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Abstract
It is difficult to discriminate the amorphous state using a transmission electron microscope (TEM). We discriminated different amorphous states
on TEM images using persistent homology, which is a mathematical analysis technique that employs the homology concept and focuses on
‘holes’. The structural models of the different amorphous states, that is, amorphous and liquid states, were created using classical molecular
dynamic simulation. TEM images in several defocus conditions were simulated by themulti-slice method using the created amorphous and liquid
states, and their persistent diagrams were calculated. Finally, logistic regression and support vector classification machine learning algorithms
were applied for discrimination. Consequently, we found that the amorphous and liquid phases can be discriminated bymore than 85%. Because
the contrast of TEM images depends on sample thickness, focus, lens aberration, etc., radial distribution function cannot be classified; however,
the persistent homology can discriminate different amorphous states in a wide focus range.
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Introduction
Interpreting amorphous images using transmission electron
microscopy (TEM) is difficult owing to the lack of periodicity
or symmetry. When analyzing a crystal structure with peri-
odicity or symmetry using TEM, features can be extracted
relatively easily using the Fourier transform. The contrast
obtained in the TEM image significantly changes depend-
ing on the defocus, aberrations and sample thickness. In
the analysis using the diffractogram obtained by a Fourier
transform of the TEM images, the effects of these defocus
and aberrations cannot be well distinguished. In the anal-
ysis of amorphous structures, the structure may be deter-
mined by performing a radial distribution function (RDF)
analysis on the halo pattern obtained using selected area
diffraction or nanobeam diffraction. To evaluate a small
area, a nanobeam or angstrom beam that converges the elec-
tron beam is used; thus, the sample may be damaged, and
it is unlikely that data showing the original structure can
be obtained. Therefore, for material analysis, it is impor-
tant to have a method that can identify regions with dif-
ferent sample states from TEM images with lower electron
beam density and less damage to the sample than that of
nanobeams.

Persistent homology (PH) is a concept of mathematical
homology and is a data analysis method focusing on ‘holes’
[1,2]. Using PH, extracting information quantitatively in the
form of data becomes possible. In PH, the circles are contin-
uously enlarged from particular points scattered in the space.

When the circles come into contact with each other and form
a ‘hole’, the time of occurrence (birth time) and the time when
the circles are further enlarged to form the inner ring increases.
The time when it disappears is recorded as the death time.
The graph exhibiting this is called a persistent diagram (PD).
The PD represents the birth–death time as points scattered
from the diagonal of the graph. Differences in the degree of
dispersion of the starting points appeared in the PD. Its appli-
cations are being promoted in fields such as material science
[3], molecular genetics and biochemistry. Algorithms suitable
for machine learning (ML) using PD have also been devel-
oped, and Obayashi et al. developed and published them as
HomCloud [4].

In the present work, we examinedwhether the TEM images
of the amorphous state can be distinguished from images
of liquids using PH. Because this is the first attempt, we
considered the ideal state of a binary problem. Specifically,
amorphous and liquid structures were created using classi-
cal molecular dynamics (MD) calculations. TEM simulation
images were created using this output, andMLwas performed
using the PD obtained from the images. The samples were
run on a binary GaN compound. Consequently, the accu-
racy was greater than 80%. It was found that PH is effective
for identifying amorphous TEM images, such as amorphous
and liquid phases. PH is often used for the analysis of three-
dimensional data, such as the amorphous state, but in this
study, we showed that it is also effective for two-dimensional
data, such as TEM images.
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Fig. 1. Results of molecular dynamics of 1000K, 4000K and 6000K
treatment. Perspective views (left column), TEM images (center) and PD
(right) are shown. In the same temperature, the upper row is without RT
treatment while the lower one is with RT treatment.

Data preparation
Generation of amorphous and liquid structure
using molecular dynamics simulation
Amorphous and liquid structure data for TEM simula-
tion were generated using a classical MD simulation code,
LAMMPS [5,6], which is distributed by Sandia National Lab-
oratories. LAMMPS was operated via Pyiron [7,8], which is
a Python library created by Janssen of Max Planck Institution
and executed on a PC.

