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1  |  INTRODUC TION

Mammalian target of rapamycin (mTOR) is a serine/threonine-
specific kinase complex and its-mediated pathway play key roles 
in cell growth, proteo-synthesis, ribosomal biogenesis, transcrip-
tional regulation, lipid metabolism, and autophagy.1 The mTOR 
signalling pathway is the second most frequently altered pathway 
in human cancers and its aberrant activation contributes to tumor 

proliferation, angiogenesis, invasion and survival.2 Angiogenesis, a 
formation of new blood vessel from pre-existing ones, is required 
for solid tumor development.3 Retinoblastoma is characterized with 
extensive vascularization and thus targeting mTOR signalling might 
represent a more effective therapeutic strategy for retinoblastoma 
as mTOR is critically involved in both tumor and angiogenesis. In 
support of this hypothesis, we previously demonstrated that tem-
sirolimus, FDA-approved mTOR-targeted drug for the treatment 
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Abstract
We and others have shown that aberrant activation of the mammalian target of rapa-
mycin (mTOR) signalling is essential for retinoblastoma progression and has potential 
therapeutic value. TAK-228 is a potent inhibitor of mTOR1 and 2 with preclinical ac-
tivity in a variety of cancers. In this study, we report that TAK-228 is a dual inhibitor 
of retinoblastoma and angiogenesis. TAK-228 inhibits growth and induces apoptosis 
in a panel of retinoblastoma cell lines, with IC50 at ~0.2  μM. Under the same ex-
perimental conditions, TAK-228 was less effective in inhibiting growth and survival 
in normal retinal and fibroblast cells than retinoblastoma cells. In addition, TAK-228 
inhibited retinal endothelial cell capillary network formation, migration, growth and 
survival. We further demonstrate that TAK-228 inhibits retinoblastoma and retinal 
angiogenesis through inhibiting mTOR signalling. Rescue studies confirm that mTOR is 
the target of TAK-228 in both retinoblastoma and retinal endothelial cells. Finally, we 
confirm the inhibitory effects of TAK-228 on tumor and angiogenesis in retinoblas-
toma xenograft mouse model. Our findings provide a preclinical rationale to explore 
TAK-228 as a strategy to treat retinoblastoma and highlight the therapeutic value of 
targeting mTOR in retinoblastoma.
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of advanced renal cell carcinoma,4 is active against retinoblastoma 
growth, survival and tumor angiogenesis.

mTOR functions in two distinct multi-protein complexes des-
ignated as mTOR complex 1 (mTORC1) and complex 2 (mTORC2): 
mTORC1 is sensitive to nutrients while mTORC2 is regulated via 
PI3K and growth factor signaling.5 Activation of mTORC1 leads to 
the phosphorylation of ribosomal protein S6 kinase 1 (S6K1) and 
the eukaryotic initiation factor eIF4E-binding protein 1 (4E-BP1) 
whereas activation of mTORC2 results in the phosphorylation of Akt 
and N-Myc downstream regulated 1 (NDRG1).6 TAK-228 is an oral 
and selective dual inhibitor targeting both mTORC1 and mTORC2, 
and has recently been evaluated for solid tumor and hematology 
treatment under preclinical and clinical settings.7-10 This work sys-
tematically evaluated the efficacy of TAK-228 on tumor cells and 
retinal endothelial cells in multiple preclinical retinoblastoma mod-
els, and attempted to identify the underlying mechanism of TAK-
228’s action.

