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Abstract Even though every cell in a multicellular

organism contains the same genes, the differing spatio-

temporal expression of these genes determines the eventual

phenotype of a cell. This means that each cell type contains

a specific epigenetic program that needs to be replicated

through cell divisions, along with the genome, in order to

maintain cell identity. The stable inheritance of these pro-

grams throughout the cell cycle relies on several epigenetic

mechanisms. In this review, DNA methylation and histone

methylation by specific histone lysine methyltransferases

(KMT) and the Polycomb/Trithorax proteins are considered

as the primary mediators of epigenetic inheritance. In

addition, non-coding RNAs and nuclear organization are

implicated in the stable transfer of epigenetic information.

Although most epigenetic modifications are reversible in

nature, they can be stably maintained by self-recruitment of

modifying protein complexes or maintenance of these

complexes or structures through the cell cycle.

Keywords Epigenetic inheritance � Histones � DNA

methylation � Polycomb � Trithorax � Non-coding RNA �
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Introduction

With the recent completion of the human genome,

approximately 23,800 genes have been identified. The use

of functional genomic approaches has provided much

insight into how genes shape a cell or an organism. How-

ever, our DNA sequence is not the sole determinant of a

phenotype, since each cell of an organism contains the

same genetic information. In fact, it is the differential

regulation of genes in time (i.e., during development) and

space (i.e., tissue) that determines cell fate and eventual

phenotype. During every cell cycle, the entire genome

needs to be accurately replicated during the S-phase.

Similarly, the gene-expression profile needs to be repli-

cated as well; after all, a dividing hepatocyte should give

rise to a fully differentiated new hepatocyte even though it

shares the same genome with a neuron. The study of

‘‘heritable changes in gene function that cannot be

explained by changes in the DNA sequence’’ is referred to

as epigenetics [1]. These epigenetic modifications can be

stably maintained through mitosis; for example, cells with

an epigenetically silenced transgene can be cultured for

more than a year without losing the epigenetic information

[2]. Additionally, epigenetic information can, in some

cases, be transferred through meiosis and therefore affect

the next generation [3]. Even though epigenetic informa-

tion can be inherited through many cell divisions and even

generations, it is also reversible. In fact, unlike DNA that,

with exceptions, only changes due to mutagenesis or rep-

lication errors, epigenetic information is also a product of

environmental factors. The reversibility of the system is

illustrated by the epigenetic reprogramming of oocytes

after fertilization, when widespread demethylation of the

genome is observed. After implantation, de novo methyl-

ation restores DNA methylation levels in the embryo [4].

Besides physiological reprogramming during development,

somatic cells can be reprogrammed into pluripotent stem

cells through nuclear transfer or the expression of specific

pluripotency-associated transcription factors [4, 5]. In

addition, also cancers seem to exploit the reversible nature
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of the epigenome by silencing tumor suppressors or acti-

vating oncogenes [6, 7].

Much research on epigenetic inheritance has focused on

DNA methylation, histone variants, and covalent modifi-

cations of histone tails [8]. However, throughout the cell

cycle, these epigenetic marks face two major caveats; they

need to be accurately replicated along with the DNA and,

in addition, they need to survive mitosis. During DNA

replication this means that any covalent modifications to

the DNA need to be copied to the daughter strands. In

addition, the passing replication machinery is likely to

disrupt many DNA–protein interactions and higher-order

chromatin organization and, hence, these need to be either

maintained through the S-phase or reorganize after repli-

cation. During mitosis, chromatin can be condensed by

more than a factor 10,000 [9], again disrupting higher-

order chromatin structures and protein–DNA interactions.

In this review we describe the molecular mechanisms

behind epigenetic inheritance through the cell cycle in

mammalian cells. We will focus on DNA methylation,

histone modifications and how these are established and

maintained by heterochromatin protein 1 (HP1), as well as

the PcG/TrxG system. In addition, we consider the influ-

ence of small non-coding RNAs (ncRNAs) and nuclear

organization of the genome on epigenetic inheritance.

DNA methylation

DNA methylation has been demonstrated to play an

important role in epigenetic inheritance.

For example, at the murine Agouti and Axin loci

(determining coat color and tail phenotype, respectively

[10]) where nearby retrotransposons or intracisternal

A-particles (IAP) can affect gene expression. DNA meth-

ylation of these IAPs can silence IAP promoter activity and

thereby restore wild-type expression. This can result in

genetically identical mice that display different coat colors

or tail phenotypes. Interestingly, the methylation status of

these IAPs can be inherited across generations [11, 12].

Other examples that illustrate the role of DNA methylation

in epigenetic inheritance are X-chromosome inactivation

and parental imprinting (epigenetic silencing of one allele)

which are impaired when DNA methylation machinery is

disrupted [13, 14]. In addition, many cancers show local

hypermethylation at genomic locations corresponding to

tumor suppressors, such as cell cycle inhibitors and genes

that mediate the DNA damage response [6].

In mammalian cells, DNA methylation occurs on cyto-

sine residues (m5C) and this occurs almost exclusively

at cytosine-guanidine dinucleotides (CpG) [15, 16].

These nucleotides are underrepresented in the genome,

and approximately 70–80% of all CpGs are methylated

[15, 17, 18]. Although most CpG dinucleotides are meth-

ylated, the genome also contains CpG islands: short

CpG-rich genomic regions which are generally unmethy-

lated (discussed below). Functionally, DNA methylation is

associated with a repressed chromatin state and is required

for both ‘genome housekeeping’ as well as for gene

expression regulation and maintenance of cell identity [19,

20]. The former is illustrated by the widespread methyla-

tion of retrotransposons [19]. Abolishing methylation at

these sites can result in reactivation of the transposon

promoter activity [21]. In addition, methylation might be

involved in maintaining chromosomal stability, as noted by

chromosomal rearrangements and abnormalities as a result

of chemical inhibition of methylation and genetic studies

[15, 19]. Global hypomethylation as observed in certain

cancers might therefore be a cause of chromosomal insta-

bility [22]. Of particular interest when examining the role of

DNA methylation in gene regulation are CpG islands [15].

These CpG islands are enriched at genes, since approxi-

mately 60% of all genes in the human genome contain a

CpG island upstream [15]. Although methylation of CpG

islands is infrequent, it does result in a stable repression of

genes [23]. The latter is also illustrated by experiments that

showed that increased CpG density at a promoter induces

more robust silencing of episomes [24]. In addition,

although genes with low CpG content at their promoters are

readily reactivated by the viral SV40 enhancer, transcrip-

tional silencing of genes with an upstream CpG-dense

region is not reversed by the SV40 enhancer [25].

The maintenance of DNA methylation throughout the

cell cycle is mainly mediated by three DNA methyltrans-

ferases, namely DNMT1, DNMT3a, and DNMT3b [16].