The present MD simulations adapted the whole direc-
tion periodic boundary condition and the isothermal–isobaric
ensemble, which is suitable for structural transition, glass
transition, crystallization, melting simulation, etc. The pres-
sure and temperature of the model were kept constant under
the isothermal–isobaric ensemble condition. Wurtzite GaN
[9] crystals (29 × 24 × 10) were prepared as input data because
an area of 50Å×50Å× 50Å was used for the TEM simu-
lation. The Tersoff style [10] potential presented by Nord
et al. [11] was adopted. The MD simulation for creating
melting conditions was conducted under several temperatures
between 1000K and 6000K. The calculation time was 10 000
steps (1 step=1[fs]). Additionally, 5000 steps at 300K to

Fig. 2. Atomic arrangements of liquid (a) and amorphous (b). Optimal
volumes corresponding to the peak position indicated by red arrow in the
right bottom PD of Fig. 1 are indicated with green and red lines. For
visibility, atomic radii are made smaller than the calculated value.

Fig. 3. AADI of simulated TEM images in various defocus. Solid lines are
liquid (heat treatment without RT), and dashed lines are amorphous
(with RT).

produce an amorphous structure (for quench treatment) were
added to the above liquid conditions. The MD temperature
is unrealistic, and the melting temperature is higher than the
actual one [12,13].

Perspective views of the 20Å×20Å×20Å center region
of the calculated structure in the [001] direction are shown
in the left column of Fig. 1. It was found that the crystal
structure and symmetry were maintained except for 6000K,
but as the temperature increased from 1000 to 4000K,
the structural disorder also increased. In structures treated
with additional heat treatment at room temperature (RT),
there was less disturbance and the crystal structure was
almost normal. However, the symmetry of the structure
treated at 6000K was completely disturbed, which cannot
be assumed to have a crystal structure. Furthermore, struc-
tures treated with additional heat treatment at RT could
not recover the crystal structure. In the case of 6000K,
the structure in which additional RT treatment was added
(or not) could not be distinguished from the former
structure. Alternatively, the amorphous or liquid struc-
tures cannot be distinguished only from these perspective
views.

Generation of TEM simulation images
A commercial soft electron beam and image simulator (ELBIS)
[14], which adopts the multi-slice method [15] and transmis-
sion cross coefficient (TCC) [16,17], was used to generate
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TEM simulation images. The input sample size for ML
was 50Å×50Å×50Å, and the simulated image size was
1024 × 1024 pixels (0.0488Å/pixel) in nine defocus condi-
tions as follows: −100, −50, −25, −13, 0, +13, +25,
+50 and +100Å. The defocus range of the present study
is thought to be valid because the focus is adjustable in
the defocus range in the case of Cs-corrected TEM; more-
over, the TEM image contrast changes largely and inverses
at defocus 0Å. Small images for ML were cut into 256 × 256
pixels from the original simulated image. The slice thick-
ness used to calculate the potential map is 1Å. The Cs and
Cc aberrations were −0.00050mm and 1.37mm, respec-
tively. The other higher aberration coefficients were zero.
The calculated images were saved in a 16-bit Tiff for-
mat. Because the Homcloud library uses 8 bit in grayscale,

these images were transformed to an 8-bit format using the
contrast limited adaptive histogram equalization (OpenCV)
library.

One of the simulated images using former MD results
is shown in the center column of Fig. 1. The image size
was 20Å×20Å in the [001] direction same as the perspec-
tive view. The trend of the simulated TEM image change
with temperature was similar to that of perspective views.
Regardless of RT treatment, TEM images from MD results
treated at 1000K and 4000K had a small disturbance but
preserved the symmetry of the pristine crystal structure. How-
ever, at 6000K treatment, it was found that the symmetry
disappeared regardless of RT treatment. They had a crys-
tal structure and were believed to be amorphous and liquid
states.

Fig. 4. Filtration of cubical set using image intensity. (a) Example using a small set. Numbers in cells are assumed to be image intensity. Changing the
intensity (i) from high to low, expand the areas. Zeroth simplices (i.e. islands= connected components) and first ones (i.e. rings) are born or die
depending on the intensity. Blue and red indexes represent zeroth- and first-order simplices, respectively. The zeroth- and first-order PD are shown in
the bottom right of (a). When the islands come into contact with each other, they die, and another island is born. (At i=7, islands D0

1 and D0
2 died on

contact with each other and D0
3 was born.) (b) and (c) show amorphous and liquid filtration. White areas expand depending on the intensity.

