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Abstract: Leishmaniasis represents a serious health problem worldwide and drug resistance is a
growing concern. Leishmania parasites use unusual mechanisms to control their gene expression.
In contrast to many other species, they do not have transcriptional regulation. The lack of transcriptional
control is mainly compensated by post-transcriptional mechanisms, including tight translational
control and regulation of mRNA stability/translatability by RNA-binding proteins. Modulation of
translation plays a major role in parasite survival and adaptation to dramatically different environments
during change of host; however, our knowledge of fine molecular mechanisms of translation in
Leishmania remains limited. Here, we review the current progress in our understanding of how
changes in the translational machinery promote parasite differentiation during transmission from a
sand fly to a mammalian host, and discuss how translational reprogramming can contribute to the
development of drug resistance.
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1. Introduction

Leishmania species are unicellular protozoans that cause leishmaniases affecting around 12 million
people worldwide [1]. Currently 53 Leishmania species are recognized, with 20 of them pathogenic
to humans [2]. Visceral leishmaniasis, also known as kala azar, is the most severe form of the
disease with a mortality rate of almost 100% if untreated [3,4]. It is usually caused by L. donovani
and L. infantum. The patients display enlargement of the spleen and liver, fever, and weight loss.
Another type, mucocutaneous leishmaniasis, produces lesions which can lead to severe destruction
of mucous membranes of the nose, mouth, and throat cavities. It is caused mainly by L. braziliensis
and L. panamensis. The cutaneous forms of leishmaniasis are the most common and characterized by
the presence of skin ulcers; they represent about 90% of all new cases [5]. Up to 20 species can cause
cutaneous leishmaniasis [2]. Unfortunately, treatment options for leishmaniasis are very limited and
drug resistance is a big problem [6,7].

During their life cycle, these vector-borne protozoans alternate between flagellated promastigotes,
which live in extracellular form in the midgut of sand flies, and amastigotes, which reside in the
phagolysosomal compartment of mammalian macrophages (Figure 1). Control of leishmaniasis is
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hampered by the lack of a safe vaccine, limited choice of drugs, their high toxicity, and the emergence
of drug resistant strains [8,9].
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Figure 1. Major stages in Leishmania parasite differentiation. During the Leishmania life cycle, the parasites
transit from phlebotomine sand fly vectors to mammalian vertebrate hosts. In the invertebrate host,
Leishmania spp. adopts two different stages. The procyclic promastigotes proliferate in the insect
abdominal midgut, progressively becoming metacyclic promastigotes migrating toward the anterior
midgut. Next, the parasites are transmitted to mammalian hosts during a blood meal. Once in
the vertebrate host, the parasites enter phagocytes and transform into intracellular amastigotes.
The amastigotes can survive and proliferate inside the phagolysosome, eventually destroying the
cell host, infecting new mammalian cells, and restarting an infection round during a new insect bite.
Red dots indicate location of parasites.

Leishmania parasites possess unique molecular features, such as polycistronic transcription
and, as a result, a lack of transcriptional control [10,11]. Long polycistronic transcripts coding for
functionally unrelated proteins are produced by RNA Polymerase II. Polycistronic RNA are processed
by 5′ trans-splicing of a capped spliced leader sequence and 3′ polyadenylation to generate mature
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Leishmania spp. adopts two different stages. The procyclic promastigotes proliferate in the insect
abdominal midgut, progressively becoming metacyclic promastigotes migrating toward the anterior
midgut. Next, the parasites are transmitted to mammalian hosts during a blood meal. Once in
the vertebrate host, the parasites enter phagocytes and transform into intracellular amastigotes.
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Leishmania parasites possess unique molecular features, such as polycistronic transcription
and, as a result, a lack of transcriptional control [10,11]. Long polycistronic transcripts coding for
functionally unrelated proteins are produced by RNA Polymerase II. Polycistronic RNA are processed
by 5′ trans-splicing of a capped spliced leader sequence and 3′ polyadenylation to generate mature
mRNAs [12]. Therefore, the absence of transcriptional control makes Leishmania a good model to study
post-transcriptional regulation, including mRNA translation representing the major mechanism of
gene expression in Leishmania species.

