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Abstract: Arsenic is extremely abundant in the Earth’s crust and is one of the most common environ-
mental pollutants in nature. In the natural water environment and surface soil, arsenic exists mainly
in the form of trivalent arsenite (As(III)) and pentavalent arsenate (As(V)) ions, and its toxicity can
be a serious threat to human health. In order to manage the increasingly serious arsenic pollution
in the living environment and maintain a healthy and beautiful ecosystem for human beings, it is
urgent to conduct research on an efficient sensing method suitable for the detection of As(III) ions.
Electrochemical sensing has the advantages of simple instrumentation, high sensitivity, good selectiv-
ity, portability, and the ability to be analyzed on site. This paper reviews various electrode systems
developed in recent years based on nanomaterials such as noble metals, bimetals, other metals and
their compounds, carbon nano, and biomolecules, with a focus on electrodes modified with noble
metal and metal compound nanomaterials, and evaluates their performance for the detection of
arsenic. They have great potential for achieving the rapid detection of arsenic due to their excellent
sensitivity and strong interference immunity. In addition, this paper discusses the relatively rare
application of silicon and its compounds as well as novel polymers in achieving arsenic detection,
which provides new ideas for investigating novel nanomaterial sensing. We hope that this review
will further advance the research progress of high-performance arsenic sensors based on novel
nanomaterials.

Keywords: As(III) detection; electrochemical sensing; nanosensing; biosensing

1. Introduction

In China and the rest of the world, environmental pollution has always been an urgent
problem that threatens the living environment and health of human beings. A variety of
forms of environmental pollution exist at the same time, including soil, air, radioactive
elements, water pollution, and so on. Among the most direct and obvious causes of harm
to human beings, the heavy metal pollution of water environments, the toxicity of heavy
metal-like arsenic (As) ions, and the degree of difficulty in detecting and removing them
constitutes one of the most important forms of environmental pollution. Arsenic is an
element that is widely distributed in soil, minerals, the aquatic environment, and the
atmosphere. In terms of arsenic abundance, it ranks 20th in the Earth’s crust, 14th in
seawater, and 12th in human systems when comparing all elements [1]. Widespread in
nature, arsenic and its compounds are mobile in the environment and, when dissolved in
the water species of arsenic, contamination will even enter the biosphere through the food
chain. As early as the 1970s, in a study by the U.S. National Pesticide Monitoring Program
targeting the detection of mercury, arsenic, lead, cadmium, and selenium residues in fish,
the results show that more than 95% of the combined samples have detectable residues
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of all metals. This number is increasing year by year [2]. In natural water bodies, arsenic
is usually present as arsenite (As(III)), arsenate (As(V)), monomethylarsenic acid (MMA),
and dimethylarsenic acid (DMA). Inorganic forms of arsenite (As(III)) and arsenate (As(V))
have stronger circulation and are more likely to be enriched in the food chain, which is the
main form of arsenic present in nature and has a great impact on human survival.

Heavy metals are a very important class of carcinogens, especially nickel, chromium,
and arsenic, which are recognized as human carcinogens [3]. Radon and arsenic exposure
were recognized as major risk factors in a cohort of Chinese tin miners with lung cancer [4].
Additionally, in China, Y J Lu et al. studied mineral dust deposition in the lungs of tin
miners in Yunnan Province, and data obtained in lung tissue provided evidence for arsenic
as a cause of lung cancer [5]. Exposure to inorganic arsenic in drinking water has the
potential to cause changes in left ventricular geometry and cardiomegaly in adult males [6].
There are many ways for humans and animals to be exposed to arsenic (mainly through
drinking water and the accumulation of arsenic in the food chain). Long-term exposure
to arsenic ions may lead to a series of physiological diseases, including neurological,
physiological, reproductive, kidney, liver, and even genetic conditions [7]. There is serious
arsenic contamination of water and soil in many countries around the world, including
China, and there was a large-scale arsenic ion poisoning incident in Bangladesh [8,9].

It is on account of these characteristics of arsenic that the detection of trace amounts
of arsenic is very important. As early as the nineteenth century, John Bostock realized the
importance of detecting traces of arsenic and observed different methods of doing so [10].
In 1901, S Delepine applied arsenic detection technology to life, detecting arsenic in beer
and brewing materials [11]. In the following years, various techniques were applied to
arsenic detection, and these techniques are divided into two main categories according to
the instruments used: one is the use of traditional instrumentation techniques, including
atomic absorption spectrometry, atomic emission spectrometry, inductively coupled plasma
mass spectrometry, etc. The second is the use of new sensor methods, mainly biosensor
methods, electrochemical detection, and the ultraviolet–visible spectroscopy (UV–Vis),
colorimetric method, etc. In this paper, electrochemical detection methods will be intro-
duced. Electrochemical detection has a series of advantages such as simple instrumentation,
simple operation, high sensitivity, high selectivity, being easy to carry, and being easy to
use for rapid detection. Electrochemical detection methods are an effective alternative to
traditional ion detection methods.

2. Principles of Electrochemical Detection of As(III)

Probably one of the oldest measurement techniques, the electrochemical method, is an
analytical method based on electrochemical principles and founded on the electrochemical
properties of a substance in solution, which implies the transfer of charge between the
electrode and the liquid or solid phase [12]. During the detection, the solution to be tested
is usually used as part of a chemical cell, which reacts to the concentration of the substance
being detected by means of the electrical parameters of the chemical cell. Compared with
other arsenic detection methods, electrochemical detection is considered to be user-friendly
and achieves a more desirable detection result, while the detection process is simple and
cost effective. After a long period of development, electrochemical detection techniques to
detect arsenic have become more mature, and there are many commonly methods based on
various electrical signals used in the detection of heavy metals. Electrochemical techniques
are divided into amperometric, voltammetric, potentiometric, impedance measurements,
coulometric, and electrochemiluminescent techniques [13]. The general apparatus for
electrochemical detection is shown in Figure 1 and usually consists of an electrolytic cell in
which the heavy metal ions or other classes of heavy metal ions to be detected act as the
electrolyte. A chemical reaction occurs in the cell, partly at the working electrode, resulting
in a change in the electrical parameters that establish a link with the concentration of the
target element for the purpose of quantitative analysis.
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Voltammetry is considered the most versatile of the arsenic ion assays and has been
further advanced with the development of potential and current modulation techniques,
such as differential pulse voltammetry (DPV), square-wave voltammetry (SWV), stripping
chronopotentiometry (SCP), etc. Voltammetry is based on the voltage–current time relation-
ship generated in a three-electrode cell; the position of the peak is reflective of the specific
chemical, and the density of the peak is related to the concentration of the substance being
detected. The combination of electrode modification and pre-concentration techniques
further increases the selectivity and sensitivity of voltammetry.

3. Electrochemical Detection Electrodes for As(III)

During decades of research, electrodes have often been modified in order to improve
the sensitivity and selectivity of the electrochemical detection of ions. In the beginning,
the excellent electrical properties of precious metals (e.g., gold and silver) were taken
into account and a large number of electrodes made of precious metals were used for
electrochemical detection. Later, there were considerations of cost constraints, reducing the
amount of precious metals, and modifying the working electrodes with precious metals and
their nanoparticles to achieve the same detection results. To further reduce costs, a range
of materials including carbon nanomaterials, non-precious metal oxides, and bimetallic
nanoparticles have been used for detection, again well below the WHO (World Health
Organization) detection limit of 10 ppb. Additionally, in today’s interdisciplinary world,
there are many biotechnologies used for electrochemical detection, with examples of
bioreceptors such as DNA or proteins being used for modified electrodes.

3.1. Precious Metal Electrodes and Precious-Metal-Modified Electrodes

The excellent electrical properties of precious metals with good conductivity make
them the preferred choice for electrode materials and their modifications in electrochemical
detection. They show distinct advantages over the conventional macroelectrodes, such
as increased mass transport, decreased influence of the solution resistance, low detection
limit, and better signal-to-noise ratio [14]. In addition, precious metal particles can easily
be deposited onto the electrode surface by electrochemical means, thus modifying the
electrode and improving its overall surface properties.
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3.1.1. Gold Electrodes and Gold-Modified Electrodes

Gold electrodes in various forms and gold-modified materials have long been a popu-
lar topic in electrochemical detection. Agnese Giacomino et al. achieved a low detection
limit of 0.060 ppb in the range of 1–15 ppb for the determination of As(III) by anodic
dissolution voltammetry using a lateral gold electrode [15]. The electrochemical behavior
of gold electrodes is closely related to their crystal orientation, and single-crystal Au(111)
electrodes with clean, well-defined, and ordered surfaces can provide a more defined
electrochemical behavior for As detection and are suitable for studying deposition mecha-
nisms. Mohammad Rezaur Rahman et al. reported a simple method for the fabrication of
Au(111)-like poly-gold electrodes, achieving a low detection limit of 0.28 ppb by square-
wave anodic solvation voltammetry (SWASV) [16]. In addition, there are different sizes
and forms of gold electrodes, including solid-disc gold electrodes [17], thin-film gold elec-
trodes on glass carbon electrodes [18], graphite electrodes [19], platinum electrodes [20],
microfilament gold electrodes [21], etc. Lijuan Bu et al. proposed the first method to
electrically generate H2 to reduce As(III) and improve As(0) preconcentration on a gold
disc electrode for the determination of As(III) by anodic stripping voltammetry, which
improved the sensitivity of As(III) detection and achieved a detection limit of 1.0 nM or
0.075 ppb [22]. Gold wire microelectrodes are also a common class of gold electrodes and
ChiZhou was able to detect As(III) down to 2.6 ppb in 0.5 M H2SO4 by square-wave anodic
dissolution voltammetry using electrochemically etched gold wire microelectrodes [23].
S. Laschi et al. tested a disposable gold screen-printed working electrode for arsenic detec-
tion in aqueous solutions using square-wave anodic dissolution voltammetry (SWASV) and
achieved a detection limit of 2.5 ppb after 60 s of deposition [24]. A self-made nanoporous
gold microelectrode by Darío Xavier Orellana Jaramillo et al. had a high sensitivity of
29.75 µA (µg L−1)−1 cm−2 and a low detection limit of 0.62 ppb [25]. More comparisons of
different gold-based electrodes are given in Table 1.