2  |  MATERIAL S AND METHODS

2.1  |  Cells, reagents, antibodies and western blot

Five human retinoblastoma cell lines, immortalized normal retinoblas-
toma pigmented epithelial cell line (RPE-1), and normal human fibro-
blast BJ-5ta were obtained from American Type Culture Collection 
or Chinese Academy of Sciences and were authenticated through 
short tandem repeat profiling analysis (Precision Biotechnology). 
Retinoblastoma and normal cells were maintained under the same 
culturing conditions as described in our previous studies.11,12 Human 
primary retinal microvascular endothelial cell (HREC; Cell Systems) 
were cultured in basal M131 medium supplemented with microvas-
cular growth supplement (Invitrogen). TAK-228 (Selleckchem, 99% 
purity with HPLC) and MHY1485 (Selleckchem, 99% purity with 
HPLC) were reconstituted in dimethyl sulfoxide (DMSO), sterile-
filtered and stored in aliquots in −20°C. Antibodies against phospho-
Akt(Ser473), -mTOR(Ser2448), -S6K1(Thr389), -rS6(Ser240/244), 
-4EBP1(Thr37/460), -NDRG1(Ser330) and their corresponding total 
were all obtained from Cell Signaling Technology. Denaturing so-
dium dodecyl sulfate–polyacrylamide gel electrophoresis and west-
ern blot were performed using the standard protocol.13

2.2  |  Measurement of proliferation and apoptosis

5 × 103 cell/wells for proliferation assay and 5×106 cell/wells for 
apoptosis assay were treated with TAK-228 at 0.1, 0.2, 0.4, 0.8, 
and 1.6 μM. After 3 days, proliferation was determined by adding 
20  µl MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphen
yl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt) was added to each 
well, incubating for 2–4  h and measuring absorbance at 490  nm. 
Apoptosis was determined by staining cells with Annexin V/7-AAD 
(BD Pharmingen) as per manufacture’s protocol, followed by flow 

cytometry analysis on a Beckman Coulter FC50. Annexin V+/7-
AAD- and Annexin V+/7-AAD+cells were considered as apoptotic 
cells under early and late stage of apoptosis, respectively.

2.3  |  In vitro capillary network formation

150  µl/well of complete Matrigel (Chemicon International) was 
plated onto 96-well plate and placed in 37°C incubator. After gel 
solidification, 50  µl of 2  ×  104 HREC cells, TAK-228 and medium 
mixture were gently plated onto each well. After 8 h incubation in 
cell culture incubator, capillary network was documented using an 
inverted microscope (Zeiss).

2.4  |  Boyden chamber migration assay

Migration assay was performed using the Boyden chamber with 
6.5-mm diameter tissue culture inserts and 8.0-µm pore size poly-
carbonate membranes. HREC and TAK-228 were placed in the 
gelatin-coated cell culture insert. Medium supplemented with 10 ng/
ml vascular endothelial growth factor were placed on the lower 
chamber as chemoattractant. After 8 h incubation, unmigrated cells 
on the upper surface of the insert were removed with a cotton swab. 
4% paraformaldehyde was used to fix the cells migrating the lower 
surfaces of the polycarbonate membranes. Then, the cells were 
stained with crystal violet and counted under a microscope (Zeiss).

2.5  |  Endothelial cell adhesion assay

The VybrantTM Cell Adhesion assay kit was used to quantify cell 
adhesion as described in our previous study.12 Briefly, HREC was 
pre-labelled with calcein and then seeded to onto 10× diluted 
Matrigel-coated plate. TAK-228 was concurrently added. After 1-h 
incubation, non-adherent cells were removed by gentle washing and 
adherent cells were quantified via measuring the calcine-absorbance 
on fluorescence microplate reader.

2.6  |  In vivo retinoblastoma model and 
immunohistochemistry

All procedure was conducted in accordance with the recommen-
dations in the Guide for the Care and Use of Laboratory Animals 
Committee of Wuhan University. 4–6 weeks old male NOD severe 
combined immunodeficient mice (NOD/SCID, Shanghai Laboratory 
Animal Center) were maintained in at a pathogen-free 12  h light/
dark cycle environment. Ten million RB355 were harvested and re-
suspended in phosphate-buffered solution for subcutaneous injec-
tion to mice flank under anesthesia condition. Tumors were allowed 
to form and mice with palpable tumors were randomized into groups 
(n = 10 each) receiving vehicle and TAK-228 at 0.5 mg/kg via oral 
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administration. Tumor size and general toxicity were monitored. 
Mice were euthanized when tumor size reached ~1500 mm3 using 
CO2 inhalation. Tumors were isolated and proceeded for blood ves-
sel staining using immunohistochemistry of CD31 as described in 
our previous study.12 Quantification of staining was performed using 
Image J software.

