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Propriospinal interneurons (INs) communicate information over short and long distances
within the spinal cord. They act to coordinate different parts of the body by linking
motor circuits that control muscles across the forelimbs, trunk, and hindlimbs. Their
role in coordinating locomotor circuits near and far may be invaluable to the recovery
of locomotor function lost due to injury to the spinal cord where the flow of motor
commands from the brain and brainstem to spinal motor circuits is disrupted. The
formation and activation of circuits established by spared propriospinal INs may promote
the re-emergence of locomotion. In light of progress made in animal models of spinal
cord injury (SCI) and in human patients, we discuss the role of propriospinal INs in
the intact spinal cord and describe recent studies investigating the assembly and/or
activation of propriospinal circuits to promote recovery of locomotion following SCI.

Keywords: propriospinal neurons, spinal locomotor networks, central pattern generators, spinal cord injury,
detour circuits

INTRODUCTION

Successful locomotion depends upon the precise coordination of multiple muscles across numerous
joints and limbs, as well as the simultaneous engagement of multiple trunk and stabilizing
muscles (Frigon, 2017). This patterned motor output must be adjusted dynamically at differing
speeds and in response to various obstacles and perturbations, requiring the constant integration
of sensory information. While the role of supraspinal centers, particularly in relation to the
planning, initiation, and modulation of locomotion (Lajoie and Drew, 2007; Capelli et al., 2017;
Caggiano et al., 2018; Josset et al., 2018; Oueghlani et al., 2018), should not be discounted,
many of the key functions of locomotion are performed by interneuron (IN) networks within
the spinal cord. This is particularly evident from experiments utilizing ex vivo spinal cord
preparations where application of electrical stimulation, light illumination, or a variety of
neurotransmitter/pharmacological agonist cocktails have successfully evoked fictive locomotion –
sustained rhythmic and appropriately patterned flexor and extensor activity recorded in motor
nerves of the spinal cord – in the absence of supraspinal input (Atsuta et al., 1991; Jiang et al.,
1999; Whelan et al., 2000; Hägglund et al., 2010). The innate potential of select propriospinal INs,
defined as spinal cord INs that originate and terminate within the spinal cord while spanning at
least one spinal cord segment, to activate locomotion makes them an attractive therapeutic target
for spinal cord injury (SCI) (Flynn et al., 2011). However, an incomplete understanding of their

Frontiers in Cellular Neuroscience | www.frontiersin.org 1 November 2019 | Volume 13 | Article 512

https://www.frontiersin.org/journals/cellular-neuroscience/
https://www.frontiersin.org/journals/cellular-neuroscience#editorial-board
https://www.frontiersin.org/journals/cellular-neuroscience#editorial-board
https://doi.org/10.3389/fncel.2019.00512
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fncel.2019.00512
http://crossmark.crossref.org/dialog/?doi=10.3389/fncel.2019.00512&domain=pdf&date_stamp=2019-11-12
https://www.frontiersin.org/articles/10.3389/fncel.2019.00512/full
http://loop.frontiersin.org/people/819299/overview
http://loop.frontiersin.org/people/817154/overview
http://loop.frontiersin.org/people/800268/overview
http://loop.frontiersin.org/people/332400/overview
https://www.frontiersin.org/journals/cellular-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-13-00512 November 9, 2019 Time: 14:11 # 2

Laliberte et al. Propriospinal Neurons in Injured Spinal Cord

integration within locomotor systems remains a significant
obstacle to the use of propriospinal INs in the therapies seeking to
restore lost locomotor function. Emergent genetic and molecular
techniques that allow the identification and manipulation of
specific propriospinal IN populations have greatly accelerated
this research. It is the purpose of this review to summarize and
update the current state of knowledge regarding the organization
and function of locomotion-associated propriospinal INs in
intact and spinal cord lesioned mammals as well as to examine
seminal and recent attempts to manipulate propriospinal INs to
rescue locomotor function.

PROPRIOSPINAL INTERNEURONS
PROPAGATE LOCOMOTOR COMMANDS
FROM SUPRASPINAL LOCOMOTOR
REGIONS

At first glance, propriospinal INs occupy a conceptually
straightforward role in locomotion. Propriospinal INs receive
inputs from descending locomotor pathways and propagate
received motor commands rostrocaudally to locomotor circuits
via short or long, ipsilateral or commissural axons (Figure 2A).
To fulfill this role, some propriospinal INs project axons that only
travel a few segments (short propriospinal), while others project
axons that travel many more segments, spanning far enough
to connect cervical with lumbar segments (long propriospinal).
Short and long propriospinal IN axons can stay within the same
side of the body as their cell bodies (Figure 1, straight lines), while
others cross to the other side (Figure 1, lines with arc segments).
We include commissural INs for their possible involvement
in forming detour circuits following an injury to the spinal
cord. Evidence for the role of propriospinal INs in propagating
locomotor commands rostrocaudally has been well-established
in the mammalian CNS. For example, the application of certain
neurotransmitter agonists to only the cervicothoracic spinal cord
was found to generate rhythmic hindlimb activity in neonatal
rat preparations (Cowley and Schmidt, 1997). Transections at
caudal thoracic and rostral lumbar segments also abolished
locomotor activity below the caudal lesion site, demonstrating
the importance of INs in this region for locomotor output in
more caudal lumbar segments (Cowley and Schmidt, 1997).
Additional evidence for propriospinal locomotor relays was
demonstrated using brainstem stimulation in rat brainstem-
spinal cord in vitro preparations, where hindlimb locomotor-
like activity was observed despite staggered contralateral spinal
cord lesions that severed all ipsilateral bulbospinal connections
on both sides of the spinal cord (Cowley et al., 2008). These
findings suggest that either brainstem locomotor regions have
projections to the contralateral spinal cord that decussate at the
spinal levels between the hemisections, or that propriospinal INs
with contralateral projections propagate locomotor commands
from supraspinal centers (e.g., red lines with arc segments in
Figure 1). The latter explanation that propriospinal networks
are integrated into bulbospinal locomotor control appears more
likely given (1) the predominance of ipsilaterally projecting

FIGURE 1 | Propriospinal neurons of the spinal cord. Schematic diagram
depicting several types of propriospinal neurons within the cervical, thoracic,
and lumbar spinal cords. For the sake of simplicity, some types are not
depicted such as bifurcating commissural interneurons with axon collaterals
that ascend and descend. Depicted medio-lateral locations of different types
of priopriospinal neurons or their terminations are not meant to be accurate
representations of known localizations.

axons over contralaterally projecting from brainstem locomotor
centers (Stelzner and Cullen, 1991; Liang et al., 2011; Sivertsen
et al., 2016) and (2) subsequent physiological experiments which
found that blockade of synaptic transmission in cervicothoracic
segments (using a variety of strategies: no Ca2+, high Mg2+,
CNQX, AP-5) resulted in the abolition of brainstem stimulation-
induced lumbar locomotor activity (Zaporozhets et al., 2006).