Table 1. Comparison of gold electrodes.

Electrode Method Sensitivity (µA/ppb) Linear Range(ppb) LOD (ppb) Reference

composite gold electrode DPASV 0.32 [26]

gold side disk
rotating electrode DPASV 5–80 [27]

gold screen-printed electrode SWASV 0.03 0–200 2.5 [24]

gold film SCP 1 0.022 [28]

gold nanoelectrode ensembles SWASV 3.14 0.02 [29]

gold nanofilm LSV 2 0.2–375 0.04 [17]

Au(111)-like polycrystalline
gold electrode SWASV 0.097 µA ppb−1 cm−2 0–1123.8 0.28 [16]

vibrating gold
microwire electrode DPASV 0.014 µA ppb−1 mm−1 V−1 0.07–3.0 0.07 [21]

lateral gold electrode ASV 9.15 0.1–15 0.06 [15]

MEA-modified Au electrode DPASV 0.0366 0.2–300 0.02 [30]

Au-MEE LSASV 1–10 0.09 [31]

Au disc electrode ASV 18.69 0.75–299.68 0.075 [22]

nanoporous gold
microelectrode LSV 1.74 × 10−4 1.50–14,984 1.50 [32]

two gold electrodes ASV 0.0374–0.7492 0.0097 [33]

Au-wire electrode ASCP 3 0.42 [34]
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Table 1. Cont.

Electrode Method Sensitivity (µA/ppb) Linear Range(ppb) LOD (ppb) Reference

porous gold electrode SWV 0.1–14 0.1 [35]

gold electrode ASV 0−5000 850 [36]

nanoporous gold
microelectrode SWASV 29.75 µA ppb−1 cm−2 2–30 and

10–200 0.62 [25]

gold wire microelectrode ASV 6.8 µA ppb−1 cm−2 2.6 [23]

arsenite-selective ionophore
film-Au ASV 10–100 1.10 [37]

gold nanotextured electrode ASV 39.54 µA ppb−1 cm−2 0.1–9 0.1 [38]

gold nanostar SWSV 4 2.5–764.2 0.8 [39]
1 stripping chronopotentiometry; 2 linear sweep voltammetry; 3 anodic stripping chronopotentiometry; 4 square
wave stripping voltammetry.

Additionally, due to the detection cost of using gold as an electrode, there has been
increasing amounts of research on gold nanoparticle-modified conventional macroscopic
electrodes, such as modified graphite electrodes [19], glassy carbon electrodes [40], screen-
printed electrodes [41], gold electrodes [17], solid carbon paste electrodes [42] or boron-
doped diamond electrodes [43], etc. Forsberg et al. tested three different materials (plat-
inum, mercury, and gold) for modified electrodes [44], using anodic solvation voltammetry
(ASV) and differential pulse anodic solvation voltammetry (DPASV), and found that the
gold-modified electrodes were the most sensitive to the electrical signal generated by
arsenic oxidation (which is one of the reasons why gold nanomaterials became the first
material for modified electrodes). In addition to various forms of nanogold, other materials
of composite-modified electrodes for the electrochemical detection of arsenic are a hot topic
of research.

Supunnee Duangthong et al. developed a flow injection differential pulsed anodic
dissolution voltammetry (FI-DPASV) method for the detection of arsenic, using a gold film-
modified glassy carbon electrode as the working electrode and optimizing the parameters
to achieve a low detection limit of 0.81 ppb in the linear interval 1.0–30 ppb for As(III) [45].
Syeda Sara Hassan et al. synthesized gold nanoflower structures by heating a mixture of
ibuprofen and gold chloride (HAuCl4) at a constant temperature for about 30 min. The SEM
images are shown in Figure 2. Ibu-AuPNFs modified screen-printed electrodes, followed
by Nafion as a binder and stabilizer, were used in the 0.1–1800 ppb range, observed for
As(III) with a linear calibration plot with a lower limit of detection of 0.018 ppb [46].
Tran Ngoc Huan proposed a three-dimensional (3D) gold (Au) nanodendritic network
porous structure constructed by a simple electrochemical synthesis method, the SEM images
of which in different views are shown in Figure 3, allowing for the more sensitive detection
of As(III) due to its larger surface area [47]. Dao Anh Quang successfully synthesized and
stabilized gold nanorods (GNR) using cetyltrimethylammonium bromide (GNR-CTAB)
and poly(sodium-4-styrenesulfonate) (GNR-PSS); the TEM image and the diameter and
length distribution of the synthesized nanorods are shown in Figure 4. The GNR-modified
glassy carbon electrode showed an excellent response with a limit of detection (LOD) of
0.72 ppb and a linear concentration of As(III) between 0.90 and 38.99 ppb [48]. Dingnan
Lu et al. reported a square-wave anodic dissolution voltammetry (SWASV) method using
a new gold nanostar-modified screen-printed electrode (AuNS/SPCE) as the working
electrode; the TEM image of the gold nanostar is shown in Figure 5. Electrochemical
impedance spectroscopy tests showed that the charge transfer resistance of AuNS/SPCE
(0.8 kΩ) was significantly lower compared with bare SPCE (2.4 kΩ), achieving a sensitivity
of 0.2213 µA/ppb in the linear detection interval of 0–100 ppb for As(III) detection [49].
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Among the many gold nanomaterials, gold nanoparticles and composites of gold nanopar-
ticles on various materials are the absolute favorites in the field of electrochemical detection.

Anamarija Stanković et al. modified glassy carbon electrodes with gold nanoparticles
and crystalline violet [50]. The electron impedance spectroscopy results show that the elec-
tron transfer resistance of the nanogold crystalline violet film was lower than that of the bare
glassy carbon electrode, thus enhancing the electron transfer kinetics. The sensitivity of the
modified electrode for the detection of As(III) was 5.6 A/µM cm2, the detection limit was
0.8 µM, and it had a good linear response in the range of 2.0–22.0 µM. Connor Sullivan et al.
used a screen-printed electrode modified with nanogold to detect As(III) in commercial
apple juice by square-wave dissolution voltammetry. The sensitivity of the method was
0.1007 µA ppb−1 and the detection limit was 16.73 µg L−1. The results of voltammetry
were compared with those of graphite furnace atomic absorption spectrometry, with no
systematic deviation and an R2 of 0.939 [51]. In recent years, electro-membrane extraction
(EME) and anodic stripping voltammetry (ASV) combined with gold nanoparticle-modified
glassy carbon electrodes (AuNPs/GCE) have also been used to detect As (III) in water,
with a detection limit of 0.18 µg L−1 for this method [52]. The application of electromag-
netic radiation before electrochemical determination improves the selectivity and cleaning
ability of the sample, which can increase the lifetime of the working electrode and reduce
surface passivation.

A simple and easy method for synthesizing bentonite (bt) clay-supported gold nanopar-
ticles (AuNPs) composites has been reported [53], and the test plots are shown in Figure 6.
The AuNPs were successfully synthesized and doped into bt clay, as shown by spectro-
scopic, microscopic and electrochemical methods, and the synthesized Au-bt material was
used to modify the glassy carbon electrode (GC). The GC/Au-bt electrode was used to
detect As(III) in neutral solution by cyclic voltammetry. The GC/Au-bt electrode showed
a wide linear range with good reproducibility and stability in As(III) solutions in the
range of 1–1700 µM. The detection limit was 0.1 µM with high sensitivity. In addition,
it had good selectivity for the determination of As(III) in the presence of Cu(II) and other
interfering ions, providing an effective new route for the measurement of As(III) under
neutral conditions. Qian Tang et al. prepared Au-PANI-Fe-CNFs composites by forming
polyaniline (PANI) nanosheet arrays on Fe-CNFs substrates followed by the self-deposition
of Au nanoparticles; the process is shown in Figure 7, using the composite-modified glassy
carbon electrode as a sensing platform for As(III) measurements [54]. Polyaniline showed
a uniform array structure on the surface of carbon fibers (CNFs), and the presence of Fe in
CNFs promoted the formation of polyaniline nanosheets and the adsorption of As(III) in
the subsequent sensing process. The detection of As(III) in water has good electrochemical
performance, and the SWASV response plot is shown in Figure 8. The electrode has a wide
linear range (5–400 ppb) and high sensitivity with a detection limit of 0.5 ppb, which
provides a new route for the electrochemical analysis of arsenic in water.
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Besides composites of gold nanomaterials with carbon materials, metal oxide nano-
materials and certain polymers have also received much attention. More pairs of gold
nanomaterial-modified electrodes are shown in Table 2.
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Table 2. Gold-trimmed electrodes.

