecule penetration. Both assays,
mentioned above, require cell line engineering to overexpress enzymatic proteins in the cytosol. Hence,
the sensitivity of the assays might be limited by protein expression level. Moreover, transfection might
be challenging for some cell lines of interest, such as primary cells.

2.4. CPPs as Vehicles of Functional Groups to Enable Phenotypic Readouts

Various functional peptides or proteins that could attenuate protein-protein or enzyme-substrate
interactions were fused to the classical CPPs, particularly Tat and penetratin, to evaluate their
potential as vehicles for intracellular delivery [96]. The phenotypic changes induced by CPP-cargo
internalization can be categorized as gene activation or blocking, cellular cytotoxicity or protection,
or simply fluorescence/luminescence emission. Nearly three decades ago, Fawell and co-workers
chemically cross-linked Tat peptides to cell-impermeable entities such as β-galactosidase, horseradish
peroxidase (HRP), RNase A, and domain III of Pseudomonas exotoxin A (PE). The intracellular uptake
of Tat-facilitated β-galactosidase and HRP were measured colorimetrically by histological staining,
and the uptake of Tat-RNase A and -PE were evaluated by the induced cytotoxicity in HeLa cells [97].
In this section, we discuss a selected number of functional groups that can be used as a cargo to allow
specific readouts in the cell-based assays. Smaller size cargos are discussed first.

Apoptosis induced by the cargo is the most commonly used readout to evaluate CPPs. A synthetic
14-amino acid pro-apoptotic peptide KLAKLAKKLAKLAK (KLAKLAK)2 was shown to disrupt the
mitochondria membrane at 10 µM and cause cytotoxicity. This cationic peptide was fused to peptide
CNGRC or RGD-4C (ACDCRGDCFC) to facilitate tumor cell entry [98,99]. A similar approach was
carried out by Chen and collaborators, where two octa-peptides, PVKRRLDL and PVKRRLFG derived
from E2F1 cell-cycle regulatory transcription factor family, were fused to Tat or penetratin. Both
peptides were shown to block phosphorylation of E2F by cyclin/cdk2. Internalization of the peptides,
facilitated by fusion to Tat or penetratin, resulted in deregulation of E2F, inhibition of cdk2, and cellular
cytotoxicity in U2OS osteosarcoma and MDA-MB-435 cancer cells [37].

Inhibition of intracellular phosphorylation, as the result of CPP-cargo cell entry has served
as a frequent readout. The eleven residue STAT1 binding peptide derived from measles virus V
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protein (MV-V) with the sequence YHVYDHSGEAV (MV-V110-120) was reported by Caignard and
co-workers. The peptide was fused to Tat and octa-lysine (8K) for intracellular delivery to inhibit
STAT1 phosphorylation [38]. When localized to cytoplasm of target cells, both Tat-MV-V110–120

and 8K-MV-V110–120 were able to block type I interferons signaling pathway by approximately 40%.
Peptide-based STAT3 inhibitors are also reported [100,101]. The inhibitory phospho-peptides (PYLKTK
and YLPQTV, phosphorylation on Y) bind to the SH2 domain of STAT3 and block dimerization, however,
low potency (mM concentration) have limited their further use. Kim and colleagues identified a new
STAT3 binding peptide with the sequence HGFQWPG(SWTWENGKWTWK)GAYQFLK. Fusion of this
peptide to the N-terminus of 9R [44] resulted in reduced STAT3 phosphorylation in a DNA-binding
assay and suppressed cell viability and proliferation in cancer cells. Alternatively, it was shown that cells
could be rescued from apoptosis by CPP fusion to survival peptides. For example, C-Jun N-terminal
kinase (JNK) binding peptide (RPKRPTTLNLFPQVPRSQDT) when fused to Tat, referred as D-JNK-1,
protected βTC-3 cells from stress-induced apoptosis [39]. D-JNK-1 blocked the phosphorylation of
c-Jun activation domain in the cytoplasm, prevented the formation of transcription complexes, and
inhibited cell death in β- and hair-cells [39,40].

An enzymatic assay was developed to assess cytosolic entry of ubiquitin-PEP-Alexa Fluor
594 conjugated to the C-terminus of Tat. Cytoplasmic deubiquitinating enzymes (DUBs) act on
Tat-ubiquitin-PEP-Alexa 594 to release PEP-Alexa 594, which can be detected by fluorescent microscopy
and by the reduction in size in SDS-PAGE [41]. Limitations include low throughput assay format and
the need for a secondary detection step such as western blot.