These studies strongly suggest a role for propriospinal INs
in the propagation of locomotor commands, implying that
propriospinal INs either innervate or form part of the locomotor
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central pattern generator (CPG). Indeed, it has been proposed
that the locomotor CPG may be composed of multiple unit
CPGs distributed along the length of the spinal cord and across
its midline controlling subsets of muscles, in particular, those
acting upon particular joints such as the hip, knee, or ankle
(Grillner et al., 1976; Kjaerulff and Kiehn, 1996; Wiggin et al.,
2012; Gerasimenko et al., 2016; Mantziaris et al., 2017). Short
propriospinal neurons (Figure 1, short lines, green and blue,
straight or with arc segment) may act as relays between non-
overlapping unit CPGs within cervical or lumbar segments.
Alternatively, short propriospinal INs may be part of unit CPGs
if the circuitry for each unit CPG is spread out over several
spinal cord segments. In either case, propriospinal connections
can propagate locomotor commands from their initial targets to
adjacent nodes containing CPG components.

PROPRIOSPINAL INTERNEURONS
PERFORM FUNCTIONS OF THE
LOCOMOTOR CPG

Ontogenic studies of molecularly defined populations of
propriospinal INs have provided ample evidence of the
contributions of propriospinal INs to locomotor CPG function.
While others have extensively reviewed the developmental
origin of INs comprising the locomotor CPG (Gosgnach et al.,
2017), this information is critical to understanding the role of
propriospinal INs in locomotor function and therefore, a brief
overview of this topic is warranted. It should be noted that each
of the developmentally defined IN populations are believed to be
heterogeneous to varying degrees, potentially containing several
distinct subpopulations of INs with different characteristics.
As a result, not all of these subpopulations will meet the currently

used definition of propriospinal INs. However, at least some
portion of the IN populations discussed below appear to be
propriospinal based on their reported projection characteristics
(reviewed in Lu et al., 2015), and their putative function in
locomotion (Table 1).

During embryogenesis, the spatiotemporal distribution of
signaling molecules such as Wnt, BMP, and Sonic hedgehog,
across three spatial axes – rostral–caudal, medial–lateral, and
dorsal–ventral – leads to a complex spatiotemporal pattern of
transcription factor activation that results in the emergence of a
specific set of progenitor pools within the spinal cord (Dasen and
Jessell, 2009). In total, there are 13 progenitor pools from which
INs and motoneurons will emerge. All dorsal IN populations
(dI1–dI6) come from progenitor pools pd1–6 and the late-born
pdILA and pdILB. Four ventral IN populations (V0–V3) emerge
from the p0–3 pool while the motoneurons arise from the motor
domain pMN (reviewed in Lu et al., 2015). The ventrally derived
populations have received considerable interest in relation to
locomotion, as it has been postulated that they constitute the
core elements of the CPG located primarily within the spinal
ventral horn (reviewed in Kiehn, 2016). Therefore, many genetic
manipulations have targeted these ventral IN populations. Initial
experiments with isolated spinal cords observed the conservation
of rhythmicity following a sagittal section along the midline
of chronically isolated adult cat spinal cords (Kato, 1990).
This observation seems to indicate that rhythmogenesis can
be generated solely from ipsilaterally projecting neurons within
each side of the spinal cord. Therefore, the first ablation studies
targeted ipsilaterally projecting INs.

The V1 embryonic population of INs, which are marked by the
expression of the engrailed-1 (En1) transcription factor, generates
inhibitory neurons that project ipsilaterally (Higashijima et al.,
2004; Benito-Gonzalez and Alvarez, 2012). Approximately 30%

TABLE 1 | Overview of major developmentally defined interneuron populations and their proposed role in locomotion.

Interneuron
population

Projection
characteristics

Neurotransmitter
phenotype

Putative function in mammalian locomotion

V0V (DBX1+/EVX1+) Long and short
commissural

Glutamatergic
(excitatory)

Coordinates left–right alternation during locomotion. Loss of function particularly affects
alternation during higher speed locomotion.

V0D (DBX1+/PAX7+) Long and short
commissural

GABA/glycinergic
(inhibitory)

Coordinates left–right alternation during locomotion. Loss of function particularly affects
alternation during lower speed locomotion.

V0C

(DBX1+/EVX1+/PITX2+)
Short ipsilateral and
commissural

Cholinergic
(excitatory)

Modulates activity of some motoneuron pools during specific locomotor tasks.

V1 (EN1+) Short and long
ipsilateral

GABA/glycinergic
(inhibitory)

Coordinate flexor–extensor activity, potentially through the inhibition flexor activity. Include
Renshaw and Ia IN populations with well-defined roles in recurrent and reciprocal inhibition of
motoneurons.

V2a (CHX10+) Long and short
ipsilateral

Glutamatergic
(excitatory)

Propagate locomotor commands to commissural interneurons involved with left–right
coordination.

V2b (GATA2/3+) Long and short
ipsilateral

GABA/glycinergic
(inhibitory)

Coordinate flexor–extensor activity, potentially through the inhibition of extensor activity.

V3 (SIM1+) Short commissural
and ipsilateral

Glutamatergic
(excitatory)

Stabilize locomotor pattern, reducing variability in ipsilateral and contralateral gait.

dI3 (ISL1+) Short ipsilateral Glutamatergic
(excitatory)

Relay cutaneous and proprioceptive information to CPG. Essential for locomotor rehabilitation.

dI4 dILA (Ptf1a+) Short ipsilateral Short
commissural

GABAergic
(inhibitory)

Mediate presynaptic inhibition of sensory terminals onto spinal neurons to gate sensory
feedback and ensure smooth execution of movements.

dI6 (DMRT3+ and/or
WT1+)

Short commissural
and ipsilateral

GABA/glycinergic
(inhibitory)

Stabilize locomotor pattern, reducing variability in ipsilateral and contralateral gait.
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of En1+ INs become Ia INs or Renshaw cells and form inhibitory
synapses onto motoneurons or other Ia INs (Alvarez et al.,
2005). As the V1/Ia IN population projects ipsilaterally within the
spinal cord, targeted ablation of En1+ INs was expected to result
in the loss of flexor–extensor intralimb coordination. Instead,
loss of V1 neurons resulted in a loss of high-speed locomotor
activity. Indeed, mice lacking V1 INs had lower top speeds on the
rotarod test compared to their control mates, and the duration
of the step cycle was increased in recordings made from isolated
spinal cords (Gosgnach et al., 2006). Subsequent experiments
using genetic methods to block synaptic transmission from V1
INs instead of developmental ablation recapitulated this finding
(Zhang et al., 2014). While V1 IN silencing alone did not
prevent flexor–extensor coordination, V1 IN ablation resulted
in a prolonged flexion phase in both neonatal and adult mice,
while optogenetic activation of V1s resulted in the suppression
of flexor activity (Britz et al., 2015). A recent study provided
further confirmation of the role of V1 INs in the regulation of
flexor burst duration, and also found evidence that they regulate
extensor activity in the absence of commissural input, possibly
suggesting a more dynamic role for V1 INs in the generation
of biomechanically advantageous flexion/extension asymmetry
(Falgairolle and O’Donovan, 2019). Interestingly, the combined
inactivation of both V1 IN and a subset of the V2 IN population
(V2b) resulted in a total loss of flexor–extensor alternation
(Zhang et al., 2014). Parallel examination of V2b INs determined
that they inhibit extensor motoneurons in an analogous manner
to the V1 INs with flexor motoneurons (Britz et al., 2015). These
results appear to support the functional cooperativity of V1
and V2b INs to maintain the appropriate balance of flexor and
extensor activity during locomotion.