(The image size is 12.5Å×12.5Å. Numbers indicate intensity lower limit for filtration.).
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Persistent diagram (PD) from MD 3D data
PDs were generated using the HomCloud [4] library of
Python. The input data were former MD results of Ga and
N radii calculated using values obtained by Ishimaru et al.
[18] and were 1.5625Å and 0.49Å, respectively. PDs from the
3D structure data are shown in the right column of Fig. 1. In
PDs from structure data without RT treatment, it was found
that localized birth–death pairs were dispersed as the temper-
ature increased and each birth–death pair peak disappeared
at 6000K. In the data for the 1000K+RT and 4000K+RT
data, peaks appear clearly, but in the case of 6000K+RT,
peaks do not appear. The situation shown by the PD at each
temperature is consistent with the perspective view and TEM
image. The peaks near (birth, death)= (1,1.7) and (2,2.4)
were due to the existence of a surface in the structural model
used in this study and did not appear in an infinitely large
model.

Figure 2 represents the optimal volumes of the peak posi-
tion indicated by the red arrow in the bottom-right PD of
Fig. 1. The optimal volumes are represented by the green
and red lines, respectively. It can be observed that there are
more atomic arrangements satisfied with the optimal volume
in Fig. 2b than in Fig. 2a.

The state of 6000K+RT was relaxed by changing the
liquid state to RT and had a state different from the liquid
state. This state was defined as an amorphous state because
it was clearly different from the liquid state when compared
by PD. Hereafter, data in 6000K treatment with/without
RT was used as an amorphous state and liquid in common.
Here, 6000K+RTwas not intended to reproduce quenching.
The combination can be regarded as an amorphous struc-
ture resulting from pure structural stabilization by relaxation
from a random atomic arrangement. In other words, it is
considered to be the most stable structure determined by the
atomic potential, independent of the quenching rate. Simi-
larly, the simulation of 6000K without RT did not assume
difficult ultra-high temperature TEM observations but rather
an ideal random atomic arrangement, perhaps obtained by
ion implantation.

Examination by each identification method
Annular averaged diffraction intensity (AADI)
We attempted to classify the states using the AADIs. AADI is
obtained by averaging Fourier-transformed TEM image in the
radial direction and is approximately equivalent to the radial
distribution in reciprocal lattice space. AADIs from simulated
images of various foci are shown in Fig. 3. The abscissa in
Fig. 3 is labeled as scattering angle, which can be considered as
distance in the RDF, although it is the reciprocal. The profiles
changed in a complicated manner depending on their defocus,
regardless of whether they were amorphous or liquid. There-
fore, it was difficult to determine whether the image was taken
from an RT-treated sample or not.

ML using persistent homology
As a present ML method for PH, we applied Obayashi’s
method [19], which uses persistent images (PI) [20] for learn-
ing objects. The transformation from PD to PI was performed
using the method described by Adams et al. [20]. In the PI,
each birth–death point is assigned a weight depending on the

distance from the diagonal of the PD. The larger the distance,
the larger the weight.

Because the learning method is detailed in [19], only a
simple procedure is shown below.

1. The zeroth- and first-order PDs were calculated using
simulated TEM images. Since the filtrations were done
from high to low intensity, the points that represent
birth–death pairs are displayed under the diagonal in
the PD. 0th order simplices are connected components,
and the first ones are rings. An example is shown in
Fig. 4a.

2. Both PIs are transformed from PDs.
3. Logistic regression and support vector classification for

two-class classification with cross validation were con-
ducted using zeroth- and first-order PIs separately or in
combination. The PI data were divided into 75% for
training and 25% for testing for the cross validation.

The results of filtration on amorphous and liquid TEM
images are shown in Fig. 4b and c, respectively. In the case
of the amorphous results in Fig. 4b, it seems that the chang-
ing manner of the white area is rather gradual and individual
components grow larger than the liquid ones. However, in

Fig. 5. TEM images and PDs of zeroth- and first-order.
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Fig. 6. Visualized learning results using PD. (a)–(d) are results of logistic regression and (e)–(h) support vector classification. The upper rows show results
using zeroth- and first-order PI data separately. The lower rows combined zeroth- and first-order PI data.

the case of liquid, smaller islands are born and die more fre-
quently, and they have finer structures than amorphous ones.
According to examples (b) and (c), it seems that the arrange-
ment of atoms in amorphous has a certain structure, while it
is more random in liquids than in amorphous.