Engineered bacteriophage has been used as cargos of CPPs, in which an Avi-tag was displayed
on PIX coat protein of phage. Ypep peptide (YTFGLKTSFNVQ) was displayed on PIII protein to
facilitate cell penetration [46]. In vitro biotinylation by BirA generated a biotin tagged phage on PIX
protein allowing streptavidin conjugated HRP to bind to phage. The whole complex was introduced to
PC-3 human prostate cancer cells for intracellular delivery and the uptake of Ypep-phage-HRP was
detected colorimetrically by incubating cells with the substrate TMB (3,3′,5,5′-tetramethylbenzidine).
No significant cell cytotoxicity was observed in the group of Ypep-phage-HRP (5 × 1010 pfu/mL).
Subsequently, cells were treated with indole-3-acetic acid (IAA). IAA interacted with HRP to induce
cell death only in cells that were first treated with Ypep-phage-HRP. In this approach, phage
served as a nanocarriers for exogenous protein delivery with the advantages of easy manipulation
and amplification.

Development of functional moieties that allow phenotypic readouts due to CPP cell entry
has been a challenging task. First, utilization of a functional group might alter biophysical and
chemical properties of CPP-cargo or mask the function of the CPP. Depending on the functional
group used, cellular assays need to be optimized and different cell types need to be engineered.
Moreover, the efficacy of the assay is shown to be highly dependent on the function and sensitivity
of the particular peptide/protein. Functional peptides normally require a µM–mM concentration for
detectable alteration [102], making material generation a challenge.

2.5. CPPs as Vehicles of Translocation Cassettes Activators

Gene-based reporter assays have been developed to monitor both cell entry and nuclear
translocation. Cre recombinase was fused to Tat peptide and introduced to loxP-STOP-loxP-eGFP
expressing cells. In the event of cell penetration and nucleus translocation of Tat-Cre, the STOP DNA
segment would be excised, leading to eGFP expression [23]. Yu and colleagues developed a luciferase
based transcriptional reporter assay to monitor relative cell permeability of CPPs in 96-well plates.
OxDex-activated ester, an agonist of the glucocorticoid receptor (GR) was conjugated to the N terminus
of the CPP (OxDex-CPP). A cell line such as HeLa was co-transfected with two plasmids; one for
encoding a fusion protein comprised of Gal4 DNA-binding and dimerization domains (DBD) and
a VP16 transactivation domain (Gal4DBD-GRLBD-VP16), and the second plasmid for encoding a
Gal4-driven firefly luciferase gene. In the event of OxDex-CPP conjugates entering the intracellular
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domain, OxDex would bind to GRLBD and release the Gal4DBD-GRLBD-VP16 complex from heat
shock protein 90 (Hsp90). As a result, fusion protein translocates to nucleus, binds to Gal4 binding
site in the firefly luciferase gene and activates it. Subsequently, the expressed luciferase can be
quantified [103,104]. Holub and co-workers improved the assay sensitivity by optimizing the affinity
of GR variants to the steroid and replacing luciferase by eGFP for detection. As a result, two assays,
glucocorticoid-induced eGFP induction (GIGI) and glucocorticoid-induced eGFP translocation (GIGT)
were developed. In GIGI assay, eGFP expression is the readout and the amplified assay signal is
detected by flow cytometry. In GIGT assay, reporter expression is bypassed such that GR-eGFP fusion
protein in the cytosol would translocate to the nucleus upon binding to CPP-GR agonist. This assay
requires sophisticated imaging equipment [105].

2.6. CPPs as Vehicles for Gene Delivery and Expression

Gene delivery by CPPs has been an attractive alternative to viral gene delivery. In 2003, plasmid
DNA encoding luciferase or eGFP gene was linked to the Tat peptide via electrostatic interaction between
the negatively charged plasmid and positively charged Tat [106,107]. Electrostatic charge interaction
was also used to generate a complex between cationic CPPs and anionic siRNAs [108–110]. Readers
are referred to an excellent review that summarizes the use of CPPs for nucleic acid delivery [111].
Recently, CPPs have been used as a mean for cell-specific delivery of viral genes [112] and to
increase transduction efficiency. Both noncovalent binding (electrostatic interactions) and covalent
binding (genetic engineering and chemical conjugation) have been employed to produce CPP-viral
particles [113]. Traditional CPPs such as Tat, penetratin, and poly-arginine were the main CPPs used in
the discussed studies.