When the parasite switches from an insect host to a warm blooded mammalian, it is exposed
to a number of stresses including temperature increase, lower pH, and change in nutrients.
Environments including temperature, pH, and nutrition conditions play a big role in gene expression
regulation [13]; however, it is poorly understood what molecular players are involved in the regulation
of translation during environmental stresses and change of hosts. It has been shown recently, based
on an example of another protozoan, Trypanosoma brucei, that exposure to the stresses is essential not
only for the survival of the parasite, but also for its differentiation [14]. Control of gene expression in
Leishmania species is mostly achieved during translation and by regulating mRNA stability. It is known
that translation is globally repressed during heat shock; however, some mRNAs escape translational
repression and their translation is enhanced in trypanosomatids, including Leishmania species [14–16].
Translation of mRNAs encoding for proteins involved in stress response is crucial for the parasite’s
ability to cope with stress and its survival. The same players can be essential for the regulation
of parasite differentiation when the parasite switches from a sand fly to a mammalian host where
it encounters change in temperature, pH, and nutrition [17]. However, it is not well understood
how stress-induced mRNAs escape the global translational repression during the heat stress and
transmission to mammalian host.

Since Leishmania spp. lack transcriptional control, they evolved to have a variety of RNA-binding
proteins (RBPs) to control gene expression post-transcriptionally. RBPs promote the differentiation of
the parasites and support their survival in invertebrate and vertebrate hosts, where they encounter
such a drastically different environment. This fine tuning of gene expression regulation during the life
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cycle of the parasite is achieved by modulating the mRNA level stability and transcript involvement in
the translation.

In this review, we focus on the role of translational control and RBPs in the regulation of
the parasite’s life cycle and ability to survive and thrive during transmission to a different host.
Special emphasis is given to the role of translational reprogramming in the development of drug
resistance. Uncovering of molecular mechanisms of translational control used by Leishmania parasites
to flourish in different hosts, such as sand flies and mammals, and deciphering the role of translational
reprogramming in drug resistance help to identify new pharmacological targets and develop novel
treatments in the future.

2. Translational Control during Leishmania Differentiation

Leishmania protozoan parasites have a complex parasitic life cycle, alternating between a sand fly
vector and a mammalian host. They exist as highly motile promastigotes containing flagella (in insects)
and as amastigotes with very short flagella (in mammals). Flagellated promastigotes live free in the
midgut of the insect and undergo a dramatic transformation in the mammalian host, where they
become amastigotes living inside of macrophages.

Leishmania parasites have several steps in the process of their differentiation (Figure 2).
Leishmania begins its life cycle in the midgut of a sand fly upon infection with the blood meal containing
amastigotes. The amastigotes are transformed into proliferative non-infective procyclic promastigote
forms when they reach the abdominal midgut. Later, promastigotes undergo morphological and
biochemical changes in the process of metacyclogenesis in the invertebrate host and become highly
infective motile metacyclic promastigotes. They are characterized by a substantial decrease in RNA,
protein, and lipid turnover [18]. Nutritional stress, such as depletion of purines, promotes the
differentiation of parasites into virulent metacyclic forms [19,20]. This is characterized by reduced
translation rates and appearance of stress granules storing stalled ribosomes. Assembly of stress
granules is very important for the parasite survival during nutritional stress experienced in the sand
fly. Leishmania amazonensis initiation factor LeishIF4E-3, a cap-binding protein paralog, has been found
in the composition of nutritional stress granules, upon starvation in vitro [21,22]. It relocates from the
cytoplasm to the stress granules in phosphorylated form [20]. Deletion of one allele of LeishIF4E-3
leads to decline in protein synthesis, inability of parasites to differentiate in the absence of purines,
and impaired infectivity [23]. During mammalian host infection, metacyclic promastigotes get engulfed
by macrophages, where they transform into amastigotes and multiply. Finally, the sand fly becomes
infected during the blood meal on the infected host, completing the life cycle of the parasite.