DNMT1 is primarily involved in the propagation of DNA

methylation during the cell cycle due to its affinity towards

hemimethylated DNA [26]. During the S-phase, the two

parental DNA strands are separated for DNA replication,

resulting in two hemimethylated strands, and two newly

synthesized strands. At this time, DNMT1 associates with

proliferating cell nuclear antigen (PCNA), an important

member of the replication machinery [27], and NP95, a

protein that specifically binds hemimethylated DNA, and

subsequently restores methylation on the daughter strands

[28]. This process has been shown to be required for both

in vitro as in vivo maintenance of DNA methylation [28,

29]. However, even though the accuracy of DNA methyl-

ation replication is reported to be approximately 95–99%

[30], the maintenance activity of DNMT1 is not sufficient

to explain all epigenetic inheritance considering DNA

methylation. In addition, both de novo methyltransferases

DNMT3a and -b seem to be required for complete epige-

netic inheritance. For one, in murine ES cells abrogation of

both DNMT3a and -b increases the amount of hemime-

thylated DNA at repeats by 30% [31]. Furthermore, ES
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cells deficient for both de novo methylases display reduced

levels of methylation over time [32]. Likely, the epigenetic

inheritance of DNA methylation requires the maintenance

transferase DNMT1 as well as the de novo methyltrans-

ferases DNMT3a and -b for perhaps proofreading and

methylation of specific DNA sequences [32, 33].

Throughout the cell cycle, the methyltransferases dis-

play differential temporal expression and localization. As

expected, DNMT1 expression levels peak during the

S-phase. During this phase, DNMT1 is responsible for the

faithful replication of methylated DNA sequences and,

hence, it colocalizes to DNA replication foci [28]. How-

ever, the de novo methyltransferases (DNMT3a and -b)

show a more heterogeneous profile. DNMT3a seems to be

primarily associated with heterochromatin, or inactive

chromatin [34]. DNMT3b, however, displays diffuse

nuclear localization although DNMT3a and -b colocalize

at sites of pericentromeric heterochromatin [34]. The

expression levels of the de novo DNMTs also differ during

the cell cycle. DNMT3b mRNA levels, like DNMT1, are

reduced during the G1/G0 phase of the cell cycle, while

they peak during the S-phase [35]. DNMT3a, however, is

expressed at approximately constant levels throughout the

cell cycle [35]. One possibility is that DNMT3b, in addi-

tion to DNMT1, is primarily responsible for DNA

methylation maintenance. Abrogation of DNMT3b results

in decreased genome-wide methylation levels, while

DNMT3a disruption results in a less severe phenotype [36,

37]. The expression peak of DNMT1 and DNMT3b during

the S-phase might support the maintenance function

DNMT1 and -3b. The abundant DNMT3a expression

during the cell cycle indicates a more flexible mechanism

for this particular methyltransferase, such as proofreading

or DNA methylation of specific loci in response to certain

extracellular or intracellular stimuli.

Currently, DNA methylation is the most established

system implicated in epigenetic inheritance. The recogni-

tion of hemimethylated DNA by DNMT1 provides an

efficient method for restoring DNA methylation during the

S-phase, supplemented by the de novo methyltransferases

DNMT3a and -3b. However, although DNA methylation is

generally associated with robust silencing, it is not irre-

versible. This is illustrated by the demethylation of the

paternal and maternal genomes in the zygote after fertil-

ization [38]. In addition, DNA demethylation is required

for the reactivation of multiple pluripotency-associated

genes during reprogramming of differentiated cells into iPS

cells [39]. Nevertheless, the molecular mechanism of DNA

demethylation in mammals is disputed. One possibility for

cells to demethylate their genome is by passive demeth-

ylation. By seizing maintenance methylation activity

during DNA replication (i.e., preventing DNMT1 nuclear

localization), the genomes of daughter cells become

increasingly demethylated [40]. However, this process

might not fully explain all observed demethylation events

in the mammalian genome. For example, the paternal

nucleus in the zygote undergoes rapid genome-wide

demethylation after fertilization prior to DNA replication

[41]. Furthermore, non-dividing peripheral monocytes

undergo DNA demethylation upon differentiation [42],

indicating active demethylation, as passive demethylation

requires replication.

One candidate for mediating DNA demethylation is

activation-induced deaminase (AID). In primordial germ

cells, cells that normally undergo genome-wide demeth-

ylation, a knockout of this protein results in a significant

increase of methylated DNA [43]. Furthermore, the

demethylation of pluripotency-associated genes depends on

AID [44]. In addition to AID, recent studies also identified

several members of the elongator complex that are required

for the previously discussed paternal genome demethyla-

tion in zygotes [45]. However, although both passive and

active DNA demethylation are likely to occur during

development, it remains to be determined whether it occurs

outside specific developmental events and artificially

induced conditions.

All in all, DNA methylation plays an important role in

gene expression in mammalian cells. Methylation of CpG

islands in promoter regions is often associated with gene

silencing and aberrant DNA methylation has been shown to

occur in many cancers, leading to silencing of some tumor

suppressor genes [15]. Reversal of DNA methylation

therefore has emerged as a potential strategy for treatment

of cancer [46, 47].

Histones

Although DNA methylation is an established mechanism

for stable epigenetic inheritance, organisms that hardly

methylate their DNA, such as yeast and Drosophila, can

still transmit epigenetic information through the cell cycle,

likely by altering chromatin structure [48, 49]. The major

determinants of chromatin structure are the histone pro-

teins. DNA coils around histones (complexes referred to as

nucleosomes), which eventually contributes to efficient

packaging of approximately 2 m of DNA in a single

nucleus. Each nucleosome contains an octamere of four

core histone proteins, namely H3, H4, H2A, and H2B [50].

However, besides the structural role, histone proteins are

crucial in the regulation of gene expression. By altering the

local chromatin state, the accessibility of particular DNA

sequences to, for example, transcription machinery, can be

regulated resulting in activation or repression of genes [51].

In addition, effector proteins can be recruited to mediate

transcriptional silencing or activation [52]. Since the local
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chromatin state contributes to maintaining transcriptional

activation or repression, it is not surprising that it needs to

be transmittable through the cell cycle, e.g., in order to

maintain expression of tissue specific genes. However, this

system also needs to allow for dynamic changes, such as

required for stress responses or DNA repair. In general,

chromatin functionality can be regulated either by the

placement of specific histone variants throughout the gen-

ome (e.g., the placement of H3.3 at actively transcribed

loci, discussed below), or by the covalent modification of

histone N-terminal tails [53]. For the case of epigenetic

inheritance, a number of histone modifications and histone

variants have been identified that might be maintained

through the cell cycle or play a role in epigenetic inheri-

tance. Note that the concept of histone modifications as the

direct carriers of epigenetic information is disputed as

reviewed in [54–56].

Histone modifications and epigenetic inheritance

The nucleosome consists of tightly packed histone proteins,

and their N-terminal tails extend from the nucleosome.

Numerous residues of these histone tails can be subject to

modifications, including the covalent linkage of small

molecules (i.e., phosphorylation, acetylation, methylation)

as well as macromolecules (e.g., ubiquitination, SUMOy-

lation) [53]. These modifications can directly alter histone

or chromatin structure and thereby restrict or facilitate

access to transcription factors/machinery, or they can

recruit other proteins at the site of interest [57] to facilitate

a repressive or accessible chromatin state, such as the

heterochromatin-associated protein 1 (HP1) or Polycomb

repressive complexes discussed below.