Another ipsilaterally projecting population of propriospinal
INs that has garnered interest in the context of locomotion
is the Chx10-expressing V2a subpopulation. Unlike V1 and
V2b INs, the V2a INs exclusively provide glutamatergic input
in the mouse spinal cord (Al-Mosawie et al., 2007; Lundfald
et al., 2007). The zebrafish homolog to the V2a population,
identified by its expression of Chx10, is sufficient for generating
locomotor rhythm (Ljunggren et al., 2014); however, this
role is not entirely conserved in mammals. Optogenetic or
synaptic blockade of the Shox2+ INs, some of which belong
to the V2a population, perturbed locomotor rhythmogenesis in
neonate mice (Dougherty et al., 2013), but ablation of only the
Shox2+ V2a INs did not eliminate the mammalian spinal cord’s
ability to generate rhythm. Surprisingly, V2a IN ablation created
deficits in left–right alternation at intermediate to high speeds
in adult mice (Crone et al., 2008, 2009), suggesting that the
V2a INs, in fact, also innervate commissural INs responsible for
left–right coordination.

While rhythmicity is conserved following midsagittal
lesioning of the spinal cord, left–right coordination is lost, which
is an important element of gait. Cross-talk between contralateral
halves of the CPG is a critical feature of the locomotor network,
where activity on one side can affect the contralateral locomotor
output. This contralateral influence has been demonstrated
through work involving split-belt treadmills (left and right limbs
can be made to walk at different speeds), where compensatory

alterations in phase duration were observed on the contralateral
side when the speed was changed unilaterally (Frigon et al., 2013,
2017). Interestingly, this compensation occurs even in spinal
cord transected cats, suggesting a propriospinal mechanism
(Frigon et al., 2013, 2017). Indeed, the silencing of lumbar
propriospinal neurons projecting from L2 to L5 in the adult
rat was found to alter left–right coordination independent
of speed (Pocratsky et al., 2017). These L2-to-L5 projecting
propriospinal neurons consisted of both ipsilaterally projecting
and commissural INs.

Commissural INs ensure proper coordination of both sides of
the body during locomotion. These neurons may be contacted
by V1 and V2a/V2b subtypes, potentially allowing them to
coordinate shifts in flexion–extension across the left and right
limbs during changes in speed. Commissural INs act by providing
an excitatory or inhibitory drive to contralateral motor circuits.
Their axons cross the midline at the same level as their cell
bodies (Matsuyama et al., 2006) and then can project up and/or
down the spinal cord (Eide et al., 1999; Stokke et al., 2002;
Quinlan and Kiehn, 2007), even going as far as communicating
between the cervical and lumbar segments (English et al., 1985;
Matsuyama et al., 2004; Reed et al., 2006; Brockett et al., 2013;
Ni et al., 2014; Mitchell et al., 2016; Ruder et al., 2016). One
such population is the V0 INs, which are classified by their
early expression of the developing brain homeobox 1 (DBX1).
There are at least three subtypes of V0 INs: V0D (delineated
by paired box protein 7, PAX7), V0V (express even-skipped
homolog protein 1, EVX1), and V0C, which express paired-like
homeobox transcription factor 2 (PITX2) and EVX1 (Moran-
Rivard et al., 2001; Zagoraiou et al., 2009; Talpalar et al.,
2013). Targeted ablation of DBX1-expressing neurons (all V0
INs) resulted in the loss of left–right alternation, giving way to
synchronous hopping behavior at all frequencies of locomotion.
Interestingly, selective loss of the V0Ds has a more marked effect
on coordination at slow locomotor speeds, whereas selective loss
of the V0Vs leads to loss of coordination at fast locomotor speeds
(Talpalar et al., 2013). Unlike the other V0 populations that
have clear roles in left–right coordination of locomotion, V0cs
modulate motoneuron excitability through direct cholinergic
inputs (Zagoraiou et al., 2009). The targeted ablation of the
V0Cs in adult mice did not have any measurable effect on
the locomotor pattern but showed task-dependent modification
of specific hindlimb muscle activity during swimming but not
during walking (Zagoraiou et al., 2009).

The dI6 INs are another IN subtype involved with left–
right coordination. They are marked by expression of either
WT1, DMRT3, or Wt1/DMRT3, and form appositions with both
ipsilateral and contralateral motoneuron pools (Andersson et al.,
2012; Griener et al., 2017). A loss of functional DMRT3 led
to an increase of dI6 INs exhibiting a Wt1+ identity and a
drastic reduction in commissural projections, causing both the
loss of coordination between the left and right CPGs, as well
as a loss of coordination of the flexion–extension cycle in mice
and horses. This evidence is consistent with the role of crossed
inhibition in maintaining left–right alternation – as is the case
for V0D neurons – and also the role of ipsilateral inhibition in
flexor–extensor balance (V1 and V2b INs).
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One final ventral IN is the Sim1-expressing V3 population, a
class of glutamatergic bilaterally projecting INs (Chopek et al.,
2018). This population is highly heterogeneous in terms of
their connectivity. V3 axons extend contralaterally, where they
account for 22% of contacts on motoneurons positive for the
excitatory neurotransmitter transporter VGluT2, and 27% of
VGluT2 contacts on parvalbumin-positive Ia INs and Renshaw
cells (Zhang et al., 2008). Silencing of V3 synaptic transmission
using a cell-selective tetanus toxin light chain subunit (TeNT)
expression system degraded locomotor pattern by increasing the
variation in burst duration and interburst interval. Interestingly,
the locomotor output was highly asymmetrical between the right
and left flexor, increasing the burst duration of only one of two
left–right L2 roots in the neonatal mouse spinal cord (Zhang
et al., 2008). This latter finding may point to the involvement
of V3 INs in stabilizing left–right alternation during walking.
However, a subsequent study identified electrophysiological
evidence of distinct V3 subpopulations in the spinal cord and
suggested that differential recruitment of these subpopulations
may occur during different modes of locomotion (Borowska
et al., 2013). The dorsal V3 INs were primarily recruited during
running episodes (in contrast to static and swimming conditions)
when there is additional sensory feedback associated with greater
mechanical loading. It was also found that these dorsal V3 INs
received more inputs from sensory afferents than the ventral
V3 population. Based on previous morphological examinations
of commissural excitatory INs, the authors proposed that this
dorsal V3 subpopulation may be responsible for relaying sensory
information used to indirectly adjust left–right coordination,
while the ventral V3 population presumably synchronizes motor
outputs across multiple levels (Borowska et al., 2013). In a
related fashion, computational modeling of the locomotor CPG
identified V3 INs as a possible mediator of the transition from
alternating to synchronous modes of locomotion with increasing
speed (from trot to gallop to bound), but empirical evidence
of this proposed function is currently lacking (Danner et al.,
2017). A recent electrophysiological study uncovered a layered
structure within the V3 subpopulation, where a ventromedial
population may receive supraspinal locomotor commands while
a ventrolateral population may relay these commands to different
segments to coordinate several motor pools (Chopek et al., 2018).
As such, V3 INs could reflect the dual roles of propriospinal
INs to relay locomotor commands and to coordinate multiple
components that form unit CPGs.