Electrode Method Sensitivity (µA/ppb) Linear Range (ppb) LOD (ppb) Reference

Au-ITO LSV 5 [55]

AuNPs ASV 0.400 µA·V ppb−1 0.5–15 0.25 [40]

AuNPs-PANI SWV 0.4 [56]

Au-coated boron-doped
diamond thin-film DPASV 0.01–40 0.005 [57]

AuCNT ASV 26.49 0.1 [58]

3DAu nanodendrite
network porous structure DPSV 0.1–70 0.1 [47]

AuNPs/Fe3O4 SWASV 13.55 0.01–1 0.00097 [59]

Nafion-Ibu-AuNSs CV 0.1–1800 0.018 [46]

citrate stabilized AuNPs SWV 0.05–1 and 1–15 0.025 [60]

PDDA-AuNPs DPV 0.017 0–7492 4.36 [61]

NF (Au nano) SWV 0.32 0.1–12.0 0.047 [62]

ERGO-AuNPs ASV 0.16 0.75–374.6 0.20 [63]

AuNP-SPE LSAdSV 1 0.014 0.75–749.2 [64]

Au/Te SWASV 6.35 0.0026 [65]

3D porous Au /TiO2 SWASV 0.064 7.49–599.36 3.00 [66]

CB-AuNPs/SPE ASV 0.63 2–30 0.4 [67]

MnOx-AuNPs LS-ASV 2.73 µA ppb−1 cm−2 0.5–80 0.057 [68]

AuNP DPASV 4–1498 0.9 [42]

TTCN-AuNPs CV 0.0019–2.55 0.0006 [69]

gold film FI-DPASV 1.0–30 0.81 [45]

AuNPs EME 2-ASV 0.5–10 and 10–600 0.18 [52]

AuNPs-C films ASV 0.026 1–100 0.55 [70]

EG-AuNPs SWASV 0.58 [71]

AuNPs-bt CV 74.92–127,364 7.49 [53]

Au@Fe3O4-RTIL SWASV 458.66 µA ppb−1 cm−2

/86.89 µA ppb−1 cm−2 0.1–1/1–10 0.0022 [72]

np-Au SWASV 0.60 0.5–15 0.0315 [73]

MnFe2O4/Au hybrid
nanospheres SWASV 0.315 3.37 [74]

AuNpCµF DPV 0.9 [75]

GCE-AuNPs SWASV 10–12,000 0.15 [76]

AuNPs-PCWEs AS-
chronoamperometry 0.083 2.2 [77]

AuNPs-RGO ASV 0.092 1–20 0.13 [78]

AuNPs-PpyNW I-V 0.0029 and 0.0585 7.49–599.36 and
749.21–5244.51 23.97 [79]

Au/SiO2 SWV 0.1–40 0.07 [80]

ZrF-8CAu CV 5–700 1 [81]

3D-rGO/AuNPs EIS 3.8 × 10−7–3.0 × 10−4 1.4 × 10−7 [82]

SPE/CNF-CHIT@Au nano FIA-ECD 0.2181 100–100,000 11.4 [83]
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Table 2. Cont.

Electrode Method Sensitivity (µA/ppb) Linear Range (ppb) LOD (ppb) Reference

AuNP/BDD SWASV 100–1500 20 [84]

AuNPs/CeO2-ZrO2 SWASV 0.976 0.5–15 0.137 [85]

AuNPs-SPCE ASV 0.11 30–150 8.9 [41]

Buckypaper modified
by GNP LSASV 0.75–750 0.75 [86]

AuNP-Au film ASLSV 0.027 µA ppb−1 cm−2 1–150 0.42 [87]

eAuNP-SPE DPASV 0.5–20 0.22 [88]

gold film–plastic DPSV 10–500 5 [89]

rGO-Au nano SWASV 1.0–50.0 0.08 [90]

AuNPs/gC3N4 LSASV 3.07 0.375–74.921 0.22 [91]

3D NPG-ITO DPASV 9.837 0.1–50 0.054 [92]

SiNPs/AuNPs LSASV 10–100 5.6 [93]

MCPTH-AuNPs CV 1 [94]

AuNS/SPCE SWASV 0.2213 0–100 0.8 [49]

gold nanoparticles and
crystal violet DPV 0.075 µA ppb−1 cm−2 149.84–1648.24 59.94 [50]

gold nanostar SWV 0.101 0–100 2.9 [95]

Au-PANI-Fe-CNF SWASV 0.04 5–400 0.5 [54]

quasi-hexagonal
gold nano DPASV 0.075–30 0.11 [96]

GNR DPASV 0.90–38.99 0.72 [48]

AuNP-rLA-Lcyst SWV-ASV 0.1 3–25 3 [97]

AuNPs-Co3O4 SWASV 12.1/3.7 0.1–1/1–20 0.09/0.79 [98]

GO/Fe3O4@
PMDA/AuNPs SWASV 5–500 0.15 [99]

AuNPs SWSV 0.1007 16.73 [51]

Au nano/Fe-MOF SWASV 4.708 2–30 0.0085 [100]

GC-AuNP-ArOx CV 46.05 0.75–749.21 0.37 [101]
1 Linear sweep adsorptive stripping voltammetry; 2 electromembrane extraction.

3.1.2. Platinum Electrodes and Platinum-Modified Electrodes

In addition to gold, there are other precious metals used in the electrochemical detec-
tion of arsenic. Platinum wires are not only used as counter electrodes in many electro-
chemical detection systems, but there are also many working electrodes made of platinum
or modified with platinum nanoparticles. Tung Son Vinh Nguyen et al. determined the
As(III) ion concentration in water samples by the anodic solvation voltammetry (ASV)
technique using a Nafion film-modified platinum electrode and obtained a wide linear
range from 0 ppb to 40 ppb with a detection limit below 10 ppb [102]. He Xu, on the other
hand, used a Pt nanotube array electrode, the SEM in cross-sectional view of which is
shown in Figure 9, achieving a low detection limit of 0.1 ppb. Electrochemical experiments
demonstrated that platinum-nanotube array electrodes (PtNTAEs) exhibited better per-
formance for As(III) analysis than Pt nanoparticle-coated GCE (Pt nano/GCE) or Pt foil
electrodes [103]. In addition, the modification of other electrodes with Pt nanoparticles and
their composites is also a promising approach [104–108]; the detection limit is mostly below
10 ppb. Of interest is a Pt single-atom-anchored catalyst on MoS2 (Pt1 /MoS2) developed
by Pei-Hua L et al. to catalyze the determination of As(III). Pt1/MoS2 of 4% exhibited
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excellent stability and interference resistance, with a sensitivity of up to 3.31 µA/ppb for
the detection of As(III) under near-neutral conditions, due to the Pt single atoms activated
close to S atoms, greatly enhancing the catalytic activity of S atoms in the MoS2 plane [109].
Dong-Dong Han et al. demonstrated a size-dependent effect of 2–5 nm Pt nanoparticles on
the electrochemical behavior of arsenic (As(III)), with a decrease in sensitivity as the size of
Pt nanoparticles increased from 2.3 nm to 5.5 nm [110].
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3.1.3. Silver Electrodes and Silver-Modified Electrodes

Several papers have reported on the silver-based electrochemical sensing of arsenic.
Among them, María del C. Aguirre used a silver wire electrode (SWE) for the electro-
chemical detection of arsenite with a minimum detection limit of 0.09 ppb, indicating that
SWE can be used for the detection of trace arsenic in alkaline and neutral media [111].
Baudelaire Matangouo Sonkoue generated silver nanocolloids by the chemical reduction
of silver salts using citrate in aqueous solution and used a gold electrode modified with
silver nanoparticles as the working electrode in linear sweep voltammetry for the detection
of arsenic ions. Under optimal conditions, calibration curves were plotted over a concen-
tration range of 0.05–0.2 µM and the limit of detection was estimated to be 13.8 nM [112].
In addition, composites of silver nanomaterials with chitosan and graphene are also of
interest for the electrochemical detection of arsenic. Silver nanoparticles (AgNPs) with
chitosan (CT)-modified glassy carbon electrode (GCE) prepared by S. Prakash were used
for the detection of As(III) by differential-pulse anodic dissolution voltammetry (DPASV),
which has high sensitivity for the detection of As(III) in water due to the unique three-
dimensional network and powerful adsorption capacity, and the designed nanostructured
electrode has a wide linearity range (10–100 ppb), high sensitivity (0.309 µA ppb−1) and
a detection limit of 1.20 ppb (16.2 nM) [113]. Riyaz Ahmad Dar used cyclic voltammetry and
anodic dissolution voltammetry measurements to evaluate the electrochemical properties
of β-cyclodextrin-stabilized AgNPs-GO/GCE for As (III) detection with an approximately
threefold increase in peak current compared with GO films alone, showing a wide lin-
ear range (13.33–375.19 nM) and high sensitivity (180.5 µA µM−1), including a 0.24 nM
detection limit [114]. Shao-Hua Wen et al. described the multimodal determination of
arsenite (As(III)) in environmental samples by the stimulated response of multi-ligand
functionalized silver nanoparticles (Ag NPs) in the electrochemical determination with
GSH/DTT/Asn-Ag NPs as the signal probe of the redox electrochemical As(III) sensor.
The As(III) concentration increased, the peak currents of Ag NPs in the DPV response
curves were recorded, and the calibration curves showed good linearity of peak current
intensity with As(III) concentration in the range of 0.01–40 ppb, with detection limits as
low as 5.2 ppt [115].
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3.1.4. Other Precious-Metal-Modified Electrodes

Agustiany studied the preparation of stable iridium-modified boron-doped diamond
electrodes by electrodeposition, and As(III) was detected by cyclic voltammetry [116].
The electrode showed a linear curve in the concentration range of 1–100 µM with a detection
limit of 4.64 µM and good stability and reproducibility, with a relative standard deviation
of 2.6% under the optimal conditions of a pH 3 phosphate buffer and a scanning speed of
50 mV/s. In addition, the electrode showed good linearity (R2 = 0.998) and sensitivity for
the measurement of As(III) in both tap water and lake water samples. The test plots are
shown in Figure 10. Erfan Mafakheri electrodeposited iridium oxide (IrO2) nanotubes in
polycarbonate (PC) stencils to form IrO2 nanotubes with a uniform diameter of 110 ± 10 nm,
an estimated length of 1–3 µm, and IrO2 nanotube-modified glassy carbon electrodes for
the detection of As(III) [117].
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Figure 10. Cyclic voltammetry responses of different spike concentrations of arsenic (III) in (a) tap
water and (c) lake water samples; scan rate 50 mV/s at Ir-BDD prepared using complete step
deposition. (b) and (d) depict the dependence of current responses on arsenic (III) concentrations.
(Reprinted with permission from [116], Copyright 2020, Elsevier B.V.)