In contrast to other posttranslational modifications, his-

tone methylation is assumed to be a prime candidate for

being involved in epigenetic inheritance due to its rela-

tively low turnover [58, 59]. However, the recent

identification of demethylases and studies into spatio-

temporal histone regulation have also demonstrated the

dynamic nature of the histone methylation system [60].

Nonetheless, much recent research has emphasized the role

of histone methylation in epigenetic inheritance, with a

particular emphasis on lysine methylation on H3 variants

[61]. Methylation of H3 at lysine 9 (H3K9) or lysine 27

(H3K27) are known to be repressive marks, while meth-

ylation of H3 at lysine 4 (H3K4) is correlated with an open

chromatin state and transcription [53]. Each of these resi-

dues, can be mono-, di-, and tri-methylated. The active

H3K4Me and the repressive H3K27Me are regulated by the

TrxG and PcG family, respectively (discussed below).

However, a separate system maintains H3K9Me through-

out the cell cycle, namely the heterochromatin-associated

protein 1 (HP1). In order to be heritable, these methyl

marks need to be stably transferred through the S-phase

and subsequently mitosis; this has been hypothesized for

the H3K9Me3 mark, which will be elaborated on next.

During DNA replication, histones are disassembled in

order for the replication machinery to pass and are subse-

quently rapidly reassembled on the two daughter strands.

After disassembly, the parental H2A–H2B dimers and H3–

H4 tetramers are redistributed at the daughter strands and

complemented with newly synthesized histones [62, 63] in

order to provide both strands with a similar number of

nucleosomes. Since H3–H4 tetramers can also be split into

dimers [64], one potential model is that the parental H3–H4

tetramers along with their modifications are split into

dimers and are subsequently evenly distributed at

both daughter strands (Fig. 1). In other words, this ‘semi-

conservative model’ [65] states that after replication

both strands will contain ‘hemi-parental’ nucleosomes,

Fig. 1 Restoration of H3K9 methylation after DNA replication.

During the S-phase, nucleosomes are disrupted by the replication

machinery and subsequently reassembled at the daughter strands. This

requires both parental histones as well as newly synthesized histones.

Parental H3–H4 tetramers can be randomly deposited at the daughter

strands. Alternatively, in certain instances H3–H4 tetramers can be

split into dimers. This would facilitate the semi-conservative model,

in which parental H3–H4 dimers pair with newly synthesized H3–H4

dimers in order to form hemi-parental nucleosomes. The propagation

of the H3K9Me3 mark is facilitated by HP1 and KMTs, where HP1

binds parental H3K9Me3 marks and induces H3K9 methylation of

newly synthesized histones
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consisting of a parental H3–H4 dimer and a newly syn-

thesized H3–H4 dimer. However, based on experiments

with SV40 chromosomes [66, 67], it is assumed that for the

bulk of the genome parental H3–H4 are deposited as tet-

ramers and distributed in a random fashion at both daughter

strands [8, 62, 64], which means the epigenetic marks on

the parental histones are ‘diluted’. However, how can

random distribution of parental histones with their epige-

netic marks facilitate the faithful replication of local

chromatin states? For H3K9 methylation, HP1 might

function as a ‘reader’ [8] that detects local H3K9 methyl-

ation of parental histones and subsequently induces

‘spreading’ of this mark to the newly synthesized histones

(Fig. 1). HP1 is known to be involved in the maintenance

of heterochromatin and it binds, through its chromodo-

main, to di- and trimethylated H3K9 residues [68], an

epigenetic mark that is enriched in heterochromatin [69,

70]. Although HP1 does not posses inherent histone lysine

methyltransferase (KMT) activity, it can associate with

several H3K9 KMTs, including SUV39h1/2 and G9a

[71, 72]. Ectopic expression of these KMTs induces

heterochromatin abnormalities, illustrating that H3K9

methylation plays a causal role in heterochromatin for-

mation [73]. In addition to its association with KMTs, HP1

also binds to CAF-1, a chaperone that supplies newly

synthesized H3–H4 units to the replicated DNA during the

S-phase and this interaction is required for heterochromatin

formation and S-phase progression [74–76]. Interestingly,

CAF-1 is only found in complex with either HP1 or H3.

When associated with HP1, CAF-1 also binds SetDB1, a

KMT responsible for the monomethylation of H3K9 [77].

This process could serve two purposes, namely to supply

HP1 to the site of ongoing replication (i.e., to bind parental

H3K9Me3) and to monomethylate the K9 residue of newly

synthesized H3 molecules, which serves as a substrate for

subsequent trimethylation by SUV39h1/2 [77]. Therefore,

HP1 could function in a self-reinforcing mechanism to

maintain heterochromatin and its associated H3K9Me3

modification during the S-phase. Upon replication it is

recruited to the replication-fork by CAF-1 where it can

induce local monomethylation of new H3 molecules. In

addition, it can ‘read’ parental H3K9Me3 residues and

recruit KMTs that can catalyze the trimethylation of

the newly synthesized H3 s, thereby facilitating the

spreading of the heterochromatin-associated H3K9Me3

mark [78–80].

Although the HP1-reinforcement loop could explain

epigenetic inheritance through the S-phase of the cell

cycle, the M-phase is also a major caveat due to the intense

condensation of higher-order chromatin structure [9].

During mitosis, most HP1 is dissociated from chromatin

[81–83] through a ‘methylation/phosphorylation’ (Me/P)

switch [84]. Aurora B phosphorylates the neighboring

residue of H3K9Me, i.e., serine 10 (H3S10P), which

facilitates the release of HP1 from chromatin. In fact,

Aurora B depletion results in aberrant HP1 association with

chromatin during mitosis [85, 86]. Importantly, H3S10

phosphorylation does not require demethylation of H3K9

[81–83] and, therefore, the epigenetic information is

unaltered. After mitosis, the phosphatase PP1 dephospho-

rylates [85, 87] H3S10 residues, after which HP1 can

re-bind methylated H3K9 and resume its functions as

heterochromatin regulator. Note that of the three HP1

variants (HP1a, HP1b, HP1c), HP1a can remain associated

with centromeres during mitosis, although this interaction

is H3K9Me independent [82]. This indicates the possibility

of continued binding throughout the cell cycle as a means

for stable epigenetic inheritance.

It has long been assumed that heterochromatin is rather

static, since it contains many repeat-rich regions, retro-

transposons, and is relatively gene-poor. Recent genome-

wide profiling of histone methylations affirmed that

H3K9Me3 generally locates to e.g., satellite and long-ter-

minal repeats [88]. In addition, during development, certain

PcG/TrxG targets, such as the pluripotency marker Oct4,

undergo H3K9 trimethylation which might reflect a more

permanent inactivation [89]. However, there is also support

for a more dynamic role for heterochromatin during

development. When cells exit the cell cycle during G1 and

enter a quiescent state (G0), the E2F target genes that

mediate G1/S phase progression become H3K9 methylated

due to Rb-dependent HP1 and KMT recruitment [90].

These are examples of ‘facultative heterochromatin’ [90]);

regions of heterochromatin that can, under certain cir-

cumstances, be switched in a euchromatic state that

facilitates transcription. Currently, a precise mechanism

that distinguishes this more dynamic facultative hetero-

chromatin from the more static (e.g., pericentric)

heterochromatin remains elusive.