PROPRIOSPINAL INTERNEURONS
COORDINATE FORELIMB AND
HINDLIMB LOCOMOTOR NETWORKS

Separate CPGs regulate patterning of forelimb and hindlimb
stepping, as evidenced by the ability of cervical and lumbar spinal
cord segments to produce rhythmic oscillation independently of
each other in the neonatal rat spinal cord (Ballion et al., 2001;
Juvin et al., 2005; Gordon et al., 2008). However, the execution
of smooth quadrupedal locomotion necessitates the coupling
of forelimb and hindlimb motor outputs. This coupling occurs

at the spinal cord level, as demonstrated by the coordinated
rhythmic coupling of forelimb and hindlimb extensors during
fictive locomotion in neonatal rodent isolated spinal cord
preparations (Ballion et al., 2001; Juvin et al., 2005, 2012;
Gordon et al., 2008). As such, the mechanism of this coupling
is thought to occur either through inter-CPG communication
via propriospinal INs or the integration of external sensory cues
(Juvin et al., 2012). With regard to the former hypothesis, Juvin
et al. (2005, 2012) found that the coupling of hindlimb and
forelimb rhythm in neonatal rat fictive locomotor preparations
was lost when a sucrose block was applied to the thoracic spinal
cord, suggesting that direct connections between the CPGs are
necessary to maintain coordination. Indeed, the existence of
long propriospinal axons connecting these regions had long
been hypothesized (Miller et al., 1973), and neuroanatomical
evidence confirmed the presence of long ascending propriospinal
connections from rostral lumbar spinal cord (Figure 1, long blue
or upward red lines) to the cervical region along the ventrolateral
funiculus (VLF) (Molenaar and Kuypers, 1978; English et al.,
1985; Reed et al., 2006), with a majority of these neurons (85%)
expressing VGluT2 (Brockett et al., 2013). The highest proportion
of these ascending projections were ipsilateral (nine times more
frequent than contralateral), and tended to be concentrated in
the rostral lumbar segments (Brockett et al., 2013). Lesions to
the thoracic VLF in the cat disrupt forelimb–hindlimb coupling
(Brustein and Rossignol, 1998), further supporting the notion
that these long ascending propriospinal INs maintain inter-
CPG coordination. To test whether one CPG could govern the
other via these propriospinal connections, Juvin and colleagues
performed a midsagittal incision from C1 to T7 and found that
left–right alternation was preserved when the connection to the
caudal CPG remained, but subsequently disrupted when the
caudal spinal cord was bathed in bicuculline and strychnine –
GABA and glycine receptor antagonists – to disrupt the caudal
locomotor pattern. In contrast, disruption of cervical left–right
alternation through the addition of bicuculline and strychnine to
the cervical spinal cord bath did not modify the lumbar pattern,
suggesting the dominance of ascending propriospinal pathways
in the regulation of forelimb/hindlimb coupling in the neonatal
rat (Juvin et al., 2005).

While the long ascending propriospinal INs appear to
play a major role in forelimb/hindlimb coordination, there
is considerable evidence suggesting that long descending
propriospinal INs (Figure 1, long green or downward red
lines) also play a role in interlimb coordination (Matsushita
et al., 1979; Skinner et al., 1980; Menétrey et al., 1985;
Alstermark et al., 1987; Nathan et al., 1996). Ruder et al. (2016)
used lumbar-injected retrograde canine adenovirus-2 vectors in
combination with a cervically injected adeno-associated virus
(AAV) expressing the diphtheria toxin receptor, to selectively
ablate lumbar-projecting cervical INs upon administration of
the diphtheria toxin. Interestingly, they found that selective
deletion of these long descending propriospinal INs resulted
in the loss of coordination between hindlimbs, particularly
at higher speeds (Ruder et al., 2016). More generally, the
ablation of these neurons also reduced spontaneous locomotor
speed and decreased the duration of locomotor bouts, which
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was accompanied or potentially compounded by the postural
instability during locomotion that was observed. Examination
of the neurotransmitter phenotype and developmental origin
of long descending propriospinal INs revealed that those INs
with connections to the highly rhythmogenic L2 region (Cazalets
et al., 1995) are predominantly excitatory, with relatively minor
representation of V2b INs (5.3%), and negligible V1 and V3
IN representation (Flynn et al., 2017). Similarly, Ruder et al.
(2016) found a strong representation of excitatory V0 and V2
INs with very few V1, V3, and dI3 INs extending cervicolumbar
projections. Even though the importance of forelimb/hindlimb
coupling may be amplified in quadrupeds, there is circumstantial
evidence that suggests this phenomenon also exists in bipedal
animals. Coupling of bipedal arm and leg movements has been
observed in upright walking (Dietz, 2002; Zehr et al., 2009, 2016;
Frigon, 2017; Pearcey and Zehr, 2019), swimming (Wannier
et al., 2001), and crawling (MacLellan et al., 2013) in humans,
mirroring the expected behavior of paired oscillators observed in
quadrupedal locomotion.

PROPRIOSPINAL INTERNEURONS
INTEGRATE SENSORY INFORMATION
TO SHAPE LOCOMOTOR OUTPUT

One of the critical features of mammalian locomotion is
the integration of proprioceptive and cutaneous sensory
information to guide locomotor output. Acute spinalized cats
can spontaneously adjust to varying treadmill speed after
administration of the noradrenergic agonist clonidine (Forssberg
and Grillner, 1973). Other experiments using chronic spinal
kittens found that spontaneous adjustment to speed could
be performed even when individual limbs were subjected to
different speeds using split-belt treadmills, a locomotor program
analogous to turning (Forssberg et al., 1980; Frigon et al., 2013).
These studies demonstrate the ability of the mammalian CPG
to modify its locomotor pattern based on external sensory cues.
While some of this can be explained by direct feedback from
sensory afferents, integration of multimodal sensory feedback
by propriospinal INs and rostrocaudal propagation of this
signal may be required to generate complex sensory-induced
motor responses involving multiple muscles (Levine et al.,
2014). There are several specific phenomena that support this
hypothesis. For example, the non-monosynaptic facilitation
of motoneuron pools associated with stimulation of several
lower limb nerves (common peroneal, posterior tibial, femoral)
is thought to be mediated through short propriospinal INs
situated rostral to the respective group of motoneurons (Chaix
et al., 1997). Whereas long propriospinal INs could underlie
the inter-limb modulation of reflexes such as the observations
that static contralateral arm extension or flexion in humans
produces soleus H-reflex facilitation or attenuation, respectively
(Delwaide et al., 1977), while ipsilateral or contralateral
sinusoidal arm movements depress soleus H-reflex excitability
(Knikou, 2007).