2.7  |  Statistical analyses

Each in vitro experiment was performed at least thrice, and data 
were expressed as mean and standard deviation (SD). Student’s t 
test for pair-wise comparisons for samples with normal assumptions, 
with p < .05 considered statistically significant.

3  |  RESULTS

3.1  |  TAK-228 inhibits proliferation and survival 
in retinoblastoma cells, and to a more extent than in 
normal cells

To determine the effect of TAK-228 on the proliferation and survival 
of retinoblastoma cells, we used five retinoblastoma cell lines that 
are frequently used to model retinoblastoma disease. Y79, RB355 

and WERI-Rb27 are genetically related with similar, heterozygous 
rearrangements of their RB genes.14 RB116 cells display RB ex-
pression without mutation, and expresses primitive stem cell and 
retinal progenitor cell markers.15 WERI-Rb-1 cells retained retinal 
progenitor cell properties.16 Cells were treated with TAK-228 at 
72 h. Proliferation and apoptosis were assessed through measuring 
BrdU and Annexin V. All retinoblastoma cell lines were growth in-
hibited with varying IC50 at ~0.2 μM (Figure 1A). TAK-228 increased 
Annexin V percentage in retinoblastoma cells with the concentration 
starting from 0.4 μM (Figure 1B). Compared to retinoblastoma cells, 
TAK-228 at the same concentration either did not affect or led to 
less growth inhibition and apoptosis induction in normal retinal epi-
thelial cells RPE-1 and fibroblast BJ-5ta cells (Figure 1), demonstrat-
ing that TAK-228 displays a preferentially toxicity to retinoblastoma 
compared normal cells.

3.2  |  TAK-228 inhibits retinal angiogenesis via 
targeting multiple biological functions of retinal 
endothelial cells

Angiogenesis is a therapeutic target for retinoblastoma because ret-
inoblastoma growth largely depends on angiogenesis.17 It is therefore 
essential to determine whether TAK-228 also has anti-angiogenic ac-
tivity. To mimic retinal angiogenesis model, we plated primary human 

F I G U R E  1 The inhibitory effects of TAK-228 on retinoblastoma and normal cells. The anti-proliferative (A) and pro-apoptotic (B) effects 
of TAK-228 on retinoblastoma cells (RB116, WERI-Rb27, WERI-Rb1, Y79 and RB355), normal fibroblast BJ-5ta and normal retinal pigment 
epithelial cell (RPE-1). IC50 was indicated at dash line
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retinal microvascular endothelial cell (HREC) on extracellular matrix 
proteins and growth factors-enriched Matrigel which endothe-
lial cells can rapidly form capillary network.18 As expected, HREC 
forms extensive capillary network within 8 h in control (Figure 2A). 
In contrast, TAK-228 treated-HREC failed to form proper capillary 
network. Quantification of total capillary length showed that TAK-
228 at nanomolar concentration dose-dependently inhibited retinal 
angiogenesis (Figure 2B).

The in vitro formation of endothelial cell capillary network 
is a multi-step and dynamic process including cell adhesion to 
Matrigel and cell migration. We further found that TAK-228 sig-
nificantly inhibited HREC migration (Figure  2C) but not adhe-
sion to diluted Matrigel (Figure  2D). Similar to retinoblastoma 
cells, TAK-228 also significantly decreased proliferation and 
induced apoptosis in HRECs (Figure 2E and F). Taken together, 
our results clearly demonstrate that TAK-228 inhibits retinal an-
giogenesis via targeting multiple biological functions of retinal 
endothelial cells.