Leishmania parasites have evolved to remodel their cellular architecture and physiology in order
to survive in two different hosts with such dramatically different environment. When the parasite is
transmitted to a mammalian host, it experiences a big temperature increase, acidic pH, and nutritional
stresses, promoting dynamic alterations in gene expression to adapt to the new environment. Due to
the lack of transcriptional regulation of gene expression, translational control plays a major role in
adaptive responses during the promastigote to amastigote differentiation (Figure 2). All of the above
stresses are crucial to drive the promastigote to amastigote differentiation, with the temperature
shift being the major driver [24,25]. It has been found recently that mimicking these conditions is
sufficient to trigger the differentiation in L. infantum in vitro, leading to the decrease in global mRNA
translation [17]. This decrease during amastigote differentiation correlates with the phosphorylation of
the alpha-subunit of eukaryotic initiation factor 2 (eIF2α). In eukaryotes, phosphorylation of eIF2α
is one of the major stress response pathways leading to the global reduction in translation [26–28].
Interestingly, while global translation has been shown to be reduced during amastigote differentiation,
translation of amastigote specific transcripts is selectively up-regulated [17]. Translating ribosomes
and polysomes can be fractionated to determine the efficiency of translation and mRNA engagement,
and mRNA association with heavier fractions of polysomes indicates its efficient translation [29]. It was
demonstrated that the A2 amastigote-specific transcript is shifted to heavy polysomes in L. infantum
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axenic cultures and leads to its increased translation, as evident from the increase at the protein
level [17]. Recent work on Trypanosoma brucei procyclic forms has found that many heat-induced
mRNAs are increased during the differentiation to mammalian-infective forms [14]. Heat shock caused
global inhibition of translation and sequestration of mRNAs in stress granules. However, heat-induced
mRNAs were spared from translational repression and sequestration to stress granules, through
binding to the ZC3H11 protein. ZC3H11 is an RNA binding protein which stabilizes selective mRNAs
during the heat shock and allows their translation. It is possible that a similar mechanism exists in
Leishmania species to support selective translation during the differentiation in the mammalian host
when the parasite encounters a temperature increase and other stresses; however, this question needs
to be addressed in the future. Thus, the global translational repression is observed while the selective
translation of amastigote specific transcripts is upregulated suggesting a global reprogramming of
translation to accommodate a successful parasite survival in the mammalian host; however, many
details of this reprogramming remain unknown.
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Figure 2. Regulation of translation at different stages of life cycle in Leishmania parasites.
Leishmania parasites undergo dramatic changes in translation during host change. During transition
from insect vector to vertebrate host, the changes in temperature, pH, and nutrition promote
general translational repression via eIF2α phosphorylation. At the same time selective translation is
upregulated in amastigotes, to ensure parasite survival and adaptation in macrophages. In the sand fly,
parasites experience a substantial drop in temperature and change in pH and nutrition. It promotes
substantial increase in translation and amastigote differentiation to highly proliferative promastigotes.
MΦ, macrophage; PP, procyclic promastigotes; MP, metacyclic promastigotes; AM, amastigotes.

Initiation of translation may play a big role in translational reprogramming when parasites
enter a different host. Initiation of translation takes place through the binding of cap-binding
protein eIF4E to the 5′ cap structure, along with its binding partner eIF4G which serves as a scaffold
protein [20]. Then, a large ribosome subunit is recruited when the initiation complex reaches the
first AUG [27]. Interestingly, the trypanosomatid genomes including Leishmania species have a large
number of cap-binding complexes including six paralogs of eIF4E and five paralogs for eIF4G scaffold
protein [30–35]. The presence of many paralogs with different cap-binding activities and expression
profiles during the life cycle of the parasite suggest that each paralog has evolved to perform a different
biological function and a very complex regulation of gene expression, during the initiation of translation
to support parasite survival under constantly changing environments. However, the precise role of
these proteins in Leishmania parasites remains unclear and requires further investigation.

Figure 2. Regulation of translation at different stages of life cycle in Leishmania parasites.
Leishmania parasites undergo dramatic changes in translation during host change. During transition
from insect vector to vertebrate host, the changes in temperature, pH, and nutrition promote
general translational repression via eIF2α phosphorylation. At the same time selective translation is
upregulated in amastigotes, to ensure parasite survival and adaptation in macrophages. In the sand fly,
parasites experience a substantial drop in temperature and change in pH and nutrition. It promotes
substantial increase in translation and amastigote differentiation to highly proliferative promastigotes.
MΦ, macrophage; PP, procyclic promastigotes; MP, metacyclic promastigotes; AM, amastigotes.