Histone variants and epigenetic memory

Besides histone modifications, different histone variants

could also mediate epigenetic inheritance. For H3, five

variants have been identified, including H3.1 and H3.2 that

are only incorporated during the S-phase to complement

parental histones on the two daughter strands, CENP-A, a

H3 variant that marks centromeres, and H3.3, a histone

variant that can be incorporated in every phase of the cell

cycle [91]. Especially the latter variant is implicated in

epigenetic inheritance. H3.3 can replace the H3.1 that is

deposited during the S-phase and is deposited by a dedi-

cated histone chaperone HIRA independent of DNA

replication [92]. In general, H3.3 is enriched in actively

transcribed chromatin [93]. In addition, H3.3 is enriched

for H3K4 trimethylation, a modification associated with
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transcriptional activation [94]. Nuclear transfer experi-

ments in Xenopus demonstrated that H3.3 mediates

inherited transcription of MyoD. The epigenetic mark

H3K4Me3 was shown to be required for this epigenetic

memory, and, additionally, the overexpression of H3.3

increased the inheritance of the transcriptionally active

state [95]. However, how are these H3.3 variants inherited

through the cell cycle?

Upon gene transcription, local chromatin gains active

marks (i.e., H3K4Me) [96] and H3.3 is deposited [97].

During replication, newly synthesized H3.1 and H3.2

variants complement the parental histones in a random

fashion, thereby diluting the local H3.3 concentration

approximately twofold. However, the local H3.3 concen-

tration is still likely to be elevated as compared to a random

genomic position, and thereby can still reflect an accessible

chromatin structure that can facilitate further transcription

[98]. This continued transcription, in turn, might induce

more H3.3 deposition throughout the cell cycle and thereby

fully restore the active chromatin state. Alternatively,

recognition of a ‘‘H3.3 environment’’, perhaps through the

H3K4Me3 mark, might induce increased H3.3 deposition

[95, 98].

In summary, both specific covalent modifications of

histones as well as certain histone variants are likely to be

inherited through the cell cycle. Since during the S-phase

parental H3–H4 dimers or tetramers are complemented

with newly synthesized H3–H4 units, the epigenetic

information becomes diluted. For the H3K9Me3 mark,

binding of HP1 to the parental modifications and interac-

tions with KMTs and newly synthesized histones, results in

faithful restoration of H3K9 trimethylation after replica-

tion. For the H3 variant H3.3, its ability to be incorporated

throughout the cell cycle at actively transcribed regions is

likely to ensure its propagation. Besides the inheritance of

H3K9Me3, other H3 methylation marks, such as the

repressive H3K27Me3 and the active H3K4Me3 are likely

to be inherited, which is mediated by the Polycomb and

Trithorax complexes.

Polycomb/Trithorax

The Polycomb and Trithorax (PcG/TrxG) family of pro-

teins was first identified in Drosophila where it was shown

to be essential for the stable inheritance of a repressed or

active gene state, respectively [99]. During Drosophila

development, specific homeotic genes (Hox) are activated

in a patterned fashion throughout the embryo [99, 100], and

although the PcG/TrxG proteins are not required for the

initiation of Hox gene transcription, they are essential for

the maintenance of these genetic programs through cell

divisions [99]. More recent genome-wide analyses have

identified hundreds genes besides Hox genes that can be

silenced or activated by the PcG/TrxG proteins, which

exert their effects at Polycomb regulatory elements (PRE)

throughout the genome [101, 102]. In mammalian cells,

PREs have not been identified on a large scale [103],

although Woo et al. [104] recently proposed the existence

of a mammalian PRE. However, PcG/TrxG proteins are

known to play crucial roles in mammalian development,

cell fate determination, cancer [7, 105], and even immunity

[106]. On a molecular level, the PcG and TrxG proteins

function in distinct multiprotein complexes and act as

chromatin modifiers by both inducing the covalent modi-

fication of histones as well as through other mechanisms.

Before examining the potential mechanisms by which PcG

and TrxG complexes can confer epigenetic inheritance,

first a more in-depth look at their specific methods of

silencing is provided.

Polycomb-mediated silencing

The Polycomb system mediates silencing through two

distinct complexes, namely the Polycomb repressive

complex 1 (PRC1) and PRC2. Although there seems to be

some functional redundancy between the two complexes

[107], their mechanisms of action are rather distinct. PRC2

contains the histone lysine methyltransferase EZH2, which

trimethylates the H3 lysine 27 residue. Although H3K27

mono- and dimethylation occurs at approximately 50% of

the nucleosomes in mammalian genomes [108], H3K27

trimethylation is more restricted and correlates with PcG

silencing [109]. However, H3K27Me3 itself is not likely to

be responsible for silencing by directly altering chromatin

state [109]. Instead, H3K27Me3 might serve as a recruit-

ment site for PRC1, which acts as a silencing complex

[110, 111]. PRC1 recruitment is facilitated by the Poly-

comb protein (PC), which is one of the members of PRC1,

through its chromodomain. Unlike the chromodomain of

HP1 which predominantly binds H3K9Me2/3, PC prefer-

entially binds H3K27Me3 [68, 112]. Although there is

evidence for PRC1 binding in an H3K27Me3-independent

fashion [109, 113], recent experiments in mammalian cells

do support a causal role for H3K27Me3 in PRC1 recruit-

ment. For one, abrogation of the H3K27 demethylase

(discussed below) UTX increases H3K27Me3 levels at

Hox target genes, which results in increased PRC1 depo-

sition at these sites [114]. Moreover, knockdown of the

PRC2 KMT EZH2 results in decreased H3K27 trimethy-

lation and reduced PRC1 binding at Hox genes, which can

be rescued by the expression of the viral H3K27 KMT

vSET [115].

Although the exact mechanism of silencing by PRC1 is

not known, several plausible theories have been suggested

(Fig. 2). For one, H2AK119 ubiquitination [116] has been
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reported to be essential for PRC1-mediated silencing [117,

118]. Two constituents of PRC1, namely RING and Bmi1,

seem to be essential for this function [118]. Although

H2AK119Ubi does not inhibit the association of RNA

Polymerase II, it seems to mediate silencing by preventing

elongation of the transcript [117]. In addition to H2A

ubiquitination, PRC1 might induce silencing through

chromatin compaction [119], although this is disputed [99].

Furthermore, there is evidence for PRC1 silencing through

the formation of higher-order chromatin structures or

‘looping’ [99, 120].

Trithorax-mediated activation

Unlike the PcG proteins that mediate the epigenetic

repression of genes, the TrxG proteins function in an

antagonistic fashion and are implicated in transcriptional

activation. In Drosophila, TrxG proteins were identified to

be required for maintaining Hox gene expression in

appropriate segments during development, like PcG pro-

teins are required for repression [121]. However, TrxG

proteins regulate more than Hox genes in both Drosophila

and mammalian cells. Interestingly, several members of the

TrxG complex are histone lysine methyltransferases that

trimethylate the H3 lysine 4 residue [99, 121–124]. Unlike

the repressive H3K27 methylation, the methylation of

H3K4 is a known mark of transcriptionally active hetero-

chromatin and H3K4Me3 can even replace the silencing

PcG and HP1 proteins from chromatin [122] in Drosophila.