In a separate study, a bacteriophage displaying a CPP was used as a shuttle to deliver
an adeno-associated virus (AAV) gene. AAV, cloned within the single-stranded genome of the
bacteriophage [114–117], contained a mammalian transgene cassette encoding the cytomegalovirus
(CMV) promoter-driven transgene, such as GFP and luciferase, as well as a polyA region that was
flanked by inverted terminal repeats (ITRs) from AAV2 genome [116,117]. In the reported studies,
Arg-Gly-Asp (RGD-4C) peptide targeting αv integrin receptors on vascular endothelial cells was
displayed at N-terminus of phage PIII protein to facilitate AAV-phage cell entry. The incorporation
of the ITRs of the AAV into phage genome has been shown to allow superior transgene expression
in mammalian cell [118,119]. Depending on the inserted transgene, the phage genome size can be
expanded to 13 Kb or higher, limiting phage amplification and assembly.

2.7. Utilization of Oocytes to Access CPP Activity

Natural membranes of specialized cell types can offer valuable information about interaction of CPP
and CPP-cargo with the cell membrane. The oocytes of the African frog Xenopus laevis were reported to
express low level of ion channels and receptors [120]. The large size of Xenopus oocytes (diameter of up
to 1.3 mm) allows easy dissection and electrophysiological manipulations [120]. In one study, oocytes
were patch clamped under a two-electrode voltage-clamp to monitor changes in transmembrane
current upon pore formation by amphipathic CPPs. Application of three amphipathic CPPs, including
MPG, Pβ, and Pep-1, to the voltage-clamped oocytes resulted in increased transmembrane current that
resembled channel-formation. Hence, the authors suggested that transmembrane pore formation was
likely the mechanism for intracellular entry by the three peptides [47,48].

The large size of oocytes also allows microdissection and injection of various substances.
Oocytes can synthesize an exogenous protein when a foreign messenger RNA is injected into their
cytoplasm. Examples include neurotransmitter- and voltage-activated ion channels and G-protein
coupled receptors [120–122]. Therefore, oocytes could be used as a model for membrane protein
expression. Their simplified membrane system also allows the study of peptide-membrane interaction.
The simplified version of oocytes includes lipid vesicles, which is the focus of next section.



Int. J. Mol. Sci. 2020, 21, 4719 9 of 20

3. Lipid Vesicle-Based In Vitro Assays

The asymmetric lipid bilayers are patched with cholesterol and transmembrane proteins to provide
the dynamic structure and elasticity of the membrane [123,124]. Since the early 1960s, artificial lipid
membranes were used to study membrane lipid structure [125]. Today, they are broadly used to study
peptide-membrane interaction and lipid reorganization under the conditions lacking endocytosis.
General methods were developed to prepare different types of free-standing lipid vesicles [126].
These vesicles can vary in size and lamellar structure and can be synthesized as unilamellar,
oligolamellar, and multilamellar vesicles. Lipid classes and their molecule-membrane interactions has
been summarized in a 2017 publication by Rosilio. It is worth mentioning that, in most reported studies,
mixed lipid models represent a better simulation of the complex biological membranes of cells in
normal or diseased state [127]. The plasma membrane of eukaryotic cells are most frequently modeled
by mixed bilayers of neutral and charged lipids at different molar fractions. Examples of zwitterionic
and anionic lipids are dimyristoylphosphatidylcholine (DMPC) or palmitoyloleoylphosphatidylcholine
(POPC) and dimyristoylphosphatidylglycerol (DMPG) or palmitoyloleoylphosphatidylglycerol (POPG),
respectively. The molar fraction ratios between zwitterionic and anionic lipids has been varied (1:1,
9.5:0.5, 9:1, 8:2, 7.5:2.5, 3:1 mol/mol) depending on the experimental design. Lipids organize and
coexist in solid and fluid phases [128]. DMPC and DMPG are considered as gel phase or ordered lipid,
whereas POPC and POPG are referred to fluid phase or dis-ordered lipids [127]. Choice of ordered or
disordered lipids may reflect the difference in phospholipid bilayer thickness. For example thickness
of DMPC bilayer (carbonyl-to-carbonyl) is about 23 Å, whereas the POPC bilayer is 27 Å thick [129].