R Gupta et al. deposited metallic ruthenium nanoparticles (RuNPs) on a glassy carbon
electrode (GC) with a modified electrode with arsenite selectivity, schematically shown in
Figure 11, for the detection of arsenite in water [118]. The differential pulse voltammetry
(DPV) based on RuNPs/GC can determine the concentration of arsenite within minutes
with a detection limit of 0.1 ppb, a reproducibility of 5.4%, and a sensitivity of 2.38 nA ppb−1.
RuNPs can be anchored on different chemical platforms such as graphene, electrodes,
Fe3O4, etc. to design robust and reusable electrochemical sensors for the detection of
arsenite in various aqueous solutions.



Nanomaterials 2022, 12, 781 13 of 39

Nanomaterials 2022, 12, x FOR PEER REVIEW 12 of 40 
 

 

50 mV/s. In addition, the electrode showed good linearity (R2 = 0.998) and sensitivity for 
the measurement of As(III) in both tap water and lake water samples. The test plots are 
shown in Figure 10. Erfan Mafakheri electrodeposited iridium oxide (IrO2) nanotubes in 
polycarbonate (PC) stencils to form IrO2 nanotubes with a uniform diameter of 110 ± 10 
nm, an estimated length of 1–3 μm, and IrO2 nanotube-modified glassy carbon electrodes 
for the detection of As(III) [117]. 

 
Figure 10. Cyclic voltammetry responses of different spike concentrations of arsenic (III) in (a) tap 
water and (c) lake water samples; scan rate 50 mV/s at Ir-BDD prepared using complete step depo-
sition. (b) and (d) depict the dependence of current responses on arsenic (III) concentrations. (Re-
printed with permission from [116], Copyright 2020, Elsevier B.V.) 

R Gupta et al. deposited metallic ruthenium nanoparticles (RuNPs) on a glassy car-
bon electrode (GC) with a modified electrode with arsenite selectivity, schematically 
shown in Figure 11, for the detection of arsenite in water [118]. The differential pulse volt-
ammetry (DPV) based on RuNPs/GC can determine the concentration of arsenite within 
minutes with a detection limit of 0.1 ppb, a reproducibility of 5.4%, and a sensitivity of 
2.38 nA ppb−1. RuNPs can be anchored on different chemical platforms such as graphene, 
electrodes, Fe3O4, etc. to design robust and reusable electrochemical sensors for the detec-
tion of arsenite in various aqueous solutions. 

 

Figure 11. Schematic diagram of RuNPs/GC-based As electrochemical detection. (Reprinted with
permission from [118], Copyright 2016, American Chemical Society.)

Sthitaprajna Dash investigated the electrodeposition of nanodendritic Pd on poly(3,4-
ethylenedioxythiophene) (PEDOT)-modified Pd nanodendritic electrodes for the electro-
analysis of As(III) in 1 M HCl solution. A wide detection range of up to 10 µM and a low
detection limit of 7 nM (0.52 ppb) can be achieved with a pre-deposition time of 120 s
under optimal conditions [119]. Md. Mahbubul Alam electrochemically immobilized Pd
nanoparticles on Pt surface in the presence of sodium dodecyl sulfate (SDS) molecules.
and its FE-SEM image is shown in Figure 12. The LOD of As(III) was determined to be
0.2 ppb using a Pt-Pdsds sensor [120]. In addition, other noble-metal-modified electrode
comparisons are presented in Table 3.
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Table 3. Other precious-metal-modified electrodes.

Electrode Method Sensitivity (µA/ppb) Linear Range (ppb) LOD (ppb) Reference

Pt nano ASV 2.94 × 10−3 74.92–3746.08 2.1 [121]

Pt nano SWV 0–100 0.5 [107]

PtNTAEs LSV 0.011 749.21–14,984.32 0.1 [103]

Pt nano/CNTs LSV 9.34 × 10−3 374.61–74,921.6 0.12 [104]

Pt nano CV 5.68 [122]
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Table 3. Cont.

Electrode Method Sensitivity (µA/ppb) Linear Range (ppb) LOD (ppb) Reference

Gr-nPt SWASV 0.75–7.49 0.082 [106]

Pt nano (2.3 nm) SWASV 0.356 0–1000 [110]

Nafion/Pt ASV 0.036 0–40 <10 [102]

Pt nano ASV 0–100 16.50 [105]

Pt1 /MoS2 SWASV 3.31 0.5-8 0.05 [109]

Pt nano ASV 6.3 × 10−7 C µM−1 3.75–74.92 4 [123]

SWE LSASV 0.09 [111]

AgNPs/CT DPASV 10–100 1.20 [113]

AgNPs-GO ASV 2.41 1–28.11 0.018 [114]

Ag-GCE SWASV 0.98 10–60 4.2 [124]

Ag-SPCE SWASV 0.6 10–80 8.4 [124]

AgNPs DPASV 3.75–14.98 1.03 [112]

GSH/DTT/Asn-Ag
NPs DPV 0.01–40 5.2 × 10−3 [115]

IrOx-BDD chronoamperometry 0.056 1.50–3746.08 0.15 [125]

Ir-BDD CV 1.24 × 10−3 µA ppb−1 cm−2 1.5 [126]

IrO2 nanotubes DPV 0–5993.73 7.49 [117]

Au-IrM SWASV 3.19 × 10−4/2.64 × 10−3 0.75–3.75/0.07–0.75 0.037 [127]

Ir-BDD CV 7.47 × 10−4 µA ppb−1 cm−2 74.92–7492.16 347.63 [116]

Ru NPs DPV 2.38 × 10−3 0.1 [118]

[Ru(bpy)3]2+-GO DPV 0.32 7.49–14.98 0.015 [128]

Ru(II)-tris(bipy)-GO CV 1.42 µA ppb−1 cm−2 3.75–59.93 2.25 [129]

Pd-PEDOT DPASV 19.78 µA ppb−1 cm−2 0–749.21 0.52 [119]

Pt–Pdsds SWV 74.92–16,857.36 0.2 [120]

3.2. Bimetallic Particle-Modified Electrodes

Precious metal nanomaterials are good for electrode modification, but the cost of
modifying electrodes with gold is very high, so people choose to use gold composites for
detection, in addition to deriving other bimetallic particles, in order to ensure the detection
sensitivity and, at the same time, control the cost of detection. The bimetallic nanomaterials
containing gold are Au-Pd, Au-Pt, Au-Ag, Au-Cu, etc. In addition, Fe has an excellent
performance in arsenic ion detection, so it has also been studied in Fe-based bimetallic
particle-modified electrodes, where bimetallic FePt, FeAu, FePd, and AuPt nanoparticles
(NPs) are electrochemically deposited on Si(100) substrates and their electrochemical prop-
erties are investigated for As(III) detection. Trace amounts of As(III) can be determined by
anodic stripping voltammetry at neutral pH. The synergistic effect with Fe alloying leads
to the better performance of Fe precious metal NPs (Au, Pt and Pd) than pristine precious
metal NPs (without Fe alloying). Detection limits and linear ranges were obtained for FePt,
FeAu, and FePd NPs. The best performance was obtained for FePt NPs with a detection
limit of 0.8 ppb and a sensitivity of 0.42 µA ppb−1. The selectivity of the sensor was also
tested in the presence of large amounts of Cu(II), the most detrimental interfering ion for
As detection. Thus, bimetallic NPs are expected to be an effective and high-performance
electrochemical sensor for the detection of ultra-trace amounts of arsenic [130]. More elec-
trodes modified with bimetallic materials and their detection performance are summarized
in Table 4.
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Table 4. Bimetallic modified electrodes.

Electrode Method Sensitivity (µA/ppb) Linear Range (ppb) LOD (ppb) Reference

Au-Pd NPs SWV 1–25 0.25 [131]

Au-Pd NPs SWASV 3.9 0.024 [132]

Au/Te crystals SWASV 6.35 0.1–10 0.0026 [65]

Au-Pt NPs LSASV 0.37–224.76 0.28 [133]

Au-Cu SWASV 1.63 µA ppb−1 cm−2 2.09 [134]

Au-PtNPs/PANI SWASV 0.23 2.47–14.98 1.48 [135]

C-AuNPs SWV 0.5–100 0.092 [136]

Ag-Au CV/DPV 0.01–10 0.003 × 10−3 [137]

Fe3O4-Au SWASV 122 1–100 0.22 [138]

FePt SWV 0.42 1–5 0.8 [130]

Pt-Fe ASV 0.064 0.75 [139]

3.2.1. Gold–Platinum Bimetallic Modified Electrodes

A novel and easy-to-use nanohybrid platform suitable for the electrochemical detection
of As(III) was prepared based on gold and platinum bimetallic nanoparticles (Au-Pt NPs)
and the conducting polymer polyaniline [135]. Good detection limits were obtained by
square-wave anodic dissolution voltammetry using modified screen-printed electrodes.
The SWASV of 0–15 ppb (As(III) concentration) was recorded (Figure 13a) and this sensor
was found to have good linearity in the range of 33–200 nM concentration of As(III) ions,
with an LOD up to 19.7 nM, as shown in its calibration plot (Figure 13b).