In general, it is assumed that rather than being a (co)acti-

vator of transcription, TrxG is likely involved in

stimulating or facilitating transcriptional elongation [7, 99,

120]. In addition to H3K4 methylation, TrxG is also

implicated in H3K27 acetylation [125]. Unlike methylation

of H3K27, which is a known repressive mark, acetylation

of this residue is related to gene activation and competes

with H3K27 methylation [125, 126]. Lastly, in Drosophila,

the trithorax member GAGA-factor mediates H3.3

replacement by direct association with HIRA, a H3.3

chaperone [127].

Interestingly, both PcG as TrxG complexes have been

shown to associate with histone demethylases (KDM)

(Fig. 2). More specifically, PcG complexes associate with

Jarid1 and LSD1, two H3K4 KDMs, while TrxG com-

plexes associate with UTX and Jmjd3, both H3K27 KDMs

[106, 114]. This indicates that besides the previously dis-

cussed silencing and activating functions, the two systems

can antagonize each other by directly removing the

repressive and activating trimethylation of histones. As

expected from their association with PcG/TrxG, these

KDMs also play a role in epigenetic cell fate determina-

tion. For example, fully differentiated macrophages can,

under circumstances, transdifferentiate; a process that

requires Jmjd3 to remove the trimethylation of H3K27 by

PRC2 at specific genes, such as Bmp-2 [106]. Whether

deubiquinating enzymes (DUB) associate with TrxG in

order to counteract PRC1 silencing by removing the

H2AK119Ubi is not known, although H3K4 methylation

and H2A deubiquitination have been shown to act in a

reciprocal fashion [128].

PcG/TrxG during the cell cycle

As previously discussed, the major caveats for epigenetic

inheritance is that this information needs to be maintained

throughout DNA replication as well as mitosis. The former

induces the dilution of epigenetic marks at histones, since

both daughter strands receive a mixture of parental histones

(carrying epigenetic information) as well as newly syn-

thesized histones. In addition, mitosis involves the severe

condensation of chromatin and the dissociation of many

chromatin-binding proteins in order to facilitate this [9,

129]. The transmission of transcriptionally silent and active

states by the PcG/TrxG system through cell divisions

Fig. 2 Mechanisms of PcG/TrxG-mediated silencing and activation.

PRC2 exerts its function by methylating H3K27 residues. H3K27Me3,

in turn, recruits PRC2 in a positive feedback loop which propagates

these marks through the S-phase. In addition, H3K27Me3 recruits

PRC1 which induces transcriptional repression through several

mechanisms: 1 chromatin compaction, 2 looping, 3 H2K119

ubiquitination. The TrxG proteins mediate transcriptional activation

by H3K4 trimethylation. In addition, TrxG proteins might mediate the

deposition of H3.3. Interestingly, both TrxG as PcG members have

been shown to associate with KDMs that remove the H3K27Me and

H3K4Me, respectively
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implies that either these proteins need to remain associated

with their chromatin targets, or that chromatin ought to be

somehow marked for re-association during DNA replica-

tion and mitosis. Both of these conditions have been

reported for the Polycomb proteins.

PRC2 seems to adhere to the latter possibility, both

during DNA replication as well as mitosis. During the

S-phase, PRC2 localizes to the replication fork and colo-

calizes with PCNA [130], a crucial constituent of the

replication machinery. In addition, it can directly bind to

trimethylated H3K27; its own catalytic target. This might

suggest that during replication, when epigenetic informa-

tion gets diluted due to the addition of newly synthesized

histones, PRC2 binds the parental lysine 27 trimethylated

nucleosomes and spreads this mark to the neighboring

new nucleosomes, thereby fully restoring the epigenetic

silencing of the transcriptional state (Fig. 2). In accordance

with their theory, Hansen et al. [130] observed stable

PRC2-dependent silencing after the establishment of

H3K27Me3 at a reporter gene that was integrated in the

genome. In other words, once established the H3K27Me3

can be perpetuated by PRC2 during replication. In addition

to PRC2 being closely associated with the replication fork,

PRC2 also remains associated with chromatin during

mitosis [130, 131]. This might suggest the ‘simplest’ form

of epigenetic inheritance for PRC2: it can remain at target

sites and thereby maintains epigenetic information

throughout the entire cell cycle.

The transmission of PRC1 is more complicated. In vitro,

PRC1 can remain associated with DNA through DNA

replication [132]. This process is H3K27Me3-independent.

However, in vivo studies suggest that PRC1 dissociates

from chromatin during the S-phase, G2 and mitosis,

and that PRC1-mediated silencing is restored during the

G1-phase [132, 133]. The restoration of PRC1 foci in G1 is

dependent on H3K27Me3, since PRC2-component knock-

down results in disrupted PRC1 foci formation, and, in

addition, delays entry into the S-phase [131]. These latter

findings support the previously discussed model that

PRC2-mediated H3K27Me3 precedes PRC1 recruitment

and subsequent silencing. However, the findings that PRC1

can remain associated with chromatin during DNA repli-

cation in addition to other findings that suggest PRC2-

independent functions of PRC1 (previously discussed)

might suggest a similar model as for HP1-mediated het-

erochromatin maintenance. There might be a ‘pool’ of

PRC1 that dissociates from chromatin during S-phase and

mitosis and re-associates in G1, and there might be pool

that remains bound to specific genomic locations during the

cell cycle. Interestingly, similar as discussed for the dis-

sociation/re-association of HP1, the presence of a serine

next to the H3K27 residue might suggest a Me/P-switch

[84], during which the phosphorylation of H3S28 could

displace the Polycomb complexes. Later, in G1, the

dephosphorylation of H3S28 again facilitates the binding

of PcG complexes.

Ringrose and Paro [134], however, dispute that the

histone modifications themselves mediate epigenetic

inheritance. Instead, they propose that histone modifica-

tions are not the carriers of epigenetic inheritance, but only

reflect the active/inactive state of the gene. Instead, they

propose that Polycomb responsive elements (PREs) might

induce a standard state of transcriptional silence [134], as

supported by PRE deletion resulting in a loss of silencing

[135, 136]. Actively transcribed regions of the genome that

are continuously transcribed should be marked as such by

non-coding RNAs (ncRNAs), specific DNA organization in

the nucleus (discussed below), specific chromatin-binding

proteins, or by H3.3 replacement [134]. These can subse-

quently be transferred through cell divisions and perpetuate

the transcriptional activity. However, the lack of in-depth

knowledge of mammalian PREs and the differences

between mammalian and Drosophila epigenetics makes it

difficult to confirm/refute either theory.