A considerable number of studies have been conducted with lipid vesicles to gain an insight
in the mechanism of membrane binding and penetration of CPPs into intracellular space. It should
be noted that key aspects of these studies (lipid components/architecture, CPP to lipid vesicle ratio,
CPP concentration, lipid concentration, buffer composition, temperature, and pH) should be matched
to physiological conditions to closely reflect biological systems. In addition to lipid composition,
peptide to lipid (P/L) ratio can have a significant impact on the outcome of a CPP study. In fact,
concentration-enhanced translocation has been reported for multiple CPPs in both cells and synthetic
vesicles [130]. The observed increased translocation rates due to increased P/L ratio might suggest
a translocation mechanism that is facilitated by peptide multimers and/or membrane perturbation,
or both. Fuselier and colleagues have reported that translocation of LRLLRWC peptide was significantly
reduced when P/L was varied from 1:100 to 1:500, whereas TP2 (PLIYLRLLRGQWC) showed an
opposite behavior. This suggested that TP2 translocation might be driven by monomers and could
be inhibited by lateral interactions in the membrane [49]. Utilization of lipid bilayers to study CPPs
has advantages and limitations. Parameters that define lipid vesicle formation can be well controlled
during experimental design, yet cell type specificity is difficult to achieve. CPPs and CPP-cargos might
cross the lipid membrane without bilayer disruption. However, the cargo size can be restrictive in the
absence of endocytosis.

3.1. Structural Change in CPPs upon Peptide/Lipid Interaction

Many tools and techniques have emerged to study peptide/membrane interactions, including
differential scanning calorimetry (DSC), plasmon waveguide resonance (PWR), NMR (solution and
solid) [33,131,132], X-ray scattering [132,133], isothermal titration calorimetry (ITC), circular dichroism
(CD), dual polarization interferometry (DPI) and mass spectrometry (MS) [18]. NMR and X-ray
crystallography are capable of providing the residue-specific information. DPI and CD are simpler
methods and can be used to measure absorption of optically active chiral molecules. Interaction of
penetratin and R8K-biotin (RRMKWKKK(Biotin)-NH2) with a lipid bilayer was monitored by DPI
to determine changes in mass per unit area and birefringence (an optical parameter representing
bilayer order) with high sensitivity [30]. Both peptides bound strongly to anionic DMPC/DMPG and
POPC/POPG, but not to neutral DMPC and POPC bilayers, indicating that electrostatic interaction
between a lipid bilayer and CPP was required. CD has been used to monitor structural alterations in



Int. J. Mol. Sci. 2020, 21, 4719 10 of 20

CPPs induced by the changes in environmental conditions (e.g., pH, temperature). CD spectra reflect the
quantity of peptide secondary structure (α-helices, β-sheets, β-turns) [134], hence can be used to reveal
functional plasticity of CPPs. For example, penetratin assumes a random coil configuration in solution.
However, its configuration was altered in the presence of negatively charged vesicles. Interestingly,
the extent of this alteration was dependent on the molar fraction of the charged lipids in the vesicles.
The spectra were α-helical in the presence of low fractions of anionic lipids or low peptide/lipid
ratios. On the other hand, it was suggested that penetratin assumes a β-sheet configuration in the
presence of high fractions of anionic lipids or high peptide/lipid ratios. Comparable α-β transition
was also observed if the composition of lipid vesicles were held constant and the concentration of
penetratin was increased [31–34]. CD spectroscopy was also used to examine how different fluorophores
influence the interaction of fluorophore-penetratin conjugates with membrane. The N-terminus of
penetratin was conjugated to six different fluorophores (CF, TAMRA, RhB, NBD, MCA, and PBA) [135]
and conformation of fluorophore-penetratin as well as nature of their interaction with membrane
(POPC/POPG, 80:20) was assessed by CD. Interestingly, fluorophore–penetratin conjugates assume
different conformations in solution compared to the unconjugated penetratin. Conjugation also
increased α-helicity of penetratin upon membrane interaction. The two hydrophobic conjugates,
RhB- and PBA-penetratin, caused a high membrane disturbance, indicated by calcein release from
phospholipid vesicles. It was suggested that the observed increased membrane permeabilization and
lipid removal in this study are mainly caused by fluorophore, raising a strong concern for fluorophore
conjugation to CPPs. The assays investigating the secondary structure change of CPPs upon interaction
with a lipid bilayer can be a valuable complementary approach to decipher mechanism of interaction
of CPPs with the cell membrane.