While these findings strongly suggest a role for propriospinal
INs in the integration and propagation of sensory feedback

during movement, determining the identity and organization of
the IN populations responsible is an ongoing endeavor. Several
molecularly defined classes of spinal neurons described above
have already been shown to receive sensory afferent inputs (e.g.,
V1, V3 INs). Neurons derived from dorsal progenitor domains
are very likely to be involved in sensorimotor integration.
For example, motor synergy encoder neurons, characterized
by Tcfap2β and Satb1/2 expression, are involved in linking
multiple motor pools together, and this muscle coordination
seems to require sensory input (Levine et al., 2014). The dorsal
IN type 4 (dI4 INs) mediate presynaptic inhibition of sensory
terminals onto spinal neurons in order to properly gate sensory
feedback to ensure smooth execution of movements in mice
(Betley et al., 2009; Fink et al., 2014). Finally, the dorsal IN
type 3 (dI3) INs seem another likely candidate for sensorimotor
integration at the level of the spinal cord. The largely excitatory
dI3 INs receive inputs from low-threshold cutaneous and
proprioceptive afferents and extend projections to motoneuron
pools within the cervical and lumbar enlargements (Bui et al.,
2013, 2016). While no long descending propriospinal axons from
cervical dI3 INs to lumbar segments have been found (Ruder
et al., 2016), transsynaptic tracing experiments from the mouse
quadriceps muscle found that dI3 INs project from adjacent
lumbar segments (55% L1–L2, 6% L3, 39% L4–L6) to the flexor
motoneuron pool, suggesting a moderately dispersed pattern of
short propriospinal connectivity (Stepien et al., 2010). dI3 IN
loss-of-function resulted in minor disturbances in locomotor gait
in mice (Bui et al., 2016), which may speak to the distributed
integration of sensory input among different spinal populations.
More strikingly, their silencing attenuates recovery of treadmill
stepping following SCI, implicating a specific population of spinal
propriospinal INs in the recovery of motor function (Bui et al.,
2016). As such, dI3 INs are one of the first populations of
molecularly defined propriospinal INs that have been shown to
be involved in the recovery of locomotor function following SCI.
However, more generally, there is an abundance of literature
implicating propriospinal INs in the recovery of locomotion after
SCI, a topic that will be explored in depth below.

ROLE OF PROPRIOSPINAL NEURONS IN
THE RECOVERY OF LOCOMOTOR
FUNCTION

Spinal cord injury can lead to a devastating loss of motor
function. The severity of motor function loss depends on the
location and nature of the injury, which dictates the degree of
disruption of communication between the supraspinal centers
controlling movement and spinal motor circuits. By virtue
of their role in communicating higher motor commands to
spinal circuits, a major focus of spinal cord repair has been
the regeneration of descending tracts across the lesion site
to restore lost motor input (Tuszynski and Steward, 2012).
Accumulating evidence points to propriospinal INs as an
additional target for promoting the recovery of locomotor
function (Taccola et al., 2018; Loy and Bareyre, 2019). As a
consequence of their position within the spinal cord and their
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central role in the generation of locomotion, propriospinal INs
are well-situated to propagate supraspinal commands to motor
systems below the level of injury. Furthermore, the shorter
distance required for propriospinal axons to bridge the lesion
compared to axons from cortical or brainstem neurons make
them a more straightforward target for regenerative approaches.
Several changes to neural circuits involving propriospinal
INs have been observed that could facilitate the recovery of
locomotor function.

Propriospinal INs Receive New
Connections From Supraspinal Neurons
New synaptic contacts made by descending tracts onto
propriospinal INs following SCI have been repeatedly
demonstrated in animal models of SCI. Seminal work by
Bareyre et al. (2004) revealed that spontaneous sprouting of
axon collaterals from the corticospinal tract (CST), in particular,
those contacting propriospinal INs, could promote recovery of
locomotion after SCI. After a mid-thoracic dorsal transection of
CST axons in rats, lesioned CST axons spontaneously sprouted
collaterals into the cervical gray matter where they made
new connections with both short and long propriospinal INs.
Remarkably, the CST projections onto short propriospinal INs,
which did not bridge the lesion site, were lost 12 weeks after
injury while the CST contacts made with the long propriospinal
INs crossing the lesion site were maintained. In addition,
the number of direct contacts between long propriospinal
axon terminals and lumbosacral motoneurons was doubled
8 weeks after the dorsal hemisection. The maintenance of these
intraspinal pathways from cervical to lumbar segments following
the dorsal hemisection was verified by pseudorabies virus tracing

and their functionality was supported by EMG signals in the
hindlimb evoked by intracortical microstimulation. Similarly,
lesioning of the reticulospinal tract (RtST) by a unilateral
cervical hemisection in adult rats was shown to increase reticulo-
propriospinal contacts from damaged RtST axons (Filli et al.,
2014). Since brainstem locomotor pathways such as the RtST
are critical in control of locomotion in mammals (Brownstone
and Chopek, 2018), the remodeling of reticulospinal pathways
involving propriospinal INs may be an important factor in
locomotor recovery (Asboth et al., 2018).

Propriospinal INs Form Detours Around
Lesions
One reason why descending inputs may be increasing their
connections with propriospinal INs after an injury is the ability
of these spinal neurons to form circuits, which may be pre-
existing or de novo, that circumnavigate spinal lesions to provide
an alternative flow of motor commands to spared lumbar circuits
for locomotion. This hypothesis has been tested, in particular,
using the staggered hemisection injury paradigm (Kato et al.,
1984; Courtine et al., 2008; May et al., 2017). In these studies,
an initial hemisection is made to sever ipsilateral descending
pathways on one side of the body (Figure 2B). A second
hemisection is subsequently made on the other side of the
body at a more rostral thoracic segment to disrupt spared
descending pathways contralateral to the first hemisection. In
some studies, the second hemisection is made immediately
or after a delay, the latter to determine whether the earlier
hemisection was followed by adaptations to spinal circuits that
may lead to spontaneous recovery of stepping function (Courtine
et al., 2008; May et al., 2017). When an initial hemisection

FIGURE 2 | Detour circuits arising from staggered hemisections. Schematic diagram depicting some propriospinal circuits innervating lumbar central pattern
generators (CPGs) (A), some possible detour circuits formed after an initial hemisection (B), and spared detour circuits following a second, delayed, contralateral
hemisection (C). Collateral sprouting depicted by bold lines. The propriospinal neurons within the lumbar spinal cord are not depicted but would either be connected
to, or part of, CPGs. Descending inputs from detour circuits projecting to the lumbar spinal cord can project to lumbar propriospinal neurons and/or lumbar CPGs.
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at T12 was followed 10 weeks later by a second contralateral
hemisection at T7, greater recovery of locomotor activity was
observed compared to animals that received the contralateral
hemisections at T7 and T12 simultaneously (Courtine et al.,
2008). The improvements in recovery when hemisections were
made with a delay as opposed to simultaneously suggests that
the initial hemisection promoted remodeling of propriospinal
circuits to form detours around this initial hemisection that were
not disrupted by the second, delayed, contralateral hemisection
(Figure 2C). Locomotor recovery following the delayed staggered
hemisections was associated with evidence of connectivity
between spared lumbar circuits with propriospinal INs in the
intervening region between the lesions (T8–T10) while showing
virtually no direct connectivity between supraspinal locomotor
nuclei and lumbar circuits. Furthermore, an excitotoxic ablation
of T8–T10 neurons eliminated any observed spontaneous
recovery, supporting the idea that propriospinal INs had formed
detours to permit the transmission of descending information to
hindlimb CPGs (Courtine et al., 2008).