Stability versus flexibility

Interestingly, although PcG/TrxG complexes are known to

mediate stable epigenetic inheritance, they are also impli-

cated in regulating dynamic processes, such as cell cycle

regulation and immunity. In addition, they can be regulated

by signal transduction pathways, like hedgehog signaling

[137] and are known to associate with the Retinoblastoma

(Rb) gene [138]. However, how can some genes remain

stably silenced or activated while others are dynamically

regulated by the same system? One possible explanation

for this apparent paradox comes from embryonic stem (ES)

cells [89, 139]. In ES cells, many PcG/TrxG targets show

‘bivalency’, meaning that these genes contain both the

PcG-mediated repressive H3K27Me3 mark as well as the

TrxG-mediated H3K4Me3 mark [89, 139]. However, dur-

ing differentiation and cell fate determination, more and

more of these bivalent genes will acquire monovalent

histone modifications (either H3K27Me3 or H3K4Me3),

although a small fraction will remain bivalent. These

bivalent genes are prone to rapid activation, while the

monovalent genes become stably repressed or activated.

Fluctuation of PcG or TrxG activity due to extracellular

signaling is more likely to affect bivalent genes that are

already ‘halfway there’, than monovalent genes. Therefore,

even though bivalent domains can also be inherited [89],

the monovalent genes are likely to be more stably heritable

over time.

One example of such a bivalent locus is the INK4A

locus which encodes p16INK4A and p14Arf, two genes that

mediate cell cycle arrest and senescence in response to

34 V. A. Blomen, J. Boonstra



oncogenic stress and aging [140]. In cycling cells, PcG

complexes regulate the silencing of these tumor suppres-

sors. However, abrogation of Bmi1, a constituent of PRC1,

results in premature senescence, while overexpression of

Bmi1 results in the bypass of senescence, even in the

presence of oncogenic stress [89, 141, 142]. In addition, the

replicative-senescence of MEFs involves TrxG-mediated

H3K4 methylation at the INK4A locus, H3K27 demeth-

ylation by Jmjd3, and PcG displacement [140]. In

accordance, cells from aging organisms are difficult to

reprogram and this inefficiency is dependent on the

increased expression INK4A locus [143], which supports

the notion that the increasing monovalency of H3K4Me3

or H3K27Me3 at a genomic location can increase the

robustness of silencing. However, whether the activated/

repressed status of all PcG/TrxG targets can be inherited is

not clear.

Non-coding RNAs

In addition to the mechanisms of epigenetic inheritance

mentioned above, RNA might also mediate the stable

transmission of epigenetic states, in particular small inter-

fering RNAs (siRNAs) and long non-coding RNAs

(ncRNA). An established example of this is Xist, a long

ncRNA that mediates the inactivation of one of two

X-chromosomes in females. Xist only associates with the

inactive X-chromosome and subsequently recruits epige-

netic silencing machinery, such as DNA methylases and

PcG complexes [144]. Interestingly, the translocation of

the Xist gene to autosomes results in subsequent silencing

of the specific autosome [145]. Besides X-inactivation,

there is also ample evidence for the involvement of

ncRNAs in the previously discussed epigenetic inheritance

mechanisms, especially heterochromatin formation by

HP1, and the PcG/TrxG system. Since much of the

knowledge on the role of ncRNAs in epigenetic inheritance

is based on model organisms such as yeast (S. pombe),

plants, and Drosophila, the exact involvement and specific

mechanisms of mammalian ncRNA-mediated silencing is

still uncertain.

RNA-mediated epigenetic inheritance is implicated in

the formation and maintenance of heterochromatin [70,

146–148]. In S. pombe, the disruption of the RNAi

machinery leads to heterochromatin defects, including

H3K9 methylation defects [149]. One potential molecular

model for RNAi-mediated heterochromatin silencing [70,

148, 150] involves the transcription of (peri) centromeric

repeats [151, 152]. These transcripts are required for RNAi

production; the resulting small interfering RNAs (siRNAs)

together with Ago1, Tas3 and Chp1 form the RITS (RNA-

induced transcriptional silencing) complex, which in turn

recruits other heterochromatin-modifying factors, such as

Swi6 (yeast homologue of HP1) and Clr4 (yeast homo-

logue of Suv39h1/2). The recruitment of RITS, which

in itself requires H3K9Me3 [150], results in subsequent

heterochromatin formation and H3K9 methylation. Inter-

estingly, the transcription of these repeats occurs mostly

in the S-phase [153, 154], and therefore provides an

interesting candidate for epigenetic inheritance of hetero-

chromatin during DNA replication; transcription of repeats

during the S-phase results in a positive feedback loop

resulting in heterochromatin formation and maintenance

[70, 148]. However, whether similar mechanisms occur in

mammalian cells is somewhat disputed. There is evidence

for the involvement of RNAi in mammalian heterochro-

matin formation [155–157]. For example, the formation of

higher-order heterochromatin structures and HP1 localiza-

tion to these requires an RNA component [157]. However,

one study reports that Dicer-knockout ES cells display little

pericentric heterochromatin defects [158].

Besides heterochromatin formation, siRNAs have also

been implicated in mediating DNA methylation. Using

short-hairpin RNAs (shRNA) against RASSF1A, Castan-

otto et al. [159] showed increased promoter methylation in

HeLa cells. In plants, RNAi-mediated DNA methylation is

readily observed, although in mammals this might be

limited to the rare non-CpG DNA methylation as observed

mostly early in development [160]. Currently, more

research in mammalian cell systems and organisms are

required for an established role of RNAi in DNA

methylation.

RNAs are also likely involved in mediating some

epigenetic functions of the PcG/TrxG system, although

this seems mostly based on long ncRNAs rather than

RNAi [161]. In Drosophila, many PREs are transcribed

and produce ncRNAs, and although mammalian PREs are

currently disputed, there is also evidence for the production

of ncRNAs near mammalian PcG/TrxG targets [134, 161].

Furthermore, PcG/TrxG proteins have been shown to

bind RNA, although whether this is sequence-dependent is

disputed [161]. Interestingly, in Drosophila the mere

transcription of PREs might promote transcriptional

activity of PcG-targeted genes and thereby counteract PcG

silencing [134]. For example, using a transgene containing

a PRE followed by a reporter gene, Schmitt et al. [162]

showed that mere transcription through the PRE is suffi-

cient to activate the reporter gene. In addition, the

transcribed ncRNA of a PRE results in TrxG recruitment,

resulting in gene activation [163]. These findings support

the previously discussed model of ‘standard silencing’,

which states that active transcriptional sites should be

marked by e.g., H3.3 replacement or RNA components, in

order to transmit a heritable active chromatin state. In

mammalian cells, the transcriptional activation of HoxA
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genes has also been linked to transcription of intergenic

ncRNAs at the HoxA cluster [164]. However, several

findings seem to contradict the standard silencing theory.

Importantly, several mammalian ncRNAs have been

detected that upon transcription induce PcG-mediated

silencing, rather than to alleviate it [161]. For example, the

Kcnq1ot1 ncRNA [165] is required for the silencing of the

Kcnq1 locus. This ncRNA associates with PcG proteins in

a tissue specific manner. In addition, the abrogation of the

HOTAIR ncRNA results in upregulation of the HoxD

cluster [166]. Interestingly, in mammalian cells most non-

transcribed genes still produce short ncRNA transcripts

[167]. Many of these ncRNAs can bind PRC2 [168, 169]

and ncRNA production at activating genes declines. One

model, as proposed by Guenther and Young [170], is that

short transcribed ncRNAs recruit PRC2 and results in

repression. However, transcription initiation as promoted

by transcription factors recruits TrxG proteins and results

in activation.