3.2. CPP Translocation in Dye-Leakage Assay

Fluorescence techniques in the context of synthetic phospholipid bilayer have been used to analyze
peptide interaction, translocation, and membrane perturbation. For this purpose, two strategies are
commonly employed: outside-in and inside-out. In the outside-in approach, fluorescence signal
induced by the dye labeled CPP is measured inside the vesicles. In the inside-out approach, dye is filled
inside the vesicle and its leakage is measured upon CPP entry. Drin and co-workers labeled N-terminus
of penetratin with a fluorescent NBD and used CD to monitor its conformation upon interaction with
a mixer of POPC/POPG (95:5) small unilamelllar vesicles (SUVs). Although peptide interaction with
the lipid bilayer was confirmed, spontaneous translocation of peptides was not observed, suggesting
that NBD-penetratin might interact with cell surface components other than the lipids [27]. In a
separate study, it was shown that penetratin could slowly translocate into a large unilamellar vesicle
(LUV) instead of SUVs, indicating that the translocation of penetratin is depended on the phospholipid
composition and requires a membrane potential [35]. A similar finding has shown that the fluorescence
labeled octa-arginine derivatives could penetrate into HEK293 cells, but strictly accumulate in the
vesicle membrane (POPC/POPG, 90:10) even at µM concentration. These studies have led the authors
to suggest that the negative membrane potential is necessary for the CPPs to translocate inside the
cell [43].

Enzymes were inserted in the lipid vesicles to improve assay specificity. Chymotrypsin (3uM) and
terbium (Tb3+) entrapped in LUVs (POPC/POPG, 90:10) were used to investigate entry of CPP linked
to an aminomethylcoumarin (AMC) conjugated tripeptide GQF (CPP-GQF-AMC). Upon entering,
chymotrypsin cleavage site between Phe-AMC should be cut to release the AMC group, enabling
its detection (excitation at 340 nm and emission at 440 nm for cleaved AMC) [136]. Addition of
dipicolinic acid (DPA) to the vesicle’s external environment would result in Tb3+/DPA complex
formation if Tb3+ was leaked due to membrane disruption. Peptides containing an LRLLR motif were
screened for spontaneous membrane translocation in the context of synthetic lipid bilayer composed of
POPC-LUVs-chymotrypsin [49,136]. In addition, a fluorophore-based assay was conducted to measure
vesicle permeabilization. POPC-LUVs was prepared with entrapped ANTS, a fluorophore, and its
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quencher DPX, referred to as ANTS/DPX-POPC-LUVs. The vesicles were incubated with CPPs and
any membrane leakage could be detected by ANTS fluorescence using a plate reader [49].

Translocation of CPPs that relies on high peptide concentrations possibly involves membrane
disruption [137]. The colorimetric assays developed to exhibit color changes upon interactions of
peptides and lipid membrane help the visualization of the membrane disruption. Phospholipids and
the chromatic lipid-mimetic polymerized polydiacetylene (PDA) were prepared as vesicles. Following
the addition of a CPP, the polymer could undergo concentration dependent blue-red transition if
any structural perturbation was induced, suggesting peptide-membrane interaction or membrane
disruption. Different degrees of color transition constitute an indication for peptides’ distinctive mode
of interaction with the lipid vesicle interface [138,139].

3.3. CPPs Translocation and Membrane Potentials

Eukaryotic cells maintain a net negative potential inside the plasma membrane. Membrane
potentials result from the transmembrane lipid asymmetry and can in turn govern the lateral segregation
of lipids in the membrane. It was suggested that the modification of membrane potentials could affect
CPP translocation [140,141].

In an attempt to create a negative charge inside the lumen, POPC-LUV vesicles were filled with 128
mM KCl and 128 mM NaCl was added to the external environment. A potassium-specific ionophore
was embedded in the vesicles to create a negative potential inside the membrane. It was shown that an
electrochemical potential could affect translocation of TP2 and its variants crossing the vesicle [49].
The dimension of GUVs resemble a cell and allows study of interaction of CPP with lipids including
binding, penetration through the vesicle, and translocation to the GUV lumen [45,142,143]. Lin and
colleagues reported that the membrane potential served as a driving force for the permeation of cationic
CPP, such as 9R and Tat. They applied fluorescently labeled CPPs to GUVs with POPC/POPS (80:20) to
monitor membrane crossing by fluorescence correlation spectroscopy (FCS). In addition, the researcher
created a tunable membrane potential via the addition of a lipophilic ruthenium (II) complexed with
Ru(C17)2

2+ to induce hyperpolarization in the GUV membrane. The membrane hyperpolarization
was driven by a chemical reaction and allowed photo-oxidation of potassium ferricyanide, Ru(C17)2

2+.
Ru(C17)2

2+ by itself was shown not to alter the membrane permeability. Addition of Ru(C17)2
2+ to the

GUVs enhanced 9R permeation from 55% to 78%, possibly due to higher affinity of arginine to the
phosphoserine head groups. Lipid vesicles do not bear negative membrane potentials. Therefore, the
authors suggested that the membrane potential could be the major cause of discrepancies when CPP
permeation is observed in the cellular versus synthetic vesicular [42].