3.3  |  TAK-228 inhibits mTOR signalling in both 
retinoblastoma and HREC cells

As a specific dual inhibitor of mTORC1 and mTORC2, the anti-cancer 
activity of TAK-228 has been attributed to its ability in inhibiting mTOR 
signalling.10,19 Given the importance of mTOR signalling in retinoblas-
toma and endothelial cell growth and survival,20 we performed immu-
noblot analysis of molecules involved in mTOR signalling in both RB355 
and HREC cells after TAK-228 treatment. As expected, TAK-228 at 0.2 
to 1.6 μM remarkably decreased phosphorylation of mTOR at Ser2448 
in retinoblastoma cells (Figure 3A and B). TAK-228 decreased phospho-
rylation of S6K1 and 4EPB1, the two well-characterized downstream 
substrates of TORC1, and inhibited AKT phosphorylation at Ser473 and 
NDRG1 at Ser330, the downstream substrate of TORC2 in retinoblas-
toma cells. The same inhibition of mTOR signalling by TAK-228 was also 
observed in HREC (Figure 3A and C). We These results demonstrate 
that TAK-228 inhibits mTOR signalling through disrupting mTORC1 and 
mTORC2 in both retinoblastoma and retinal endothelial cells.

F I G U R E  2 The anti-angiogenic activity of TAK-228 on retinal angiogenesis. (A and B) TAK-228 dose-dependently inhibits human retinal 
endothelial cell (HREC) capillary network formation. 20× magnification, scale bar = 0.5 mm. Complete Matrigel supplemented with various 
growth factors and cytokines were used for HREC tube formation. The inhibitory effects of TAK-228 on HREC migration (C), adhesion to 
matrix (D), proliferation (E) and survival (F). 10 ng/ml VEGF was used in migration assay. *p < .05, compared to control
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To confirm mTOR as the target of TAK-228, we performed 
rescue studies using mTOR activator MHY1485. Consistent with 
other studies,21,22 we showed that MHY1845 at 10 µM increased 
phospho-mTOR levels in RB355 and HREC cells (Figure 4A). We fur-
ther showed that MHY1485 partially but significantly reversed the 
anti-proliferative and pro-apoptotic effects of TAK-228 in RB355 
and HREC cells (Figure 4B–E). These clearly demonstrate that mTOR 
inhibition is the mechanism of TAK-228’s action in retinoblastoma 
and retinal endothelial cells.

3.4  |  TAK-228 inhibits retinoblastoma and 
angiogenesis in vivo

To further confirm the anti-angiogenic and anti-retinoblastoma 
activities of TAK-228, we established a retinoblastoma xenograft 
mouse model, monitored tumor size and assessed tumor angiogen-
esis in control and TAK-228 treatment groups. TAK-228 at 0.5 mg/

kg was administrated to mice through oral gavage once per day for 
24 days. Consistent with the previous findings,10 we found that TAK-
228 treated mice remained active and displayed no obvious toxicity 
or weight loss (data not shown). In contrast, TAK-228 at the same 
dose significantly delayed tumor growth beginning at 12 days of the 
initial treatment and its inhibitory effect was observed throughout 
the duration of treatment (Figure 5A). Immunohistochemistry stain-
ing of microvessel endothelial cell marker CD31 showed a significant 
reduction of CD31 staining in TAK-228-treated tumors (Figure 5B 
and C). These results demonstrate that TAK-228 at non-toxic dose 
is effective in inhibiting retinoblastoma and tumor angiogenesis in 
mice.

4  |  DISCUSSION

TAK-228, a dual inhibitor of mTORC1 and mTORC2, has been recently 
shown to demonstrate a manageable safety profile with antitumor 

F I G U R E  3 TAK-228 inhibits mTOR signaling in retinoblastoma and retinal endothelial cells. (A) Western blot of RB355 and HERC cells 
treated with TAK-228 for 24 h. Antibodies used in western blot analyses and representative western blot photos were shown. Quantification 
of p-mTOR, p-S6K, p-4EBP1, p-NDRG1 and p-Akt in RB355 (B) and HREC (C) cells exposed to TAK-228. Band density was measure by Image 
J and each phosphorylation was normalized with corresponding total, followed by β-actin normalization. *p < .05, compared to control
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activity in advanced solid tumors.8 It has been hotly investigated in many 
clinical trials either as single drug or in combination with standard of care 
drugs, for patients with a variety of cancers, such as metastatic triple neg-
ative breast cancer (NCT03193853), metastatic anaplastic thyroid can-
cer (NCT02244463) and recurrent epithelial ovarian (NCT03648489). 
However, no preclinical studies or clinical trials have assessed efficacy 
of TAK-228 on retinoblastoma. The poor prognosis of advanced retino-
blastoma is partly attributed to a lack of effective targeted therapies. In 
this study, we highlight the therapeutic value of inhibiting mTOR signal-
ing in retinoblastoma and reveal the anti-retinoblastoma activity of TAK-
228 via suppressing both tumor and endothelial cells.