Figure 5 shows a part of the TEM image and the PD used
for ML. According to the results of the previous filtration,
there seems to be a difference in the way islands and rings are
formed and disappear between amorphous and liquid; how-
ever, because of the focus dependence of the image, it is not
clear at a glance where the characteristics of PD exist. Because
the actual data is slightly out of focus, it is necessary to obtain
the features using the data of many focus sets. ML is effective
for this purpose, and it was executed by combining the scikit-
learn and Homcloud [4] mentioned above. The Homcloud
[4] library was used to create PD and PI from TEM images,
while the scikit-learn library [21–22] was used for ML using
PIs. The logistic regression (LR) and support vector classifica-
tion (SV) results were compared. MLs were conducted using
each order PI separately or using a combined zeroth-order and
first-order PI. This learning method is a supervised learning,
in which all amorphous and liquid images were labeled as 0 or
1. In both methods, the regularization parameters were 0.01,
and the hinge function was used in SV. Accuracy was defined
as the ratio between the correct number and the total image
number.

For supervised learning insensitive to focusing, the amor-
phous and liquid phases can be discriminated by 0.773 with
LR and 0.817 with SV. In the case of learning the zeroth-order
PIs and first-order ones separately, the zeroth and first accu-
racies were 0.649 and 0.756 for LR and 0.672 and 0.790 for
SV, respectively.

The training results for GaN are presented in Fig. 6. The
blue and red areas represent the features inherent to amor-
phous and liquid phases, respectively. Both LR and SV classify
PI by substituting the value of the function h(x) to Sigmoid
function, where the vector x is the vectorized PI. Specifically,
h(x) is obtained by operating the input vector x with the
weight vector w that is obtained using ML.

h(x) =w ·x (omitted constant for simplicity)
Substituting h(x) to Sigmoid function, makes it correspond

to the label 0 for amorphous and 1 for liquid.

Fig. 7. Inverse analysis result using just-focused amorphous and liquid
TEM image. The areas of the inverse analysis from the selected
birth–death pairs of amorphous are shown in the first and third rows;
those of liquid are shown in the second and fourth rows. The zeroth and
first PDs are shown in the left column. The blue (red) areas on the TEM
image in the second (third) column are from the birth–death pairs in the
amorphous (liquid) superior area in Fig. 6g and h. The green points are
the birth points.

If h(x)< 0, then Sigmoid function >
=0.5, and ML predicts

the label 0. If not, Sigmoid function <
=0.5, and it predicts the

label 1. Each point of PI is a one-dimensional vector with a
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nonnegative value. Each element of w represents the contri-
bution of each element of x. Since x is a nonnegative vector,
each element of weight w must be minus (plus) for amor-
phous (liquid). Figure 6 is drawn with the weight w . These
areas allow the machine to determine the difference between
both phases. The upper row shows the classification results
using the zeroth- and first-order PI data separately ((a) and
(e) for zeroth and (b) and (f) for first). The lower row (c),
(d), (g) and (h) show the results using the combined zeroth-
and first-order PI data. Note that even when the zeroth- and
first-order data are combined, the features of zeroth and first
are obtained separately, as shown in the lower row. From
these figures, it can be observed that the blue areas are far-
ther away from the diagonal than the red areas in both the
zeroth-order and first-order PDs. Since points in a PD rep-
resent lifetimes (= death time−birth time) of simplices, a long
distance from the diagonal means a long lifetime i.e. the longer
the distance from the diagonal, the larger is the structure. Such
a clear difference favors the use of PDs to detect the difference
between amorphous and liquid images. As described above,
when the zeroth- and first-order data were trained separately,
the ability to discriminate between amorphous and liquid was
approximately 65% and 75%, respectively, indicating that
the contribution to discrimination ability was higher for the
first-order training results. This suggests that the structure of
the ‘ring’ in amorphous materials, as discussed in Fig. 4, is
effective for discrimination. Although it is difficult to discrimi-
nate amorphous and liquid phases using only the zeroth-order
PD, which does not reflect the short-range structural order,
the ability to discriminate each phase is enhanced when com-
bined with the first-order PD. This finding indicates that the
ability to discriminate can be further improved by incorpo-
rating the rings as well as the formation and disappearance

of their connecting components. Therefore, in the case of
amorphous materials, it can be considered that the con-
necting components are formed at the initial state of ring
generation.