3.2.2. Gold–Copper Bimetallic Modified Electrode

Recently, a simple hydrothermal method for the preparation of Au and Cu bimetallic
nanoparticles of different compositions has been proposed [134]. The electrochemical
performance of Au-Cu bimetallic nanoparticles in the determination of As(III) particle
concentration was investigated using the square-wave anodic dissolution voltammetry
SWASV method, and the SWASV response for As(III) detection in different concentration
ranges is shown in Figure 14, where the Cu content in Au-Cu bimetallic nanoparticles is
crucial for the detection efficacy. Compared with gold nanoparticles and gold electrodes,
Au-Cu bimetallic nanoparticles exhibited better electrochemical performance with a lower
detection limit (2.09 ppb) and higher sensitivity (1.63 µA ppb−1 cm−2). In addition, the Au-
Cu bimetallic nanoparticles also exhibited superb anti-interference performance for the
detection of As(III).
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3.2.3. Silver–Gold Bimetallic Modified Electrode

Reetu Yadav reported a sensor with silver–gold alloy nanoparticles (i.e., silver and gold
alloy nanoparticles) modified with glassy carbon electrode and loaded with aptamer [137].
The bimetallic nanoparticles have a large surface area for adhesion with the aptamer, and
thus have a large number of binding sites. The detection method uses cyclic voltammetry
and differential pulse voltammetry, the electrode is used for the determination of As3+ in
actual water samples, and the curve is linear when the As3+ concentration is 0.01–10 µg/L,
with a detection limit of 0.003 × 10−3 µg/L. The sensor has good repeatability, stability,
and selectivity, and can be applied to the detection of arsenic ion concentration in real
water samples.

3.3. Other Metals and Their Compound-Modified Electrodes
3.3.1. Fe and Its Compound-Modified Electrodes

In the three-electrode-based electrochemical detection, the adsorption ability of the
electrode surface on the target element plays a crucial role in the electrochemical detection
performance, and the oxide nanoparticles of Fe become a hot spot for electrochemical detec-
tion due to their high adsorption ability and magnetic properties [140]. Pooja Devi et al. re-
ported a chemically reduced rGO/Fe3O4 nanocomposite-modified glassy carbon electrode,
which achieved a low detection limit of 0.12 ppb by square-wave anodic dissolution voltam-
metry [141]. Haibing Hu’s team prepared Fe3O4 nanomaterials using a co-precipitation
method, resulting in a Fe3O4 particle size of about 20 nm, which was then compounded
with reduced graphene oxide. Under the optimized experimental conditions, the Fe3O4-
rGO-modified glassy carbon electrode showed higher sensitivity (2.15 µA/ppb) for arsenic
and achieved low detection limits [142]. The rGO/Fe3O4 nanocomposite has been shown
to be a potential electrochemical and bioelectrochemical sensing material for the simultane-
ous detection of ascorbic acid, dopamine and uric acid, as well as for the electrocatalytic
determination of nitrite. Akajionu Benjamin Chimezie et al. used differential pulsed anodic
solvation voltammetry (DPASV) on a screen-printed electrode modified with reduced
oxidation. An electrochemical sensor for the determination of As(III) in water resources
was developed on the surface of graphene-magnetic nanocomposite (rGO-Fe3O4/SPEC)
using differential pulsed anodic dissolution voltammetry (DPASV) [143]. The schematic
diagram is shown in Figure 15. The electrode has a detection limit of 0.1 µg/L for As(III) in
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drinking water. The sensor has a wide operating range (2–300 µg L−1), good repeatability,
reproducibility and stability, and is virtually unaffected by common interfering ions.
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Hong Cui et al. modified the glassy carbon electrode with a composite of magnetic
Fe3O4 nanoparticles and gold nanoparticles, and the detection limit was 0.00097 ppb
under optimal conditions [59]. Chao Gao et al. proposed an Fe3O4-RTIL (room temper-
ature ionic liquid) composite-modified screen-printed carbon electrode (SPCE) in order
to achieve ultra-low detection limits while reducing the dependence on precious metal
gold, and obtained an ultra-low detection limit of 8 × 10−4 ppb by square-wave anodic
solvation voltammetry (SWASV) while achieving a high sensitivity of 4.91 µA ppb−1 [144].
Other ferrites also have great potential for electrochemical detection. Shaofeng Zhou et al.
reported Au nanoparticle-decorated mesoporous MnFe2O4 nanocrystal clusters for the
detection of As(III) in water samples by square-wave anodic dissolution voltammetry
(SWASV) with good reproducibility, stability and reproducibility, as well as interference
resistance [74]. In a recent study, Hong-QiHuang et al. proposed a successful electrochemi-
cal sensor driven by noble metal-free layered porous Fe3O4/Co3S4 nanosheets for As(III)
analysis, and obtained a considerable sensitivity of 4.359 µA/ppb for the electrochemi-
cal detection of As(III) in 0.1 M HAc-NaAc (pH 6.0) by square-wave anodic dissolution
voltammetry (SWASV). The improved electrochemical performance of As(III) is attributed
to its nanoporous structure, the presence of oxygen vacancies and the strong synergistic
coupling effect between Fe3O4 and Co3S4 species [145].

3.3.2. Manganese and Cerium Oxide-Modified Electrodes

Due to the synergistic effect, Mn2O3/CeO2 nanocubes have a high adsorption capacity
for As(III), so its detection sensitivity is higher than any kind of oxide. Combined with
the sensing properties of gold (Au) for As(III), a sensing material based on Mn2O3/CeO2
nanocubes modified with gold electrode was fabricated [146], as shown in Figure 16. Under
the optimized conditions, the sensitivity of the sensor was 0.0414 mA ppb−1 and the limit
of detection (LOD) was 3.35 ppb with good stability and reproducibility, and the electrode
had good selectivity for the presence of common interfering ions.

Manganese oxide (MnO2) can be used as an active electrode material due to its good
redox properties, porosity, low cost, and large specific surface area. In addition, the elec-
trocatalytic properties of the composites can be further improved through synergistic
effects by immobilizing metal oxides on the surface of polyhydroxytyramine (POT) and
graphene oxide (rGO) composites. Sathish Kumar Ponnaiah et al. used a novel manganese
dioxide/polyhydroxytyramine/reduced graphene oxide nanocomposite (MnO2/POT/rGO/
GCE) to fabricate sensing electrodes with a wide linear range (0.01–0.900 ppb) and minimum
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detection limit (42.0 ppt), and excellent selectivity, stability and reproducibility [147].
The process schematic is shown in Figure 17.
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3.3.3. Cobalt Oxide-Modified Electrodes

An electrochemical sensor based on cobalt oxide nanoparticles was developed by
Abdollah Salimi et al. Cobalt oxide (CoOx) nanoparticles were prepared from an aqueous
buffer solution of CoCl2 using cyclic voltammetry and deposited on the surface of a glassy
carbon electrode. Then, As(III) was detected by cyclic voltammetry, and a detection limit
of 11 nM was achieved. The authors concluded that immobilizing cobalt oxide nanopar-
ticles on the surface of GC electrode seems to be an efficient method to develop a new
class of sensitive, stable and reproducible electrochemical sensors for As(III) [148]. Chun-
Yang Li combined the excellent catalytic properties of AuNPs with the high adsorption
capacity of Co3O4 nanomaterials to construct an ultra-sensitive electrochemical sensor
for electrochemical analysis of As(III) by homogeneously assembling gold nanoparticles
on porous cobalt oxide (Co3O4) microsheets to form nanocomposites [98]. The experi-
mental results show that the AuNPs/ Co3O4 nanocomposite-modified SPCE achieved an
ultra-high sensitivity of 12.1 ± 0.2 µA ppb−1 and a detection limit of 0.09 ppb for As(III)
using the SWASV method. This excellent electrochemical performance was attributed to
the high adsorption capacity of the porous Co3O4 microporous sheet and AuNPs for the
favorable electrocatalysis of As(III) reduction. In addition, the method also exhibits good
anti-interference performance in the presence of other metal ions (Cu(II), Pb(II), Cd(II),
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etc.) with good stability and reproducibility. Most importantly, the electrochemical sensor
has been successfully applied to the electroanalysis of As(III) in water and human serum
samples, which provides a new approach to design sensitive and stable electrochemical
sensors. The schematic diagram of the electrochemical analysis is shown in Figure 18 below.
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3.3.4. Tin Oxide-Modified Electrodes

Tin oxide (SnO2) has become the material of choice for arsenic (As3+) redox sensing
due to its high catalytic activity, environmental performance, wide band gap (3.64 eV) and
high specific surface area (nanoscale) [149]. Tian-JiaJiang et al. reported an ultrathin SnO2
nanosheet for the modification of gold electrodes, resulting in enhanced adsorption capacity
on the gold electrode surface [150]. Gaurav Bhanjana et al. synthesized SnO2 nanopins
(particle size 60–80 nm) by the chemical precipitation method, characterized their elemental,
topological, morphological and structural features, and then coated these nanopins on the
surface of pencil cores (containing graphite/carbon(C)) to serve as working electrodes to
prepare nanomaterial sensors for the detection of arsenic ions [151]. By the electrochemical
determination of arsenic in real samples, the sensor has a detection limit of 10 ppb, a linear
range of 50–500 ppb, and a sensitivity of 28.13 µA ppb−1 cm−2. The experimental results
provide a feasible method for the field detection of As3+ in environmental samples such
as food, beverages, industrial samples, and wastewater. The modified electrode current
response relationship under certain conditions is shown in Figures 19 and 20.
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3.3.5. Strontium Compound-Modified Electrodes

A. Karthika et al. reported a glassy carbon electrode modified with strontium titanium
trioxide (SrTiO3) and β-cyclodextrin (β-CD)-based nanocomposite, for the determina-
tion of toxic As(III) ions in water and serum samples [152]. The prepared SrTiO3/β-CD
nanocomposite-modified glassy carbon electrode has a high specific surface area and a sen-
sitive electrochemical response. After testing, the oxidation peak current of As(III) increased
linearly with the concentration in the concentration range of 10–140 µM of As(III) particles,
and the detection limit was 0.02 µM. The electrode is stable, sensitive and reproducible for
the detection of As(III) in water and serum.