The possibility of detour circuits formed by propriospinal INs
was further strengthened by evidence of increased connectivity
between descending RtST tracts and propriospinal INs following
a staggered contralateral hemisection protocol where one
hemisection at T10 eliminated the ipsilateral RtST and CST
followed by an over-hemisection at T7 removing the contralateral
RtST and both CSTs (May et al., 2017). The number of RtST
contacts onto propriospinal INs was significantly higher if
both hemisections were made with a delay, suggesting again
that locomotor commands were routed through detour circuits
formed by propriospinal INs after the first hemisection.

Propriospinal INs Relay Sensory
Feedback to Activate Spinal Locomotor
Circuits
The formation of detours around spinal lesions is not possible
after complete SCI, and so far, axonal regeneration across lesion
sites remains a significant challenge. However, animal models of
complete SCI often exhibit some recovery of locomotor function
despite a lack of any meaningful regeneration across lesion sites.
This recovery is believed to involve plasticity in spinal circuits
below the lesion site (Barrière et al., 2008; Rossignol and Frigon,
2011; Martinez et al., 2012) and propriospinal INs are poised
to play significant roles in promoting this recovery due to their
ability to communicate across spinal segments.

Activation of sensory feedback in the days following complete
SCI has repeatedly been shown to be crucial to this recovery of
locomotor function (Bouyer and Rossignol, 2003; Lavrov et al.,
2008; Sławińska et al., 2012; Takeoka et al., 2014). Propriospinal
INs that integrate sensory feedback may be particularly central to
promoting locomotor recovery by relaying sensory feedback to
the spared CPGs distributed across the lumbar spinal cord. For
example, dI3 INs, which integrate cutaneous and proprioceptive
inputs, have been shown to be involved in the recovery of
locomotor function following complete SCI. dI3 IN loss-of-
function significantly depressed the ability to generate sensory
stimulus-induced locomotor activity in a reduced spinal cord

locomotor preparation and largely eliminated the benefits of
treadmill training after SCI (Bui et al., 2016).

With increasing evidence that propriospinal INs may play an
invaluable role in promoting recovery of locomotor function,
several different approaches have been explored that center on
these neurons. We describe these strategies below.

THERAPEUTIC STRATEGIES FOR SCI
UTILIZING PROPRIOSPINAL INs

Stimulation of Propriospinal INs to
Augment Activity After SCI
Although many neurons and cells die after SCI around the
lesion site, some neurons survive the injury but may become
dormant, leading to a state where voluntary movements
are absent. These neurons may still have the capacity to
become excited in response to convergent inputs from spared
descending tracts and sensory feedback, but so far, in human
SCI patients with sustained loss of movements, this has only
been observed when combined with electrical neuromodulation
and/or pharmacological interventions (Gerasimenko et al., 2007;
Courtine et al., 2009; Harkema et al., 2011; Angeli et al., 2014).
Pharmacological strategies aimed at enhancing propriospinal
IN activity promote locomotion by facilitating the transmission
of motor commands through propriospinal relays, and by
increasing the excitability of downstream locomotor networks.

This particular approach stems from experiments using
ex vivo spinal cord and brainstem–spinal cord preparations,
wherein fictive locomotor activity could be induced using a
variety of physiological and pharmacological manipulations to
achieve a state of increased excitability in the locomotor network.
Transient elevations in extracellular potassium or application
of neurotransmitter agonists restored locomotor activity elicited
by brainstem stimulation following a staggered hemisection
paradigm to sever all direct bulbospinal connections in a
neonatal brainstem–spinal cord preparation (Zaporozhets et al.,
2011), suggesting that dormant propriospinal relays could be
activated with the appropriate stimulus. Subsequent testing of
neurotransmitter agonists, including serotonin, dopamine, and
norepinephrine, successfully induced locomotor activity when
applied to thoracic segments in spinal cord preparations with
staggered contralateral hemisections at T1/T2 and T9/T10.
Glutamatergic agonist NMDA only promoted locomotor activity
in this experimental paradigm when applied with serotonin,
while acetylcholine did not promote locomotor activity. In vivo
animal studies have also demonstrated the efficacy of similar
pharmacological approaches in promoting locomotor activity
following SCI. This was first demonstrated in acutely spinalized
cats injected with L-DOPA, where it was observed that
stimulation of flexor reflex afferents could elicit ipsilateral
flexor and contralateral extensor activity reminiscent of normal
locomotor patterning (Jankowska et al., 1967). More recent
iterations of this approach have focused on serotonin receptor
agonists such as quipazine and 8-OH-DPAT, typically delivered
in combination with step training and/or epidural stimulation
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to promote locomotor recovery in rodent models of SCI (Fong
et al., 2005; Gerasimenko et al., 2007; Ichiyama et al., 2008;
Courtine et al., 2009; Cowley et al., 2015; Duru et al., 2015).
Epidural stimulation, which is often applied through the use
of microelectrode arrays implanted over the lumbosacral cord
(Lavrov et al., 2008; Angeli et al., 2018; Capogrosso et al., 2018;
Wagner et al., 2018), does not explicitly target propriospinal
INs. However, the ability of epidural stimulation to facilitate
the production of hindlimb stepping after SCI seems to be a
consequence of the recruitment of propriospinal INs along with
MNs by the activation of sensory afferents (Capogrosso et al.,
2013; Moraud et al., 2016; Formento et al., 2018). Therefore,
while these mixed chemical and electrical interventions are not
entirely specific to propriospinal INs and are likely to have
broader effects on locomotor network excitability, it should be
noted that significant locomotor recovery was observed when
quipazine was locally injected to target propriospinal relays in
staggered hemisection models at T2–T4 and T9–T11 segments
(Cowley et al., 2015).

Propriospinal INs in lumbar segments, well below the injury
site, may also be targeted for stimulation. For example, silencing
dI3 INs has been shown to shunt recovery of stepping following a
complete transection (Bui et al., 2016). It follows that stimulating
spared dI3 INs in the lumbar spinal cord may be effective in
reviving CPG activity in the absence of descending locomotor
commands. Stimulation of intact propriospinal INs linked with
vertebrate CPG rhythmogenesis such as V2a INs (Crone et al.,
2009; Ljunggren et al., 2014), and Shox2+ INs [non-V2a
subpopulation (Dougherty et al., 2013)] could also be useful for
activating CPGs in the injured spinal cord. Direct stimulation
of these populations of propriospinal INs or enhancing their
plasticity to promote connectivity with detour circuits could
be part of effective therapeutic approaches to restore lost
locomotor function.

While these general stimulation approaches hold great
promise or have already shown some efficacy in restoring
function, a better understanding of the relevant propriospinal
IN populations may result in more effective treatment strategies.
For example, specific optogenetic stimulation of V3 INs in a
mouse model of sacral SCI produces muscle spasms putatively
generated by a disinhibited or hyperexcitable locomotor network
(Lin et al., 2019). Inhibiting V3 INs was found to reduce
the appearance of these muscle spasms; however, subthreshold
stimulation of these same neurons also prevented sustained
muscle spasms, but would theoretically enable them to be
recruited for locomotor functions (Lin et al., 2019). The
varied effects of V3 IN manipulation, from detrimental to
beneficial, emphasize the need for a better understanding of the
contributions of different populations of propriospinal INs to
locomotor recovery after SCI.