We show that TAK-228 is active in targeting retinoblastoma cells 
through inhibiting growth and inducing apoptosis, and furthermore 
that to a significantly more extent than in normal retinal cells and fi-
broblasts. The IC50 of TAK-228 in retinoblastoma is ~200 nM, which 
is similar to the IC50 in breast cancer and pancreatic cancer cells, and 
acute myeloid leukemia cells,10,23,24 suggesting the potent efficacy 
of TAK-228 in many cancers. This is further supported by our in vivo 
studies that oral TAK-228 at 0.5 mg/kg is effective in delaying retino-
blastoma growth in mice. Compared to other mTOR inhibitors, such as 
RAD001, temsirolimus and rapamycin,12,25 we and others show that 

TAK-228 displays higher efficacy of anti-cancer activity. The combina-
tory efficacy of TAK-228 and carboplatin should be further validated 
using retinoblastoma xenograft models. Synergism has been observed 
between TAK-228 and CDK4/6 inhibitor palbociclib in pRb-expressing 
ER-negative breast cancer.26 In addition, TAK-228 re-sensitizes plati-
num resistant ovarian cancer to platinum chemotherapy.27

Apart from targeting tumors, our work also reveals that TAK-228 
is an angiogenesis inhibitor through disrupting retinal endothelial 
cell capillary network formation, inhibiting migration and growth, 
and inducing apoptosis. The dual inhibitory effects of TAK-228 on 
retinoblastoma and tumor angiogenesis has been confirmed in our 
established xenograft mouse model. Angiogenesis is required for 
retinoblastoma progression and angiogenesis inhibition by bevaci-
zumab or pigment epithelium-derived factor is active against reti-
noblastoma without producing significant systemic toxicity.28,29 
Compared with angiogenesis inhibitors that have much less inhibi-
tory effects on tumor cells, TAK-228 has advantages because TAK-
228 targets both endothelial cell and tumor cells.

Mechanistically, we confirm that TAK-228 inhibits both 
mTORC1/2 activity as shown by the deactivation of downstream 
effectors of both mTORC1- and 2-mediated signaling in both 

F I G U R E  4 mTOR activator reverses TAK-228’s effects in retinoblastoma and retinal endothelial cells. (A) Western blot of RB355 and 
HERE cells treated with 10 µM MHY1845. MHY1845 significantly reversed anti-proliferative (B and C) and pro-apoptotic (D and E) of TAK-
228 in RB355 and HERC. *p < .05, compared to control
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retinoblastoma cells and retinal endothelial cells. Rescue studies 
using mTOR activator MY1485 confirm that mTOR is the molecu-
lar target of TAK-228. TAK-228 is superior to those mTOR inhibitors 
such as temsirolimus and RAD001 that are only effective in target-
ing mTORC1 without affecting mTORC2.30 TAK-228 also overcomes 
the undesired effects of rapalogs, a PI3K/mTOR dual inhibitor, in the 
activation of Akt pathway. Mutations that constitutively hyperacti-
vate PI3K/Akt/mTOR confer an advantage to cancer cells. Although 
there is low frequency of oncogenic mutations in the AKT1 and 
PIK3CA in retinoblastoma, PI3K/Akt is dysregulated possibly via 
different activating mechanism.31 The development and application 
of mTOR inhibitors or compounds targeting the dysregulated PI3K/
Akt/mTOR signalling are key areas of anti-cancer research.

In conclusion, TAK-228 exerts its inhibitory effect on both reti-
noblastoma and tumor angiogenesis through inhibiting mTOR1 and 
2-mediated signalling. In addition, our work also emphasizes that 
targeting mTOR may represent a new therapeutic strategy against 
recurrent retinoblastoma.
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