3.3.6. Bismuth Compound-Modified Electrode

Thabile Ndlovu electrodeposited a bismuth film onto an exfoliated graphite (EG)
electrode at a potential of −600 mV. The modification of EG resulted in an increase in the
electroactive surface area of the electrode, and square-wave anodic dissolution voltammetry
using the modified electrode (EG-Bi) in As(III) solution was able to detect 5 ppb of As(III)
and was insensitive to many interfering cations except Cu(II) [153]. Potlako J. Mafa also
electrodeposited bismuth nanoparticles onto graphite electrodes and used square-wave an-
odic solvation voltammetry (SWASV) to co-detect heavy metal ions in water samples with
a detection limit of 0.014 ppb for As(III) under optimized experimental conditions [154].
In addition to bismuth nanoparticles, Lignesh Durai reported a novel and facile hydrother-
mal synthesis of bismuth vanadate (BiVO4) nanoflakes for the trace detection of arsenic
in biological samples by the electrodeposition of a screen-printed carbon electrode (SPCE)
coated with polyaniline (PANI), with the As(III) sensing mechanism as shown in Figure 21.
The sensor can detect As3+ ions by the differential pulse dissolution voltammetry (DPASV)
technique with a significantly low limit of detection (LOD) of 0.0072 ppb and a sensitivity
of 6.06 µA ppb−1 cm−2 with a linear range of 0.01–300 ppb [155].
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3.3.7. Zirconium Compound-Modified Electrodes

Gaurav Bhanjana used gold electrodes modified with zirconia nanocubes synthesized
by a facile hydrothermal route, and electrochemical sensing of arsenic was achieved by
cyclic voltammetry (CV) and chronoamperometry with a sensitivity of 550 nA cm−2 ppb−1

and a detection limit of 5 ppb (linear range of 5–60 ppb, response time below 2 s). The syn-
thesized nanoparticles are nanocubes, and from the CV plots under different conditions
(Figure 22) it can be seen that the peak oxidation current is more pronounced for zir-
conia nanocube-modified electrodes than for zirconia nanoparticle-modified electrodes,
which are used as effective electrocatalysts in the direct redox sensing of arsenic [156].
In addition, zirconia composites were used for the electrochemical detection of arsenic.
MengYang used AuNPs/CeO2-ZrO2 nanocomposite-modified glassy carbon electrodes
(GCE) to fabricate a sensing interface for the sensitive and accurate analysis of As(III) in
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near groundwater pH values, and square-wave anodic dissolution voltammetry (SWASV)
was used to determine As(III) in real water samples. Thanks to the strong adsorption
capacity of CeO2-ZrO2, the electroanalytical sensitivity and theoretical detection limit of
As(III) were 0.976 µA ppb−1 and 0.137 ppb, respectively, at the optimal parameters. In ad-
dition, the method has good anti-interference performance [85]. The performance analysis
of different electrodes modified with metals other than noble metals and their compounds
for the electrochemical detection of arsenic is given in Table 5.
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Table 5. Other metal- and compound-modified electrodes.

Electrode Method Sensitivity (µA/ppb) Linear Range (ppb) LOD (ppb) Reference

Au NPs/Fe3O4 SWV 13.55 0.01–1 0.00097 [59]

Fe-CB/PE ASV 0.4–20 0.16 [157]

Fe3O4-RTIL SWASV 4.91 1–10 0.0008 [144]

Chitosan-Fe(OH)3 ASV 8.39 2–100 0.072 [158]

Au @Fe3O4-RTIL SWASV 58.66 µA ppb−1 cm−2 0.1–1 0.0022 [72]

rGO/Fe3O4 1.922 2–20 0.3 [159]

rGO-Fe3O4 DPASV 2–300 0.10 [143]

rGO/Fe3O4 SWASV 0.281 0.12 [141]

Fe-MOF
@mFe3O4@mC EIS 7.49 × 10−4–0.75 5.04 × 10−4 [160]

Fe Pc/Si-NP DPASV 0.20 3.66 [161]

CoPc/Si-NP DPASV 0.18 4.39 [161]

Au/Fe3O4 SWASV 9.43 0.1–10 0.0215 [162]

α-FeOOH CV 0.75–1498.43 0.37 [163]

Fe2V4O13–polypyrrole DPASV 0–500 0.3 [164]

Fe3O4-Ag/Au
HNSs-rGONs CV 52 0.1–20 0.01 [165]

CN-wrapped IL-modified
ZF-Ms (CN@ZF-Ms-IL) SWASV 41.08 1–60 0.0006 [166]

Fe3O4–rGO SWV 2.15 1–20 1.19 [142]
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Table 5. Cont.

Electrode Method Sensitivity (µA/ppb) Linear Range (ppb) LOD (ppb) Reference

GO/Fe3O4@PMDA/AuNPs SWSV 0.5–750 0.15 [99]

Fe3O4-Au-IL SWASV 122 1–100 0.22 [138]

Fe3O4/Co3S4 SWASV 4.359 1.0–10.0 0.691 [145]

MnOx/AuNPs LS-ASV 2.73 µA ppb−1 cm−2 0.5–80 0.057 [68]

MnFe2O4 NCs SWASV 0.295 1.95 [167]

rGO/MnO2 SWASV 0.175 0.1–50 0.05 [168]

AuNPs/α-MnO2 SWASV 0.828 1–10 0.019 [169]

MnFe2O4/Au hybrid
nanospheres SWASV 0.315 3.37 [74]

Mn2O3/CeO2 SWASV 0.0414 3.35 [146]

Nafion/α-MnO@PDA SWASV 0.13 10–150 3.2 [170]

MnO2 /POT/rGO DPV 0.00163 0.01–0.9 0.042 [147]

Bi-NPs SWV 5 [153]

EG-Bi SWASV 0.014 [154]

PANI@BiVO4 DPASV 6.06 µA ppb−1 cm−2 0.01–300 0.0072 [155]

F-doped CdO thin films CV 5.747 × 10−3 4.55–41 0.00455 [171]

CoOx CV 1.49 × 10−3 0.82 [148]

Co-rGO ASV 0.31 [172]

AuNPs-Co3O4 SWASV 12.1/3.7 0.1–1/1–20 0.09/0.79 [98]

Fe3O4 /Co3S4 SWASV 4.359 1.0–10.0 0.691 [145]

In0.38Ga0.62N/Si(111) SWV 10–50 9.27 [173]

Pt1 /MoS 2 SWASV 3.31 0.5-8 0.05 [109]

PbO2/rGO 0.75 [174]

Au-ITO ASV 5 [175]

SnO2 nanosheets SWASV 0.058 5–300 4.6 [150]

Nafion/SnO2 nanoneedles CV 28.13 µA ppb−1 cm−2 50–500 10 [151]

3D NPG-ITO DPASV 9.837 0.1–50 0.054 [92]

Gemini-ITO SWV 1–100 0.88 [176]

SrTiO3 /β-CD Amperometry 0.0053 µA µM cm−2 749.21–10,489.02 1.50 [152]

CP-ThO2 NP DPASV 0.54 3–180 0.1 [177]

3D porous Au/TiO2 SWASV 0.064 7.49–599.36 3.00 [66]

TiO2-GSE LSV 1.10 10–80 10 [178]

ZrO2-nanocubes CV 5–60 5 [156]

ZrF-8CAu CV 5–700 1 [81]

Zr-G-PGE
(As(V)) DPV 1.36 0.10–40.0 0.12 [179]

AuNPs/CeO2-ZrO2 SWASV 0.976 0.5–15 0.137 [85]

3.4. Carbon Nanomaterial-Modified Electrodes

In electrochemical sensing, carbon-based electrodes such as glassy carbon electrodes,
screen-printed carbon electrodes and graphite–carbon paste electrodes are widely used for
arsenic ion detection. In addition, due to the unique electronic properties of carbon-based
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nanomaterials, carbon nanomaterials have proven to be very suitable for the modification
of working electrodes in the electrochemical detection of arsenic. Carbon nanomate-
rials include single-walled carbon nanotubes (SWNT), multi-walled carbon nanotubes
(MWNT), graphene, nanodiamond, fullerene, and graphene quantum dots. The most
widely studied carbon nano-derivatives in electrochemical sensing are carbon nanotubes
and graphene [180]. The performance analysis of different carbon nanomaterials and their
composite-modified electrodes for the electrochemical detection of arsenic is statistically
presented in Table 6.

Table 6. Carbon material-modified electrode.