Int. J. Mol. Sci. 2020, 21, 2981 5 of 15

Initiation of translation may play a big role in translational reprogramming when parasites
enter a different host. Initiation of translation takes place through the binding of cap-binding
protein eIF4E to the 5′ cap structure, along with its binding partner eIF4G which serves as a scaffold
protein [20]. Then, a large ribosome subunit is recruited when the initiation complex reaches the
first AUG [27]. Interestingly, the trypanosomatid genomes including Leishmania species have a large
number of cap-binding complexes including six paralogs of eIF4E and five paralogs for eIF4G scaffold
protein [30–35]. The presence of many paralogs with different cap-binding activities and expression
profiles during the life cycle of the parasite suggest that each paralog has evolved to perform a different
biological function and a very complex regulation of gene expression, during the initiation of translation
to support parasite survival under constantly changing environments. However, the precise role of
these proteins in Leishmania parasites remains unclear and requires further investigation.

3. RNA Binding Proteins and Their Role in Regulation of Translation and Differentiation
of Parasites

Gene expression is predominantly controlled at the translational level in Leishmania parasites,
therefore, regulation of mRNA stability/translatability by RNA binding proteins (RBPs) is essential
for the fine tuning of translation during different stages of the life cycle of the parasite. Despite the
lack of transcriptional control in Leishmania, the regulation at the mRNA levels still exists and is
accomplished by post-transcriptional mechanisms. Therefore, RBPs play a big role in the regulation of
mRNA levels achieved by the modulation of mRNA stability/degradation. Trypanosomatids including
Leishmania have large number of RBPs due to their primary role in the regulation of expression in the
absence of transcriptional control, however, the vast majority is lacking known orthologues in other
eukaryotes [36]. Searching of the Leishmania donovani genome for the presence of RNA binding proteins
identified 67 proteins in total, and analysis of mRNA interactome revealed 79 RBPs [37]. There are
several major classes of RBPs each with distinct functions in post-transcriptional gene expression
regulation: RNA-recognition motif (RRM) proteins, CCCH zinc-finger domain proteins, Puf (Pumilio
and Fem-3 binding factor) domain proteins, and Alba (acetylation lowers binding affinity) proteins
(Figure 3).
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Figure 3. Schematic representation of RNA binding proteins (RBPs)’ interaction with mRNA during
translation in Leishmania parasites. Leishmania RBPs are grouped in four main classes, Alba (acetylation
lowers binding affinity) proteins, Puf (Pumilio and Fem-3 binding factor) proteins, CCCH zinc finger
proteins, and RNA-recognition motif (RRM) proteins. RRMs include proteins binding mRNAs in
different part of 3′ untranslated region (3′UTR) and poly(A). Poly(A)-binding protein (PABP) is shown
as an example of the RRM proteins. RBPs modulate selective translation by mRNA stability, mRNA
decay, polysome association, or mRNA storage process.

Leishmania major has 78 RRM proteins [10], while Trypanosoma brucei has about 70 RRM proteins
and half of them are essential in at least one stage of life cycle [38,39]. RRM proteins play an important
role in the regulation of mRNA stability and the fine tuning of translation promoting adaptation and
survival during environmental challenges encountered by the parasite at different stages of the life
cycle. RRM proteins contain at least one RRM domain consisting of a 90 amino acid-long module,
one of the most commonly existing domains in nature. RRM proteins may interact with regulatory
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translation in Leishmania parasites. Leishmania RBPs are grouped in four main classes, Alba (acetylation
lowers binding affinity) proteins, Puf (Pumilio and Fem-3 binding factor) proteins, CCCH zinc finger
proteins, and RNA-recognition motif (RRM) proteins. RRMs include proteins binding mRNAs in
different part of 3′ untranslated region (3′UTR) and poly(A). Poly(A)-binding protein (PABP) is shown
as an example of the RRM proteins. RBPs modulate selective translation by mRNA stability, mRNA
decay, polysome association, or mRNA storage process.

Leishmania major has 78 RRM proteins [10], while Trypanosoma brucei has about 70 RRM proteins
and half of them are essential in at least one stage of life cycle [38,39]. RRM proteins play an important
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role in the regulation of mRNA stability and the fine tuning of translation promoting adaptation and
survival during environmental challenges encountered by the parasite at different stages of the life
cycle. RRM proteins contain at least one RRM domain consisting of a 90 amino acid-long module,
one of the most commonly existing domains in nature. RRM proteins may interact with regulatory
sequence elements in 3′UTRs of mRNAs to control their stability and translatability under different
environmental conditions. This regulation is especially important for proper differentiation of the
protozoan parasites. While little is known about RRM proteins in Leishmania, many studies have
been performed in Trypanosoma. Several RBPs containing an RRM domain have been found to have
a profound life-cycle stage-specific effect on the global regulation of the parasite transcriptome and
its development [40]. RBP10 expression is upregulated in bloodstream-form trypanosomes and it
modulates mRNAs typically found in bloodstream-form parasites [41,42]. Conversely, Trypanosoma
brucei RBP6 plays a crucial role in the insect stage and its forced overexpression leads to the progression
of metacyclogenesis, activation of variant surface glycoprotein genes expression, and infectivity [43].
Thus, both RBP6 and RBP10 are important developmental triggers supporting the critical role of RBPs
in the post-transcriptional regulation of gene expression. It is possible that RBP6 and RBP10 homologs
exist in Leishmania and perform similar roles.