Although the exact mechanism and causality of the

interaction between ncRNAs and the PcG/TrxG remains

elusive, the involvement of an RNA component is highly

likely. Similarly, an RNA component is likely to function

in mammalian heterochromatin formation. However, how

these ncRNAs might be regulated throughout the cell cycle

is currently unclear.

DNA organization

The current view of the nucleus is a dynamic one; rather

than being just a place of storage of genetic information,

the nucleus contains specific functional domains, such as

the nucleolus, the inactive heterochromatin, and the active

euchromatin [171–173]. These latter two are even repli-

cated in a spatio-temporal distinct manner during the

S-phase. In recent years, much research has focused on

long-range DNA interactions. These interactions can occur

in cis, so in neighboring sequences on the same chromo-

some, as well as in trans, interactions with distant regions

on the same chromosome or even interactions with

sequences at different chromosomes. An example of each

is the regulation of b-globin genes through looping to a cis-

regulatory ‘master enhancer’ that also controls other globin

genes, and the brief interaction of the X-inactivation cen-

ters (Xic) of two X-chromosomes in female cells just

before the random X-inactivation of one of the copies

[174]. These higher-order chromatin rearrangements can

also be induced. For example HoxB genes can loop out of

their ‘chromosome territory’ upon retinoic acid-induced

expression, and steroid-induced activation of nuclear

receptors results in the formation of interchromosomal

contacts required for enhanced transcription of the induced

genes [175, 176]. Interestingly, nuclear organization and

long-range DNA structures might potentially function in

epigenetic inheritance. For example, there is some evi-

dence for mitotic transmissibility of chromosome

organization in the nucleus, at least through several cell

divisions [177, 178]. These findings, however, are some-

what disputed. Other studies confirm that chromosome

positions in the nucleus are fixed throughout the cell cycle,

although they change after mitosis. Subsequently, in G1

the chromosomes are unpacked into a different nuclear

organization [179–181]. Regardless of the heritability of

chromosome organization in the nucleus, considerable

evidence has accumulated for long-range DNA interactions

in heterochromatin formation and the PcG/TrxG system.

However, are these DNA structures themselves involved in

epigenetic inheritance? How could they survive DNA

replication and mitosis? These questions will be addressed

below.

Evidence for long-range DNA contacts during hetero-

chromatin formation comes from studies in Drosophila,

where the insertion of a heterochromatic sequence in the

brown gene (bw), results in dominant repression and local-

ization of both the mutant allele, as well as the wild type

allele to heterochromatic regions, a process termed position-

effect variegation (PEV) [182]. In mammalian cells there is

also evidence for a role of DNA organization in hetero-

chromatin formation. It was reported that localization of the

b-globin locus away from heterochromatin influences its

histone modification (acetylation) and transcriptional state

[183]. Although localization of genes to heterochromatin at

the nuclear periphery correlates with their transcriptional

inactivity [184], the maintenance of these structures

throughout the cell cycle is unclear. In Drosophila, it was

reported that at least the interaction of the dominant

repressive bw mutant with heterochromatin is lost during

DNA replication and is re-established in G1 [185].

DNA organization is also likely involved in the PcG/

TrxG system [173, 186]. For one, PcG proteins are known

to localize to PcG bodies [187, 188] that might cluster

Polycomb targets. In Drosophila, the introduction of extra

copies of the PRE Fab-7 induces clustering with each

other and the endogenous Fab-7 locus [189] in a

PcG-dependent manner. Interestingly, the loss of the

endogenous locus results in the loss of PcG silencing at

the site of the inserted artificial Fab-7 fragment. This loss

of silencing can be stably passed onto the next generation,

even after restoring the endogenous Fab-7 locus. This

indicates a potential role for nuclear organization in epi-

genetic inheritance of PcG silencing [186, 189]. Although

it was previously discussed that a direct role for RNAi in

PcG silencing is currently disputed [161], the nuclear

localization of the Fab-7 fragments depends on the RNAi

machinery [190, 191].
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Insulator proteins, and the insulator sequences that they

bind, may play a role in mediating epigenetic inheritance.

Although several functions have been published, the most

established function of insulator proteins is to insulate

promoters from enhancer elements and thereby affecting

transcription. In Drosophila the expression of a dominant-

negative form of the insulator protein BEAF (boundary

element-associated factors) results in enhanced PEV

through the disruption of chromatin organization [192]. In

mammalian cells, CTCF, an insulator protein, is an inter-

esting candidate for mediating epigenetic inheritance by

altering nuclear organization [193–195]. CTCF binds to

insulator sequences throughout the mammalian genome

where it performs its function by looping DNA and hence

altering nuclear organization of genes [193, 195]. One

example of CTCF function is the expression of the pater-

nally imprinted Igf2 gene [193, 194] on the murine

chromosome 7. Genomic imprinting of genes is the

monoallelic expression of certain genes transferred either

paternally or maternally [196]. Under normal circum-

stances, the maternal imprinting control region (ICR) is

unmethylated leading to CTCF binding, subsequent loop-

ing, and silencing of the maternal Igf2 gene. However, the

paternal ICR is methylated which prevents CTCF binding

and therefore facilitates transcription. In addition to dis-

rupting Igf2, the abrogation of CTCF function at the ICR

can also disrupt the transcription at specific genes located

at different chromosomes [197].

Interestingly, there are several indications that CTCF

might be stably transmitted through replication and mitosis.

For one, some insulator sequences and CTCF-binding sites

have been detected within introns of genes. In experiments

in Drosophila, insertion of an insulator binding sequence in

an intron retains its function [198]. Also in mammalian

cells, CTCF-binding sites have been detected in introns

[199]. Although this does not directly implicate mainte-

nance through DNA replication, at least local double-strand

disruption by transcription machinery does not hamper

insulator function. In addition, several studies have shown

continued CTCF binding at mitotic chromosomes, and

even continued Igf2–ICR interaction through mitosis [200].

Note that CTCF has also been shown to interact with PRC2

and is a known regulator of heterochromatin spreading,

which also might indicate a role for CTCF in epigenetic

inheritance through these systems.

Similarities and differences between epigenetic systems

As discussed, cells depend on the inheritance of epigenetic

information throughout the cell cycle to maintain their state

of differentiation. So far, DNA methylation is the most

established epigenetic mark that can stably confer heritable

phenotypes. However, more and more evidence is accu-

mulating for the epigenetic inheritance of chromatin

states and even higher-order chromatin structures. The

H3K9Me3-HP1 system and the PcG/TrxG systems are the

obvious candidates for the transfer of chromatin states

through cell divisions. Interestingly, although HP1-medi-

ated heterochromatin and PcG-silenced areas generally do

not colocalize, DNA methylation seems to be involved in

both systems.

Heterochromatin is, in general, fairly gene-poor, repeat-

rich, and relatively CpG-poor, although most CpG dinu-

cleotides that are present are methylated [70, 201]. The

interaction between HP1, H3K9 KMTs and the DNA

methylating enzymes have been shown in multiple studies

[202, 203]. However, the causality of the interaction is still

disputed and evidence exists for both the recruitment of the

HP1-KMT machinery to methylated DNA, as well as the

recruitment of DNMTs to sites of H3K9 methylation [204].