3.4. CPPs Translocation in Plasma Membrane-Derived Vesicles

Giant plasma membrane vesicles (GPMVs), also called membrane blebs, are derived from the
parental cells’ plasma membrane and are used as the model system for native plasma membrane [144].
The lumen of GPMVs contains cytoplasm but is free of cellular organelles and cytoskeleton, therefore it
lacks energy fuels [145]. Readers are referred to a deep dive in GPMVs written by the Leventals [146].
The lipids of GPMVs were composed of phospholipid/cholesterol at a ratio of approximately 2:1 and
retained the sophisticated complexity of the plasma membrane [147]. Saalik and colleagues generated
GPMVs from RBL-2H3 and HeLa cells to study six known fluorescent labeled CPPs including Tat,
penetratin, 9R, MAP, transportan, and TP10 in the absence of endocytotic processes [36]. Dye-CPPs
were incubated with GMPVs and their penetration was quantified by flow cytometry and confocal
microscopy. The authors showed that all tested CPPs accumulated into the lumen of GPMVs at 25 ◦C
and lower temperatures. It should be noted that the preservation of membrane surface properties is the
key step in GPMVs preparation [146]. Liu and co-workers pointed out that the chemical vesiculants
(e.g., formaldehyde and dithiothreitol) and osmotic buffers that are required for vesicle formation
could disrupt membrane structure. They herein developed a high yield nanomaterial-assisted strategy
that used light irradiation to generate GPMVs in biocompatible medium such as Dulbecco's Modified
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Eagle's Medium [148]. Further optimization of GPMVs has expanded their application as an intact
membrane with lipid and protein complexity of mammalian plasma membrane. Artificial plasma
membranes are also used to study protein function. For example, sophisticated design of ion channels
were incorporated in lipid vesicles to develop sensing applications [149]. Moreover, computational
methods such as simulation of interaction of CPPs with artificial lipid bilayers have been utilized.
Molecular dynamics simulations can provide means to gain insight into the peptide/membrane
interactions and various energy-independent mechanisms. A more extensive review of the molecular
dynamics application for CPPs can be found in review written by Reid [150].

4. Concluding Remarks

Tremendous effort has been made for the discovery and characterization of novel CPPs for
efficient and specific cytoplasmic delivery. Fundamental understanding of the mechanism of cell entry,
endosomal escape, and interaction of CPPs with the cell membrane are critical for their advancement
in the clinic. Biological relevance of the cell lines used in the in vitro assays should be taken into
consideration to preserve in vitro–in vivo connectivity. In this review, we have summarized current
strategies that were utilized or could be employed in evaluating CPP-cargos. Since each technique
bears its limitations, exploiting orthogonal strategies is recommended to identify the most efficient
CPPs as vehicles for therapeutic cargo delivery.
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Abbreviations

CPP cell-penetrating peptide
GFP green fluorescence protein
eGFP enhanced green fluorescence protein
YFP yellow fluorescence protein
eYFP enhanced yellow fluorescence protein
RFP red fluorescence protein
DMPC dimyristoylphosphatidylcholine
DMPG dimyristoylphosphatidylglycerol
DOPC dioleoylphosphatidylcholine
POPC palmitoyloleoylphosphatidylcholine
POPG palmitoyloleoylphosphatidylglycerol
POPS palmitoyloleoylphosphatidylserine
SUV small unilamelllar vesicle
LUV large unilamellar vesicle
GUV giant unilamellar vesicle
GPMV giant plasma membrane vesicle
MLV multilamellar vesicle
CD circular dichroism
DPI dual polarization interferometry
NBD N-(7-nitro-2,1,3-benzoxadiazol-4-yl)glycine
TAMRA 5(6)-carboxytetramethylrhodamine
CF 5(6)-carboxyfluorescein
RhB N-(9-(2-carboxyphenyl)-6-(diethylamino)-3Hxanthen-3-ylidene)-N-ethylethanaminium
MCA (7-methoxycoumarin-4-yl)acetic
PBA 1-pyrenebutyric acid
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