Poly(A)-binding proteins (PABPs) belong to RRM proteins and contain a single RRM domain.
Poly(A)-binding proteins in eukaryotes play a role in polyadenylation of the transcripts in the nucleus,
mRNA circularization via binding to translation initiation factors, and cause the enhancement of
translational initiation [44–46]. Leishmania protozoans have three PABPs, but only two of them PABP1
and PABP2 are conserved in trypanosomatids [47–50]. All three are highly expressed and can bind
poly(A), however, only PABP2 and PABP3 interact with each other and migrate to the nucleus upon
inhibition of transcription. PABP1 can be associated with the eIF4E4/eIF4G3 complex via direct binding
to eIF4E4 to regulate the initiation of translation [30]. PABP1 is expressed at a constant level during
differentiation in Leishmania infantum, however, it is hyperphosphorylated during active translation and
displays a stronger association with polysomes in logarithmically grown cells [47]. Both PABP1 and
PABP2 can stimulate translation and can be associated with polysomes in Trypanosoma brucei, however,
they exhibit differences in the association with polysomes and intracellular localization [49,51,52].
PABPs also play an important role in mRNA decay and can be localized to distinct stress granules in
Leishmania. LeishPABP2, but not LeishPABP1, is found in the composition of nutritional stress granules,
but it still remains unclear what role it may play in the differentiation of the parasite [20].

The CCCH (Cys3His Zinc finger) proteins are characterized by the presence of defined zinc-finger
motif with preference to bind AU-rich elements in RNA [40]. Trypanosoma ZFP1 and ZFP2 proteins
belong to the CCCH family and both of them are important for the differentiation from bloodstream
to procyclic forms [40,53,54]. While ZC3H20 is needed for procyclic forms, ZC3H11 is essential in
bloodstream parasites [55,56]. ZC3H11 is suggested to act as a platform in the recruitment of PABP to
3′UTR and to regulate mRNA stability and translation [57]. ZC3H11 protects a subset of mRNAs from
translational repression during the heat shock, and many of heat-induced mRNAs are also elevated
during differentiation to mammalian-infective forms [14]. Bioinformatic analysis of the TriTryp genome
database identified that Trypanosoma brucei has 48 CCCH proteins, while Leishmania major carries
54 proteins with 8 of them being unique; however, the role of CCCH proteins in the regulation of
Leishmania parasite differentiation has not been addressed yet [58,59].

Puf proteins are known to be involved in the regulation of mRNA localization, stability,
and translation, through binding to the sequence motif in the 3′UTR of specific mRNAs [60–62].
Puf proteins contain an RNA binding domain consisting of several imperfect amino acid repeats called
Puf repeats. Puf proteins promote translational repression and mRNA degradation via interactions
with cis-elements in the 3′UTR of specific mRNAs [63–66]. Both Leishmania and Trypanosoma species
contain up to 10 different Puf proteins [67–71]. Puf6 protein regulates selective transcript levels during
the life cycle of the parasite via mRNA degradation [72,73]. Puf proteins could be found together with
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LeishIF4E-3 in starvation-induced stress granules in Leishmania [20]. However, in general, there is very
little known about the biological functions of Puf proteins in Leishmania.

Other proteins interacting with 3′UTRs are Alba proteins [74]. They are abundant mRNA-binding
proteins regulating translation in trypanosomatids and can be found in association with polysomes
and translating mRNAs [75]. The expression of Alba proteins is stage-regulated in Trypanosoma
and contributes to the differentiation of the parasites during their development in the tsetse fly [76].
While Trypanosoma has four proteins with Alba domain, Leishmania infantum genome has only two
Alba proteins [39,77]. LiAlba3 protein can bind the delta-amastin 3′UTR and regulate amastin mRNA
stability in Leishmania infantum during the amastigote stage [74]. Both Alba proteins were found
associated with ribosomal subunits in Leishmania, in contrast with Trypanosoma, where Alba proteins
are observed in polysomes; however, it is unclear how it contributes to the differences in function [78].