Disinhibition of Propriospinal IN Activity
Following SCI
Enhancing the activity of propriospinal INs, in particular, those
involved in bypassing or circumventing a lesion appears to
be a promising strategy. However, a recent study suggests

that downregulating the excitability of spinal inhibitory INs
may enable increased activity in propriospinal circuits, which
ultimately leads to improved recovery of locomotor function
(Chen et al., 2018). Systemic delivery of CLP290, an agonist
of the neuron-specific K+/Cl− co-transporter KCC2, improved
locomotor recovery in a staggered hemisection paradigm in
adult mice. Interestingly, selective expression of KCC2 in
GABAergic, but not glutamatergic or cholinergic neurons of
the spinal cord, resulted in the sustained recovery of hindlimb
stepping. Expressing KCC2 in GABAergic neurons seemed to
increase the activity of propriospinal INs between the staggered
hemisections, suggesting that generalized increases in activity of
spinal circuits involving propriospinal INs may not be effective
without concomitantly decreasing the influence of inhibitory
neurons gating the flow of descending commands through
propriospinal relays.

More generally, locomotor network disinhibition has also
been shown to promote locomotor activity following spinal cord
transection in cats. Using this experimental model, it was found
that untrained cats or those with poor stepping function could be
prompted to execute successful stepping after the administration
of either glycinergic receptor antagonist strychnine, or GABAA
receptor antagonist bicuculline (Robinson and Goldberger, 1986;
Edgerton et al., 1997; de Leon et al., 1999). Interestingly, these
strategies to block inhibitory synapses did not yield significant
benefit in animals that had previously received step training,
suggesting that either a plateau locomotor function had already
been reached, or that the step training itself influenced the
function of inhibitory synapses in the locomotor network.

Promoting Propriospinal Plasticity
Following SCI Through Physical Activity
Physical rehabilitation with treadmill-aid or robotic assistance
has been shown to increase recovery of hindlimb stepping beyond
the levels of spontaneous recovery (Dietz et al., 1995; Goldshmit
et al., 2008; Edgerton and Roy, 2009; Harkema et al., 2011, 2012;
Rossignol and Frigon, 2011; Martinez et al., 2012; Angeli et al.,
2014; Gill et al., 2018; Wagner et al., 2018). Animal models
of SCI provide evidence that this activity-dependent recovery
could be associated with changes in connectivity to propriospinal
circuits or reorganization of propriospinal circuitry (Theisen
et al., 2017). Anatomical tracing experiments (van den Brand
et al., 2012) provide evidence that overground training in rats
following staggered hemisections at T7 and T10 increases CST
projections onto T8/T9 spinal INs that are putative propriospinal
INs. Locomotor training has also been shown to partially reverse
the loss of cholinergic innervation of motoneurons, putatively
from propriospinal cholinergic INs (the V0C INs, Zagoraiou et al.,
2009), following SCI (Skup et al., 2012).

Sensorimotor integration involving propriospinal
INs may be modified by step training (Cote, 2004;
Knikou and Mummidisetty, 2014). Certainly, proprioceptive
feedback activated during locomotor training seems to be
essential for the establishment of detour circuits and locomotor
recovery (Takeoka et al., 2014). Hindlimb proprioception,
in particular, was found to be critical for the guidance of
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propriospinal detour circuits following a thoracic hemisection,
as hindlimb-targeted ablation of proprioceptive afferents yielded
a similarly reduced number of propriospinal connections
compared to a more generalized ablation of proprioceptive
afferents (Takeoka and Arber, 2019). Interestingly, forelimb
activity has been linked to the recovery of hindlimb locomotor
control in incomplete SCI (Shah et al., 2013). Training of both
forelimbs and hindlimbs of rats with a thoracic hemisection
had a greater impact on recovery than training hindlimbs alone
(Shah et al., 2013). Quadrupedal step training activated sensory
inputs from the forelimbs, which in turn seemed to increase
the number of thoracic propriospinal INs rostral to the lesion
site that projected to upper lumbar segments. These results and
others suggest a complexity in the influence of forelimb and
hindlimb sensory activation in promoting plasticity of both
descending and ascending propriospinal circuits following SCI
(Côté et al., 2012).

While physical rehabilitation seems to promote recovery of
hindlimb stepping, levels of recovery have yet to be optimized
(Torres-Espín et al., 2018). A number of approaches have been
attempted to increase recovery levels further. Recent studies
have reported that promoting recovery through electrical and
pharmacological stimulation can augment the extent of recovery
derived from locomotor training in rodent models of SCI
(Asboth et al., 2018). Indeed, the combination of locomotor step
training, epidural stimulation, and injection of dopaminergic and
serotonergic agonists increased recovery of locomotor activity,
including volitional locomotion, after the loss of CST innervation
resulting from spinal contusion injury. Neuroanatomical
tracing, in combination with optogenetic and/or chemogenetic
manipulations, suggests that this recovery results from cortico–
reticulo–spinal reorganization that includes increased synaptic
contact from the motor cortex to the ventral gigantocellular
reticular nuclei, and from the ventral gigantocellular nuclei to
putative propriospinal INs (Asboth et al., 2018).

Promoting Axonal Growth Across the
Lesion
Propriospinal INs exhibit the capacity to regenerate their axons
across lesion sites in the spinal cord. Commissural INs, some of
which are likely to be propriospinal, have been shown to form
crossing connections across the lesion site following midsagittal
spinal sections through their axons (Fenrich et al., 2007;
Fenrich and Rose, 2009). Immunostaining and electrophysiology
were used to demonstrate that newly formed synapses from
these commissural INs were functional and could evoke
potentials in contralateral motoneurons. Therefore, at least some
propriospinal INs would seem to have the capacity to grow
through the inhibitory environment of spinal lesions.

Promoting regrowth of propriospinal INs may be facilitated
by overexpression of growth-associated genes or application of
neurotrophic factors such as brain-derived neurotrophic factor
(BDNF) and NT-3, which have been shown to promote sprouting
and rewiring of neurons at the injury site (Bradbury et al.,
1999; Hammond et al., 1999). Application of BDNF to the
left motor cortex after a thoracic over-hemisection in mice

caused collateral sprouting of injured CST axons and formation
of contacts with propriospinal INs that was accompanied by
functional recovery (Vavrek et al., 2006). In another study, the
transduction of the transcription factor Kruppel-like factor 7
(KLF7) by an AAV vector above the injury site after a T10
contusion was shown to promote both descending propriospinal
axon plasticity and synapse formation after a T10 contusion
in adult mice (Li et al., 2017). KLF7 regulates the expression
of a number of genes, including the neurotrophin NGF and
its receptor TrkA (Caiazzo et al., 2010). This enhancement of
propriospinal plasticity by KLF7 overexpression was associated
with significantly improved motor function.