Electrode Method Sensitivity (µA/ppb) Linear Range (ppb) LOD (ppb) Reference

ERGO-AuNPs ASV 0.16 0.75–374.61 0.20 [63]

Gr-nPt SWASV 0.75–7.5 0.082 [106]

Au/GO/Leucine/Nafion CV 0.03 µA ppb−1 cm−2 500 [181]

NH2-GO SWASV 130.631 µA ppb−1 cm−2 0.162 [182]

3D-rGO/AuNPs EIS 3.8 × 10−7–3.0 × 10−4 1.4 × 10–7 [82]

[Ru(bpy)3]2+-GO DPV 6.00–1123.83 1.57 [183]

Ru(II)-tris(bipy)-GO CV 1.42 µA ppb−1 cm−2 3.75–59.94 2.25 [129]

TTCA/rGO SWASV 0–10 0.054 [184]

Gr/MOF DPASV 0.2–25 0.06 [185]

RM-rGO SWASV 2.49 0.07 [186]

SPGE DPAV 0.0–5.0 0.28 [187]

Au-PANI-Fe-CNF SWASV 0.04 5–400 0.5 [54]

SH-SWCNTs LSV 1.33 0.008 [188]

DNA–SWCNT LSV 0.17 0–33.6 0.05 [189]

Pt nano/CNTs LSV 9.34 × 10−3 374.61–74,921.6 0.12 [104]

CNTs/Leucine/Nafion CV 0.27 0.37–149.84 0.12 [190]

CNTs/Nafion/Glutamine 1.33 0.075–37.835 2.72 [191]

CNTs-GNPs LSASV 135 0.5 [192]

ssDNA/SWCNTs DPV 0.5–10 0.5 [193]

Eu-MGO/Au@MWCNT SWSV 0.99–100.0 0.27 [194]

Buckypaper modified
by GNP LSASV 0.75–750 0.75 [86]

CQDs/f-MWCNTs/GO DPV 7.49 × 10−3–0.82 0.037 [195]

MMWCNTs-D-NH2 SWASV 0.5613 1.0–50.0 0.46 [196]

3.4.1. Carbon Nanotube-Based Detection of Arsenic Ions

Carbon nanotubes (CNT) are an excellent support structure due to their large effective
detection surface, fast electron transfer rate compared with bulk carbon electrodes, high
electrocatalytic activity and low electrode contamination, which can further help to improve
electrochemical analysis performance by immobilizing other chemical species, such as metal
NPs and organic molecules [14]. The main features of carbon nanotubes in electrochemical
sensors are a fast response and low detection limits.

He Xu et al. chose to form a composite with carbon nanotubes for the electrochemical
detection of arsenic using Pt nanoparticles, as shown by the TEM image of the composite
(Figure 23), where Pt nanoparticles are clearly decorated on carbon nanotubes, reflecting a
higher electroactive area than the Pt nanoparticle modification alone [104]. Yaxiong Liu et al.
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proposed a single-layer low-resistance single-walled carbon nanotube-modified glassy car-
bon electrode for the electrochemical detection of arsenic with non-covalent SH groups
sensitive to As(III), achieving an ultra-low detection limit of 0.008 ppb [188]. In addition
to compounding with metal particles, carbon nanotubes can also be combined with
biomolecules and with DNA. Yaxiong Liu’s team developed a layer-by-layer assembly
of DNA-functionalized single-walled carbon nanotubes that achieves a detection limit
of 0.05 ppb in a near-physiological environment and can be reused multiple times [189].
Subramanian Nellaiappan et al., on the other hand, proposed a gold nanoparticle/carbon
nanofiber/chitosan chemically modified carbon screen-printed electrode by simultaneously
combining carbon nanofibers with metal particle biomolecules, achieving comparable
results to inductively coupled plasma-emission spectroscopy [83].
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3.4.2. Graphene-Based Detection of Arsenic Ions

Graphene is a new material in which carbon atoms are tightly packed into a single two-
dimensional honeycomb lattice structure. This material has excellent properties, with high
strength and good toughness, and good electrical conductivity, and can be used directly
as a modification material for electrodes. In addition, graphene has a characteristic that is
very favorable for loading other materials, which is that it has many smooth folds, so there
will be many graphene and other material composites to modify the electrode, so that the
characteristics of the loading material can be more obvious.

Haibing Hu’s team performed the electrochemical characterization of bare glassy
carbon electrode, rGO, Fe3O4, and Fe3O4-rGO nanocomposite-modified glassy carbon
electrode in a specific detection solution in the preparation of Fe3O4-rGO nanocomposite,
and found that the electrochemical performance of glassy carbon electrode modified by
rGO or Fe3O4 only was not as good as that of bare glassy carbon electrode, although it
was better than that of bare glassy carbon electrode, while the electrochemical perfor-
mance of glassy carbon electrode modified by both composites was very good, which
indicated that the large surface area provided by rGO caused the Fe3O4 particles to ad-
here well to the surface [142]. In addition to metal oxides, graphene can also form com-
posites with metals [185], multi-walled carbon nanotubes [195], precious metals [114],
and biomolecules [197], among others.

Carbon nanoparticles and other carbon-based nanomaterials have been used for signal
enhancement in electrochemical sensors and biosensors due to their advantageous specific
surface area. An electrochemical sensor based on carbon nanoparticles (CNPs) and gold
nanoparticles (AuNPs) comprising an immobilized platform for As(III) detection in water
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was reported in 2019 [136]. The carbon–gold nanoplatform was prepared by drop coating
CNPs on a glassy carbon electrode (GCE), followed by the electrodeposition of AuNPs on
the CNPs-modified electrode under certain conditions. The sensor has a detection limit of
0.092 ppb and exhibits insensitivity to the interference of Cd2+, Cu2+, and Hg2+, providing
an interference reduction method for the electrochemical detection of arsenic.

3.5. Biomolecule-Modified Electrodes
3.5.1. Arsenic Detection Based on DNA-Modified Electrodes

DNA in DNA-based biosensors provides biologically recognizable components with
three modes of interaction [198], namely electrostatic interactions with negatively charged
phosphates, binding interactions with minor and major grooves of the DNA double helix,
and embedding between natural DNA stacked base pairs.

An advanced DNA biosensor was reported by J. Labuda et al. [199]. Using the Co(III)
complex with 1,10-phenanthroline, [Co(phen)3]3+, as an electrochemical DNA marker and
the Ru(II)complex with bipyridyne, [Ru(bipy)3]2+, as a DNA oxidation catalyst, calf thymus
DNA (CT-DNA) immobilized on the surface of a screen-printed electrode (SPE) was placed
in aqueous solutions of different concentrations of As(III), As(V), dimethylarsenic acid,
phenylarsenic and p-arsenic acid. Although this system was reported to have a poor detec-
tion limit (75 mg/L), it showed a successful correlation between DNA-labeling signals and
As(III) levels. Liu and Wei exploited the high electrical conductivity of carbon nanotubes
(CNTs) to construct electrochemical biosensors and explored the concept of the direct
oxidation of As(0) to As(III) on DNA-functionalized single-walled CNT-modified glassy
carbon electrodes [189]. The developed biosensor was operationally stable over a wide
pH range with a detection limit (S/N = 3) of 0.05 µg L−1 at pH 7.0. and demonstrated
the ability to be reused 16 times. Shaohua Wen described a voltammetric method for the
determination of arsenite (As(III)) based on the specific binding of As(III) to probe DNA
(SBP DNA; single-stranded DNA) and the electrochemical indicator methylene blue (MB),
the fabrication of which is schematically shown in Figure 24. Upon addition of As(III),
it specifically binds to SBP DNA, which leads to conformational changes and the disso-
ciation of SBP DNA from the electrode into the solution. As a result, the amount of MB
remaining on the modified electrode is reduced, which decreases the peak MB current.
Under optimized conditions, As(III) was quantified by measuring the DPV response of MB
absorbed by the SBP/CP hybrid at the electrode surface, and the reduction peak current
was linearly related to the logarithmic value of As(III) concentration, yielding a linear
concentration range of 0.1–200 ppb and a detection limit as low as 75 ppt [200].
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3.5.2. Aptamer Sensors for Arsenic Detection

An aptamer-based biosensor is a small device that assembles one or more biomate-
rials/nanomaterials onto an electrode transducer, and electrochemical impedance spec-
troscopy (EIS), differential pulse voltammetry (DPV), etc., are often used with aptamer
sensors for arsenic detection [201]. For example, Baghbaderani and Noorbakhsh con-
structed several aptamer sensors based on electrochemical signals for the determination of
As(III) [202]. They designed an unlabeled impedance aptamer sensor for highly sensitive
As(III) determination using a chitosan-Nafion(Chit-Naf) compound as an excellent con-
ductive surface platform and a novel carbon nanotube based on the signal amplification
process. The EIS experimental results show that the glassy carbon electrode (GCE) modi-
fied by Chit-Naf has higher electron transfer kinetics compared with bare GCE, GCE/Naf,
and GCE/Chit electrodes, which provides great feasibility for an effective platform for
biosensor design. In this work, based on a carbon nanotube–bovine serum albumin (CNT–
BSA) hybrid system, they also used a signal amplification process to achieve an LOD of
74 pM. Lin Cui et al. designed an electrochemical aptamer sensor for the detection of
As(III) based on gold-nanocoated screen-printed carbon electrodes (AuNPs/SPCE) [203],
and the detection schematic is shown in Figure 25. By immobilizing the Ars-3 aptamer on
AuNPs/SPCE, the Ars-3 aptamer is able to adsorb cations through electrostatic interac-
tions with polydiallyldimethylammonium chloride (PDDA) and repel other cations. In the
presence of arsenite, the Ars-3 conformation changes due to the formation of Ars-3/As(III)
complexes, which reduces the adsorption of more positively charged electrochemically
active indicator [Ru(NH3)6]3+ on the surface of the PDDA adsorption electrode as a means
to achieve coupling, thus enabling detection.
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3.5.3. Arsenic Detection Based on Other Biomolecules