This could indicate a self-reinforcing mechanism of both

DNA methylation and H3K9 methylation as proposed by

Fuks [204].

Interestingly, although the methylation of H3K9 does

occur at promoters with relatively low CpG content, it does

not occur at promoters containing CpG islands [88, 201,

205]. As previously discussed, CpG islands are generally

unmethylated CpG-dense areas found upstream of *60%

of human genes and the methylation of such islands results

in robust silencing. The PcG/TrxG system and hence

H3K27Me3 and H3K4Me3, however, does associate with

CpG-islands. In fact, in ES cells more than 97% of PRC2

target sites contain CpG-islands or CpG-rich areas [205].

One option is that DNA methylation might reinforce PcG-

mediated silencing [89, 137, 206]. In agreement with this,

there is evidence that PcG target genes become methylated

during development [207]. Both PRC2 as PRC1 might be

responsible for this methylation by direct recruitment of

DNMTs [208, 209]. Intriguingly, H3K4Me3 does not

colocalize with DNA methylation [201]. In fact, DNA

methylation can not occur at sequences that contain

methylated H3K4, and conversely, DNA demethylation is

correlated with H3K4 methylation [42]. Since the TrxG

proteins depend on H3K4 trimethylation in order to

maintain an open chromatin conformation, it is possible

that DNA methylation at CpG islands can only occur at

monovalent PcG sites that do not contain TrxG.

All in all, it is tempting to suggest a model as depicted in

Fig. 3, where the DNMTs can interact with both PcG/TrxG

and HP1-KMT system to alter the local chromatin state.

Hierarchical model of epigenetic stability

In general, DNA methylation seems to be the most stable

epigenetic modification displayed in Fig. 4. Although DNA
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demethylation is likely to occur during specific develop-

mental phases, under normal circumstances cycling cells

will not likely undergo genome-wide demethylation of the

DNA. HP1-KMT mediated heterochromatin is also likely

to be a stable system, due to its role in retrotansposon and

repeat silencing. In addition, certain early developmental

genes become H3K9 trimethylated during development

which might reflect a stable silenced state, although

facultative heterochromatin might be more dynamically

regulated. For the PcG/TrxG system, genomic regions that

contain only monovalent modifications (either H3K27Me3

or H3K4Me3) reflect a relatively stable state, while biva-

lent regions remain ‘poised’ for transcription upon

environmental stimuli. As noted by Kaufman and Rando

[56], most hypothesized heritable chromatin modifications

are involved in repression of genes instead of activation,

with the TrxG proteins and the histone variant H3.3

being an exception. How the stability and heritability of

monovalent TrxG-regulated genes compares the repressive

PcG-regulated genes is as of yet unclear and, hence, not

included in Fig. 4.

As previously discussed, both ncRNAs as DNA orga-

nization are likely to play a role in epigenetic inheritance.

However, how these emerging topics fit into a hypothe-

sized hierarchical model as shown in Fig. 4, remains

elusive. In addition, the causality of these concepts in

epigenetics warrants further investigation; e.g., can a

change in DNA organization confer heritability of gene

expression/repression as such, or is the change in DNA

organization induced through a different mechanism? In

addition, can DNA organization and ncRNAs confer heri-

tability autonomously or do they function as a part of

different systems (e.g., such as the discussed siRNA role in

Fig. 3 Interactions of the PcG/TrxG system and the HP1-KMT

system with DNA methyltransferases. Both the repressive PcG

proteins as well as HP1 are known to interact with DNMTs. For the

former, both PRC1 as PRC2 directly interact with DNMTs, and

methylation of PcG sites might reflect a state of stable transcriptional

silencing. HP1 also interacts with DNMTs although the causality of

the interaction is not yet resolved; there is evidence for both the

recruitment of DNMTs by H3K9Me and HP1, as well as recruitment

of HP1-KMT to methylated DNA. The TrxG proteins, however, are

likely to oppose DNMT action, as H3K4Me3 and DNA methylation

are mutually exclusive. The fact that both repressive chromatin-

modifying systems (PcG and HP1) interact with DNMTs, while the

activating TrxG antagonizes DNMTs could support the notion that

DNA methylation might be, in certain genomic regions, an additional

‘layer’ of silencing

Fig. 4 Proposed stability of the discussed epigenetic modifications.

DNA methylation, especially when it occurs at CpG islands or

CpG-rich areas, reflects a robust silenced state that is difficult to

reverse. Heterochromatin is also likely to be relatively stably, due to

its role in silencing repeats, retrotransposons, and other gene-poor

regions. However, facultative heterochromatin can be dynamically

regulated, e.g., during the cell cycle. The PcG/TrxG system features

both bivalently marked target genes which are ‘poised’ for transcrip-

tion and can react to dynamic stimuli, as well as monovalent sites

which are less susceptible to fluctuation of PcG/TrxG protein activity
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H3K9Me3-HP1 heterochromatin formation or long

ncRNAs in PcG-mediated repression)?

Concluding remarks

All in all, we have reviewed the major epigenetic sys-

tems that are implicated in the stable maintenance of cell

fate. In order to confer a similar phenotype after cell

division, the epigenetic systems need to be faithfully

replicated at their genomic locations during the S-phase

and survive mitosis, or at least be re-recruited after the

M-phase. From the reviewed literature two general

mechanisms become apparent for the transmission of

epigenetic information, namely self-recruitment and

maintained binding. In the case of DNA methylation,

hemimethylated DNA recruits DNMT1 in order to copy

the majority of methylated CpGs. For the propagation of

methylated H3K27 and H3K9 through the S-phase, cells

could rely on PRC2 and HP1, respectively. The former

binds H3K27Me3 directly and possesses intrinsic KMT

activity for that specific residue, while the latter binds

H3K9Me3 and can associate with known H3K9 KMTs as

well as histone chaperones, In addition to self-recruit-

ment, there is also evidence for the continued binding of

certain epigenetic modifiers through phases of the cell

cycle. PRC1, for example, can remain bound to DNA

during replication, and PRC2 was shown can be detected

on chromosomes during mitosis. Even CTCF can remain

bound at imprinted loci in order to maintain DNA

organization during mitosis at specific loci.

Nonetheless, many questions remain on the exact

mechanisms of epigenetic inheritance. For one, although

the previously discussed positive-feedback mechanisms

suggest transmission of histone methylation, it remains a

question whether the histone modifications themselves

are the primary determinants of epigenetic inheritance or

whether other mechanisms (e.g., ncRNA transcription or

genome organization) underlie this inheritance. Further-

more, although much research has focused on epigenetic

repression, the stability and heritability of the activating

TrxG and the histone variant H3.3 requires additional

research in mammalian cells, as well as how these

interact. Overall, an in-depth understanding of epigenetic

inheritance can also aid in our understanding of human

disease, as already DNA methylation and the PcG/TrxG

proteins have been implicated in the pathogenesis of

numerous diseases, such as cancers and infectious

diseases.
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