Figure 7 illustrates the inverse analysis results from Fig. 6.,
in which amorphous and liquid TEM images of just focus are
used as examples. Inverse analysis represents the pattern in a
TEM image that a particular region of PD corresponds to. The
upper two rows show the zeroth-order results, and the lower
two rows show the first-order ones. In each result, upper
(lower) shows amorphous (liquid) results. The left column
shows the PD superimposed on the contour map converted
from the results in Fig. 6. The second and third columns
show inverse analysis results and blue (red) patterns corre-
sponding to purple (red) circled region in Fig. 6g and h. The
purple (red) circled regions are amorphous (liquid) superior
ones in the PD. The green points are their birth points. In
the zeroth-order results, there was only a slight difference
between amorphous and liquid in terms of the number of
regions corresponding to the regions surrounded by the purple
and red lines. In the first-order results, the pattern corre-
sponding to the area surrounded by the purple (red) line was
more in Amorphous (Liquid) than in Liquid (Amorphous).
Although the correct answer ratio learned using only the
zeroth-order PD is lower than using only the first-order PD as
mentioned above, the inverse analysis results are in agreement
with it.

Figure 8 shows the dependence of the accuracy on the
amount of defocus for LR and SV. Figure 8 shows the pre-
dicted accuracy using (a) only the zeroth-, (b) first- and
(c) zeroth- and first-order PDs. The average accuracy of
each of these (a)–(c) is summarized by the dashed line
in Fig. 8d. In these figures, the closed and open circles

Fig. 8. Accuracy of amorphous and liquid TEM image using logistic regression or support vector classification for (a) zeroth-order, (b) first-order, and
(c) a combination of zeroth- and first-orders.
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represent predictions using LR and SV, respectively. From
Fig. 8d, it can be observed that SV is superior to LR.
Furthermore, the improvement in accuracy discussed above,
zeroth-order < first-order < zeroth- and first-order (denoted by
‘0th + 1st’ in this figure), is graphically summarized.

Importantly, we found that the prediction accuracy is dif-
ferent when the defocus region in Fig. 8a–c is limited to±25Å
(in-focus) from the results when the defocus region is consid-
ered to be up to ±100Å (defocus). The results of the in-focus
are summarized as solid lines in Fig. 8d. From a comparison
between the solid and dashed lines in this figure, the accuracy
of the in-focus is higher than that of the defocus. Considering
this result from a crystallographic point of view, it may corre-
spond to the fact that the contrast transfer function differences
are not large around the focus, to ensure that the structural
information is easily reflected in the image, whereas in the
case of defocus, the structural information is lost due to the
overlapping interference fringes. Considering it from the per-
spective of ML, it indicates that the structural information is
consequently reflected in the features of Fig. 6, even though
the model does not contain any prior information about the
structure.

Finally, we reconsidered the accuracy from a practical
point of view. In this case, we discuss a relatively large
defocus amount (±100Å). However, in recent TEMs, it is
possible to adjust the focus within ±25Å using a Fourier
transform during operation. The solid line presented in Fig. 8d
shows that when the amount of defocus is within ±25Å,
the accuracy improves to 0.803 for LR and 0.851 for SV.
Therefore, we may identify the amorphous state with a high
discrimination accuracy of more than 85%, even in normal
operation.

Concluding remarks
We studied the effectiveness of the PH to classify the TEM
images from two different amorphous states: liquid and amor-
phous. After transforming PI from PD using simulated TEM
images of each state with different defocus, two ML methods,
LR and SV, were applied to discriminate them. Consequently,
in the case of GaN, the accuracy was over 85% in the SV
for defocus between −25Å and 25Å. PH is known to be
effective for three-dimensional data, but it has also been
found to be effective even in less dimensional data, such as
two-dimensional image data. However, the three-dimensional
structure/information, which changes in a complicated man-
ner owing to the difference depending on the defocus in
TEM, still exists. Two-dimensional PD is created using the
pixel intensity of the image. It is not possible to simply asso-
ciate a PD created from three-dimensional structural data
with one created from two-dimensional image data on a one-
to-one basis. Therefore, PH also has a difficult phase in
interpretation. Although not limited to TEM images, actual
measurement data contain noise. As PH is believed to be vul-
nerable to noise, its application to TEM images might not
be suitable. However, a low-pass filter is often applied to
TEM images to avoid dropping information, thus noise is
not considered a big problem for PH applications. In the
present work, we considered only the change in defocus,
but PH can be a new tool for analyzing amorphous TEM
images.
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