The regenerative capacity of axons of injured propriospinal
INs and descending motor axons can be further enhanced
by substrates that promote regrowth. For example, peripheral
nerve grafts, in combination with the neurotrophin glial cell
line-derived neurotrophic factor (GDNF) and the enzyme
chondroitinase ABC to degrade inhibitory chondroitin sulfate
proteoglycans within lesion scars, promoted the extension of
spinal axon processes within and across the graft (Tom et al.,
2009). A more recent study suggests that the application
of specific growth factors selected to increase the intrinsic
capacity of propriospinal INs for axonal growth, to induce
the expression of growth-supporting substrate, and to provide
guidance cues for regenerating axons, could be sufficient to
induce axonal regeneration across a lesion (Anderson et al.,
2018). Delivery of osteopontin, insulin-like growth factor 1,
ciliary-derived neurotrophic factor, fibroblast growth factor 2,
epidermal growth factor, and glial-derived neurotrophic factor
through a combination of AAV injections or synthetic hydrogels
near and in the lesion site promoted the growth of propriospinal
INs through a spinal lesion in both a rat and mouse complete
SCI model. While behavioral improvements observed using this
strategy were relatively minor, the new propriospinal projections
appeared to be capable of conducting action potentials across
the lesion site, opening the door to future strategies to improve
the integration of these axons into motor circuitry. While
these strategies hold promise, the heterogeneity of propriospinal
INs (i.e., short versus long-projection), as well as the type
and location of the spinal cord lesion are likely to influence
the gene-expression and substrate requirements for successful
regeneration (Conta and Stelzner, 2004; Swieck et al., 2019).

The identification and application of multiple molecules
to coax the regrowth of descending and propriospinal axons
across the lesion site and toward spinal locomotor circuits
caudal to the lesion site have led to promising results.
However, there is still a significant gap between the level
of recovered motor function in treated SCI animals and
locomotor function in the intact state. A recent study highlights
the possibility of promoting propriospinal axon plasticity
through the engagement of the components of the motor
circuit downstream from descending inputs and propriospinal
INs, namely motoneurons and the musculoskeletal system.
Motoneurons have extensive dendritic arborizations, some of
which even extend beyond the gray matter into the white
matter (Rose and Richmond, 1981; Keirstead and Rose, 1983;
Tosolini and Morris, 2016). This broad coverage of the
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ventral spinal cord could permit motoneurons to have far-
ranging influences on regenerating processes after SCI, perhaps
through the release of BDNF (Ying et al., 2005; Joseph et al.,
2012). While motoneuron dendrites undergo atrophy after
SCI (Gazula et al., 2004), the delivery of AAV expressing
NT-3 to locomotion-associated motoneurons via transiently
demyelinated sciatic nerves after a T10 contusion in mice
reduced motoneuron dendrite atrophy. This reduced atrophy
was accompanied by an increased presence of descending inputs
from spared propriospinal INs onto MNs within the L2–L5
spinal cord levels when compared to non-treated controls
and resulted in modest improvements in locomotor behavior
(Wang et al., 2018). Interestingly, motoneuron dendrite atrophy
after SCI is reduced by exercise (Gazula et al., 2004), further
suggesting that combining the application of molecules to
increase regenerative properties of propriospinal INs, whether
directly or through the influence of other components of the
locomotor network, with physical activity could produce greater
levels of functional recovery.

Finally, several studies suggest that the benefits of promoting
axonal growth of propriospinal axons through growth-
stimulating molecules can have unintended consequences.
These secondary complications have been illustrated, in
particular, for BDNF. AAV delivery of BDNF in rats spinalized
at thoracic level improved weight support and treadmill
walking over untreated SCI animals (Ziemlińska et al., 2014).
However, increased excitability of spinal locomotor circuits
eventually resulted in increased clonic movements in BDNF-
treated animals over time. This was potentially due to the
upregulation of glutamatergic (vGluT2) and GABAergic
(GABA, GAD1, and GAD2) transmission in combination
with reduced levels of the potassium chloride co-transporter,
KCC2, which alters the reversal potential of chloride channels
associated with GABA/glycinergic synapses causing them to
become depolarizing instead of hyperpolarizing. Similarly,
another study reported that BDNF overexpression through
viral delivery and/or cell grafts in a cervical hemisection
rat model led to spasticity-like symptoms such as clenching
of the paws and sustained wrist flexion (Fouad et al.,
2013). Motor circuits of the spinal cord are not the only
ones that can be modified by BDNF, as viral delivery of
BDNF following complete thoracic transection in adult rats
promoted stepping function but also increased pain sensitization
(Boyce et al., 2012). Therefore, these results emphasize the
need for tight regulation of the timing of delivery and the
dosage of growth-promoting molecules in order to avoid
secondary complications.

Strategies Aiming to Generate New or
Replace Lost Propriospinal INs
An alternative approach to modulating the activity of existing
propriospinal INs or promoting remodeling of propriospinal
circuits would be to replace lost propriospinal INs due to injury
(Bonner and Steward, 2015; Courtine and Sofroniew, 2019).
Recently, neural stem cell transplantation has gained much
attention as a repair mechanism after SCI. Transplantation of

neural stem/progenitor cells (NSPC) was shown to promote
functional recovery after mild and moderate contusion at the T9
level in mice by reorganizing the circuitry of propriospinal INs
(Yokota et al., 2015). Retrograde transsynaptic tracing showed
that propriospinal circuits reorganize in both longitudinal and
transverse directions, enhancing synaptic integration between
the engrafted NSPCs and the host neurons. Recently, human
neural stem cell grafts into C7 hemisection lesion sites in
non-human primates were shown to extend axons into the
caudal spinal cord of the host. These same grafts exhibited
evidence of integration with descending tracts from supraspinal
motor centers, a feature that was associated with improvements
in forelimb function (Rosenzweig et al., 2018). As such,
these stem cell interventions provide a promising strategy
to generate new propriospinal relays in cases where spared
motor circuitry is insufficient to restore meaningful motor
function after SCI.

PERSPECTIVES

As demonstrated by the research described herein, propriospinal
INs are necessary for the appropriate control of locomotion in
the intact state. It is therefore unsurprising that propriospinal
INs are also critical to locomotor recovery after SCI, and
represent important therapeutic targets for novel SCI treatments.
However, given the diversity of propriospinal INs in organization
and function as well as the neural dysfunction that can
arise from neural plasticity following SCI (Boyce et al.,
2012; Beauparlant et al., 2013; Fouad et al., 2013; Ziemlińska
et al., 2014), effectively harnessing propriospinal INs will
likely require significant advancement in our understanding
of how these neurons adapt to SCI, and how different
populations work together to support locomotion after a
substantial loss of supraspinal input. New methods to non-
invasively manipulate propriospinal INs, either regionally using
epidural stimulation, or in a population-specific manner using
chemogenetic and optogenetic approaches (Asboth et al.,
2018; Mondello et al., 2018; Lin et al., 2019), will be
critical to develop new therapeutic strategies and to improve
our understanding of propriospinal IN function after SCI.
Supplemental strategies to improve integration of propriospinal
IN relays, such as the transcranial stimulation approach
proposed to induce greater CST plasticity to propriospinal INs
(Krishnan et al., 2019), or more conventionally, locomotor
training paradigms to refine these propriospinal circuits, may
also prove to be critical for the optimization of locomotor
recovery. In any case, as the knowledge of propriospinal INs
and locomotion steadily advances, the future of the field
appears bright – with significant challenges and opportunities for
discovery on the horizon.
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