Thus, Leishmania parasites have a great variety of RNA binding proteins (RBPs) playing especially
important role in the regulation of protein translation through controlling mRNA stability/translatability,
and providing fine tuning of protein translation during differentiation of the parasite in the absence of
transcriptional control. While Leishmania life cycle stages are well studied, we are just at the beginning
of understanding what molecular mechanisms of translational control operate at the different stages of
the parasite’s life cycle, and how different RBPs contribute to it.

4. Drug Resistance and Translation

Current treatment of leishmaniasis is obstructed by drug toxicity, high cost, and treatment failures
caused by drug resistance [6]. Many studies are focused on drug resistance now, since it is a major
public health problem worldwide associated with the disease incidence, mortality, and health care cost.
Traditionally, pentavalent antimonials (SbV) have been used as the primary therapeutic treatment option
against leishmaniasis [79]. However, drug resistance has been widely shown to reduce the therapeutic
efficacy of SbV [7]. In certain regions of India and Nepal, therapeutic failure of SbV has reached 65%
leading to discontinuation of the treatment [7]. Rising rates of SbV drug resistance have been reported
in Latin America as well [80,81]. Unfortunately, Leishmania parasites have also shown the ability to
develop drug resistance against other therapeutic alternatives including amphotericin B, miltefosine,
pentamidine, and paramomycin [82–84]. Furthermore, cross-resistance phenomena have been widely
documented, suggesting a high capacity of Leishmania to adapt to different stressors and drugs [85–90].
In the absence of both an effective vaccine and a stable therapy for leishmaniasis treatment, there is an
urgent need to understand the drug resistance mechanisms adopted by these parasites.

The drug resistance studies in Leishmania have mainly focused on SbV, since it is the main drug
currently used for treatment. The studies suggest that Leishmania uses at least four main mechanisms
to counteract SbV drug: (a) reduction in drug uptake; (b) prevention of drug activation; (c) drug
sequestration; and (d) increase in the drug efflux (Figure 4A).

A reduction in the drug uptake can be achieved by downregulation of membrane proteins as
aquaglyceroporin (AQP1) [91]. The drug activation might be blocked by negative regulation of specific
reductase enzymes, protecting parasites by preventing the reduction from SbV (prodrug) to trivalent
antimony (SbIII, active drug form). The SbV action can be inactivated by the production of metal-thiol
conjugates, leading to the drug sequestration. Finally, the overexpression of ABC transporters increase
the drug efflux of metal-thiol conjugates across vesicles that fuse with the plasma membrane during
exocytosis [92].