In addition to DNA with aptamers, certain proteins have been used as materials
for the electrochemical detection of arsenic, and most protein-based arsenic detection is
based on the inhibition phenomenon. Cytochrome-C (Cyt-C), an important component
of the mitochondrial electron transport chain, is sensitive to all toxic compounds and is
also used as a biorecognition element [204]. An electrochemical biosensor was constructed
using Cyt-C, immobilized on a boron-doped diamond electrode. Square-wave voltammetry
(SWV) and electrochemical impedance spectroscopy (EIS) were performed to investigate the
interaction of Cyt-C with arsenic and cyanide. Subtractive normalized Fourier transform
infrared spectroscopy (SNFTIR) was performed to confirm the effective protein adsorption
onto the electrode. UV–vis studies of Cyt-C with the analytes confirmed the correct binding.
The results indicate that their interaction was through the amino acids of the basic protein
structure rather than through the heme portion of Cyt-C. Jae-Hoon Hwang et al. developed
a novel As(III) sensor by depositing iron–chitosan complexes on screen-printed carbon
electrodes using electrodeposition [205]. Mine wastewater and soil leachate were tested
by square-wave anodic dissolution voltammetry. The detection limits of the Fe–chitosan-
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coated electrode were 1.12 ppb for mine wastewater and 1.01 ppb for soil leachate, both
of which were significantly lower than the WHO requirements. The interference of Cu2+

ions had little effect on the detection, indicating that the chitosan-coated iron carbon
could improve the stability. The sensor has high sensitivity and selectivity and provides
a reliable level of detection of As(III) concentration in leachate from actual wastewater and
contaminated sites. Suparna Saha et al. modified glassy carbon electrode with chitosan–
Fe(OH)3 composite and reducing agent L-cysteine [158], and its detection schematic is
shown in Figure 26, under optimal optimized conditions, by differential pulse. The anodic
dissolution voltammetry achieved a detection limit of 0.072 ppb in the linear interval of
2–100 ppb and avoided the interference of common co-existing ions. More examples of
biomolecule-modified electrodes for the detection of arsenic are given in Table 7.
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Table 7. Biomolecule-modified electrodes.

Electrode Method Sensitivity (µA/ppb) Linear Range (ppb) LOD (ppb) Reference

SBP DNA DPV 0.1–200 0.075 [200]

(GT)21-ssDNA and
PB@GO DPV 0.2–500 0.058 [206]

GH-APTES-Fe3O4 NP SWV 1.92/0.12 13.3–65.8/117–241 1.6 [207]

SAMs ASV 2–40 0.5 [208]

L-tryptophan SWASV 7.49 × 10−3–7.49 0.90 × 10−3 [209]

AuNP-rLA-Lcyst SWV-ASV 0.1 3–25 3 [97]

P. cruentum DPASV 2.5–20 1.08 [210]

MTs ASV 5–1000 13 [211]

AgNPs/CT DPASV 10–100 1.20 [113]

Chitosan-Fe(OH)3 ASV 8.39 2–100 0.072 [158]

SPE/CNF-CHIT@Au
nano FIA-ECD 0.2181 100–100,000 11.4 [83]

ACh-SPC chronoamperometry 2689.63 [212]

HCR and RecJf
exonuclease EIS 0.1–500 0.02 [213]
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Table 7. Cont.

Electrode Method Sensitivity (µA/ppb) Linear Range (ppb) LOD (ppb) Reference

AF /AuNPs-SPCE CV 0.500–1999.61 137.85 [214]

GC-AuNP-ArOx CV 46.05 0.75–749.21 0.37 [101]

Escherichia coli CV 0.94–3.75/3.75–30 0.8 [215]

Whole-Cell Biosensors CV 0–100 [216]

E. coli CV 0.122 1.5 [217]

Ars-3 DPV 0.015–7.49 0.011 [203]

3D-rGO/Au
NPs/ssDNA EIS 3.8 × 10−7–3.0 × 10−4 1.4 × 10−7 [82]

ArsSApt EIS 50–10,000 59.94 [218]

C-AuNPs SWV 0.5–100 0.092 [136]

Ars-3/AuNPs-GO-MB DPV 0.4–10,000 0.2 [197]

3.6. Others
3.6.1. Silicon and Its Compound-Modified Electrodes

Suhainie Ismail et al. developed an efficient electrochemical detection method for
arsenite using linear scanning anodic solvation voltammetry (LSASV) based on silicon
nanoparticles and gold nanoparticles (SiNPs/AuNPs/SPCE) modifying the screen-printed
electrode surface [93]. The electrode showed good linearity in the concentration range of
10–100 ppb with a detection limit of 5.6 ppb. Multiple co-existing ions—Pb2+, Ni2+, Zn2+,
Hg2+ and Cu2+—in the water samples did not interfere with the detection of arsenite. The
method is highly sensitive and reproducible with a relative standard deviation of 4.52%,
which is promising for application. In addition, they also tried to detect As(III) using silicon
nanoparticles (SiNPs)-modified screen-printed electrodes (SPCE) and tested the electro-
chemical response of the electrode to arsenic using cyclic voltammetry (CV) and linear
scanning anodic solvation voltammetry (LSASV) [219]. Under the optimized conditions,
the peak anode current showed good linearity in the concentration range of 5–30 µg/L
As(III) with a detection limit of 6.2 µg/L. This method can effectively detect As (III) in real
water samples with low fabrication cost, good reproducibility and stability. In addition
to silicon nanoparticles, Feng Sun prepared nano-Au/SiO2 modified GCE by a one-step
method. This nanohybrid material was used for the electrochemical detection of As (III).
The calculated LOD was 0.07 µg/L, with a linear detection range of 0.1–40 µg/L [80].

3.6.2. Novel Polymer-Modified Electrodes

Mohammed M. Rahman synthesized a new class of thermally stable hybrid poly(arylene)
(azomethanes) and copoly(arylene)(azomethanes) (PAAP) based on diarylidenecycloalka-
nes by solution polycondensation, combined with a conductive nafion (5%) coating agent-
modified glassy carbon electrode for the detection of arsenic by the I-V method, which ex-
hibits higher sensitivity and selectivity for As3+ ions. Based on the calibration curve, the sen-
sitivity and detection limits were calculated as 2.714 µA µM−1 cm−2 and 6.8 ± 0.1 nM,
respectively, and this novel method provides a new route for the electrochemical detec-
tion of arsenic ions [220]. Wuwei Ma et al. proposed an electrochemical sensor based
on ion-imprinted polymers (IIPs) and nanoporous gold (NPG)-modified gold electrode
(IIP/NPG/GE) for the determination of arsenic ions (As3+) in different kinds of water,
which was prepared by the electrodeposition of nanoporous gold on the gold electrode,
and then a layer of IIPs with As3+ as the template ion was synthesized in situ on the
NPG surface by electropolymerization. The IIPs/NPG/GE formation process is shown
in Figure 27. The linear range of As3+ was obtained from 2.0 × 10−11 to 9.0 × 10−9 M by
cyclic voltammetry, and the lower limit of detection was 7.1 × 10−12 M after the calibration
curve [221].
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4. Conclusions

Arsenic contamination has seriously endangered the living environment and health of
human beings, and achieving the efficient and reliable measurement of arsenic ions has
gradually become a popular research area in the scientific community. The electrochemical
detection method based on a nanomaterial-modified electrode has become a mainstream
analytical method for measuring inorganic arsenic, with many advantages, such as simple
operation, high sensitivity, good selectivity, low cost, and rapid portability. The working
electrode is modified by nanomaterials so as to improve the performance of the electro-
chemical sensor, as described in this paper. The use of noble metal materials to modify
the electrode can increase the mass transfer and reduce the effect of solution resistance;
due to the synergistic effect, the bimetallic materials can ensure the detection performance
while controlling the detection cost. Although noble metals show excellent performance in
the electrochemical detection of arsenic, no noble metal nanomaterials are considered to
be mainstream for the electrochemical detection of arsenic. The use of other metals and
their compounds can achieve low cost, high sensitivity, and strong interference resistance;
secondly, biomolecule-based electrochemical sensors for arsenic have better reproducibil-
ity and feasibility, and are increasingly being used in clinical diagnosis, food analysis,
and environmental monitoring.

Most electrochemical studies are conducted under acidic conditions (i.e., acidic buffer
solutions are used as solvents in sample preparation, along with the more common buffer
solutions such as phosphate, acetic acid, hydrochloric acid, nitric acid buffers, etc.). Pre-
cious metal nanoparticles, bimetallic nanomaterials, metal oxide nanomaterials, and other
modified electrodes show better performance and obtain better sensitivity in acidic environ-
ments. However, detection under ambient pH conditions has several advantages, such as
avoiding unexpected changes in As morphology during acidification and simplifying the
experimental procedures during field detection. In the operation of electrode preparation,
deposition techniques, including electrodeposition and chemical deposition, are mostly
used for metal nanoparticles, and drop casting is less frequently used. For metal oxide
nanoparticles, the drop-casting method is mostly used directly. In real water samples, there
may be interference from co-existing ions, such as Pb(II), Cu(II), Ni(II), Co(II), Cr(III), Zn(II),
and NO3

−. The electrodes in most of the previous studies showed high anti-interference
and selectivity, and also performed well when the concentration of interfering ions was
much higher than that of arsenic.

A method suitable for field analysis which can achieve a low detection limit (within
10 ppb) is urgently needed to detect arsenic in drinking water, and the use of a nanomaterial-
modified electrode electrochemical system for this purpose represents a great opportunity.
Research on new nanomaterials continues to make progress, such as reduced graphene
oxide (rGO) and other metal oxide composites, which have been shown to have good
detection performance, showing that metals and their compound nanomaterials for the
detection of arsenic ions in water have a bright future.
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