Different approaches have been used to understand SbV resistance in Leishmania. Studies at
the genomic level have shown that single nucleotide polymorphism and genomic amplification
including copy number variation [93], chromosomal somy [94], and intrachromosomal [95] and
extrachromosomal amplification contribute to SbV resistance. However, changes at the genomic level
cannot explain all the possible drivers of resistance mechanisms. Interestingly, 1006 transcripts are
differentially expressed during the experimental development of resistance to trivalent antimony in
L. donovani [96]. Deep RNA-sequencing studies have further shown that SbV sensitive and resistant
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strains exhibit quite different mRNA profiles, suggesting global changes in gene expression [93,97]
In the SbV resistance strains, the next pathways are enriched: energy metabolism (glycolysis and TCA
cycle), phosphate ion transport, metabolism of fatty acids, biosynthesis pathway of trypanothione,
and stress response [96–98]. Taking into account that Leishmania does not have transcriptional control
and that mRNA stability is tightly connected with their translation, the global changes in gene
expression profile support the hypothesis that the translational reprogramming could orchestrate the
drug resistance development in Leishmania parasites (Figure 4B). Recently, it has been discovered that
the essential protein, calcium-dependent protein kinase 1 (CDPK1) is able to modulate the translation
efficiency, and mutations in this protein contribute to paramomycin and antimony resistance [9].
CDPK1 phosphorylates the ribosomal protein L23a, and it also interacts with the ribosomal protein L28
and ARM56 [9]. Interestingly, these proteins are also related to drug-resistance; L23a over-expression
confers resistance not only to SbV but also to miltefosine and paramomycin, suggesting a general
system for drugs-stress response [99]. Furthermore, the putative 60 S ribosomal protein L28 is highly
expressed in SbV resistance strains [94] and ARM56 has been proposed as a clinical SbV resistance
marker [100]. It remains to examine if the phosphorylation pattern and the interactome of CDPK1 has
a central role for the translational reprogramming during drug response.
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the essential protein, calcium-dependent protein kinase 1 (CDPK1) is able to modulate the translation
efficiency, and mutations in this protein contribute to paramomycin and antimony resistance [9].
CDPK1 phosphorylates the ribosomal protein L23a, and it also interacts with the ribosomal protein L28
and ARM56 [9]. Interestingly, these proteins are also related to drug-resistance; L23a over-expression
confers resistance not only to SbV but also to miltefosine and paramomycin, suggesting a general
system for drugs-stress response [99]. Furthermore, the putative 60 S ribosomal protein L28 is highly
expressed in SbV resistance strains [94] and ARM56 has been proposed as a clinical SbV resistance
marker [100]. It remains to examine if the phosphorylation pattern and the interactome of CDPK1 has
a central role for the translational reprogramming during drug response.
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Several mechanisms can contribute to the drug resistance. Down-regulation of AQP1 blocks the
drug uptake. Down-regulation of reductase enzymes prevents drug activation from SbV to SbIII.
Increase in drug sequestration can be achieved through action of thiol-metal conjugates (SbIII-TS).
Changes in drug efflux across ABC transporters and vesicles released by exocytosis also contribute
to SbV resistance phenotypes. (B) Scheme representing coordinated reprogramming of translational
activity during the development of resistance to SbV and other drugs. Once the drug pressure
is initiated, the parasites sense the stress and initiate response. The translation is reprogrammed
by modulation of proteins such as CDPK1 to combat the toxic action of drug. Some translational
regulators could participate as a switch inducing or inhibiting the protein synthesis, prioritizing the
production of essential proteins. These proteins could be involved in mRNA and protein stability, lipid
metabolism, stress response and drug depuration/inactivation, promoting the parasite survival and
drug resistance. Thiol-dependent reductase I (TDR1), As/Sb Reductase (ACR2), trypanothione (T(SH)2),
aquaglyceroporin (AQP1), ATP-binding cassette (ABC), cysteine (Cys), cystein–glycine (Cys-Gly),
and antimony-thiol conjugate (Sb-TS) are shown.
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It is well documented that reprogramming of mRNA translation plays a key role in drug resistance
during cancer treatment and targeting specific elements of the translation machinery is emerging as
an innovative strategy for cancer therapy [101–105]. Although the drug resistance in Leishmania has
been studied for the past 20 years, the role of the translational regulation has remained essentially
neglected. The studies discussed here suggest that under drug pressure, Leishmania should activate a
coordinated reprogramming of translation, modulating the selective mRNA translation and activating
pathways to combat the drug (Figure 4B). This process may be highly specialized in trypanosomatid
organisms that lack transcriptional control. While the data implicate the importance of translational
control, the uncovering of how parasites reprogram their translation to withstand the presence of drug
and develop resistance requires future studies.

5. Conclusions and Perspectives

The goal of this review is to provide the current progress achieved in studies on translational control
in Leishmania parasites. Translational control is the major mechanism promoting the transformation
of promastigotes (sand fly stage) into amastigotes (mammalian stage) achieved by decreased global
translation via eIF2α phosphorylation. Initiation of translation factors and a huge variety of RNA
binding proteins are all important for the differentiation, however, precise biological functions have
been characterized only for a few of them. Further investigation of the role of different translational
regulators and RBPs is necessary for a better understanding of the biology of the digenic parasite.

Drug resistance is one of the major problems in the treatment of the leishmaniasis and
circumventing the problem of drug resistance is critical for successful treatment in the future. In order
to combat this disease effectively, a better understanding of the fine mechanisms of drug resistance
development is essential. While changes at genomic levels that contribute to the development of drug
resistance are very well studied, the role of translational reprogramming remains largely unexplored.
The understanding of the machinery responsible for global translational reprogramming during
drug resistance development will be very valuable in developing new highly effective therapeutic
alternatives for leishmaniasis treatment.
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