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Abstract

Cervical cancer remains one of the leading causes of cancer-related deaths worldwide. Reported 

here is an extensive molecular characterization of 228 primary cervical cancers, the largest 

comprehensive genomic study of cervical cancer to date. We observed striking APOBEC 

mutagenesis patterns and identified SHKBP1, ERBB3, CASP8, HLA-A, and TGFBR2 as novel 

significantly mutated genes in cervical cancer. We also discovered novel amplifications in immune 

targets CD274/PD-L1 and PDCD1LG2/PD-L2, and the BCAR4 lncRNA that has been associated 

with response to lapatinib. HPV integration was observed in all HPV18-related cases and 76% of 

HPV16-related cases, and was associated with structural aberrations and increased target gene 

expression. We identified a unique set of endometrial-like cervical cancers, comprised 

predominantly of HPV-negative tumors with high frequencies of KRAS, ARID1A, and PTEN 
mutations. Integrative clustering of 178 samples identified Keratin-low Squamous, Keratin-high 

Squamous, and Adenocarcinoma-rich subgroups. These molecular analyses reveal new potential 

therapeutic targets for cervical cancers.

Cervical cancer accounts for 528,000 new cases and 266,000 deaths worldwide each year, 

more than any other gynecologic tumor1. Ninety-five percent of cases are caused by 

persistent infections with carcinogenic human papillomaviruses (HPV)2. Effective 

prophylactic vaccines against the most important carcinogenic HPV types are available, but 

uptake remains poor. Although early cervical cancer can be treated with surgery or radiation, 

metastatic cervical cancer is incurable and new therapeutic approaches are needed3.

While most HPV infections are cleared within months, some persist and express viral 

oncogenes that inactivate p53 and Rb, leading to increased genomic instability, accumulation 

of somatic mutations, and in some cases integration of HPV into the host genome4. The 

association with cancer risk and histological subtypes varies substantially among 

carcinogenic HPV types, but the reasons for these differences are poorly understood. 

Further, clinically relevant cervical cancer patient subgroups have yet to be identified. 
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Presented here is a comprehensive study of invasive cervical cancer conducted as part of The 

Cancer Genome Atlas (TCGA) project, with a focus on identifying novel clinical and 

molecular associations as well as functionally altered signaling pathways that may drive 

tumorigenesis and serve as prognostic or therapeutic markers.

Samples and clinical data

Primary frozen tumor tissue and blood were obtained from women with cervical cancer 

without prior chemotherapy or radiotherapy (Supplemental Information S1 and 

Supplemental Tables 1 and 2). DNA, RNA, and protein were processed as previously 

described5 (Supplementary Information S1, S3, S5, and S8). Mutations were called for 192 

samples (Extended Set), while all other platform (aside from protein) and integrated 

analyses were performed on a subset of 178 samples (Core Set). Protein levels were 

measured on 155 samples (119 samples from both the Core and Extended Sets plus 36 

additional samples). The total number of non-overlapping samples in these three sets was 

228 (Extended Data Fig. 1a). Of the 178 Core Set samples, surgery was the primary 

treatment in 121 cases, median follow-up was 17 months, and 145 patients were alive at the 

time of last follow-up. A committee of expert gynecologic pathologists reviewed most cases 

(Supplemental Information S1 and Extended Data Fig. 1b–g). The Core Set included 144 

squamous cell carcinomas, 31 adenocarcinomas, and 3 adenosquamous cancers.

Somatic genomic alterations

Whole exome sequencing was performed on 192 Extended Set tumor-blood normal pairs. 

All samples had at least 32 Mbp of target exons covered with a median of 49× (range: 7–

351×) coverage for tumor samples and 47× (range: 9–341×) coverage for normal samples. 

Collectively, the samples harbored 43,324 somatic mutations, including 24,551 missense, 

2,470 nonsense, 9,260 silent, 5,841 non-coding, 535 splice site, 74 nonstop, 475 frameshift 

indels, and 118 in-frame indels. Eleven tumors with outlier mutation frequencies (>600 per 

sample) were classified as “hypermutant.” The aggregate mutation density was 4.04 

mutations per megabase across all tumors, and 2.53 when the hypermutant tumors were 

excluded.

Fourteen significantly mutated genes (SMGs) with false discovery rates (FDR) < 0.1 were 

found using the MutSig2CV6 algorithm (Supplemental Table 4). We identified SHKBP1, 
ERBB3, CASP8, HLA-A, and TGFBR2 as novel SMGs in cervical cancer, and confirmed 

PIK3CA, EP300, FBXW7, HLA-B, PTEN, NFE2L2, ARID1A, KRAS, and MAPK1 which 

have been previously reported (Fig. 1, Extended Data Fig. 2a–g, and Supplemental Fig. 

S6)7,8. Supplemental Table 4 shows the comparison of SMGs identified in the TCGA and 

Ojesina et al. datasets. Mutations in 7 of the 14 SMGs in the TCGA set were present in at 

least one squamous cell carcinoma and one adenocarcinoma; however, mutations in HLA-A, 
HLA-B, NFE2L2, MAPK1, CASP8, SHKBP1, and TGFBR2 were found exclusively in 

squamous tumors.

PIK3CA harbored mostly activating helical domain mutations E542K and E545K, with a 

marked relative decrease in mutations elsewhere in the gene (Extended Data Fig. 2g). This 
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observation resembles findings in bladder cancer9 and HPV-positive head and neck 

squamous cell cancers (HNSC)10, but it differs from observations in breast and most other 

cancers11. The underlying nucleotide substitution pattern in the E542K and E545K 

mutations is associated with mutagenesis by a subclass of APOBEC cytidine 

deaminases8,12–15, with 150 of 192 exomes displaying statistically significant (q<0.05) 

enrichment (up to 6-fold) for the APOBEC signature. Further, the APOBEC mutation load 

correlated strongly with the total number of mutations per sample (Extended Data Fig. 2h), 

suggesting that APOBEC mutagenesis is the predominant source of mutations in cervical 

cancers.

We found an average of 88 somatic copy number alterations (SCNAs) per tumor, fewer than 

in HNSC, ovarian, and serous endometrial carcinomas but more than in endometrioid 

endometrial carcinomas10,16,17. GISTIC2.0 analysis (threshold q< 0.25) revealed 26 focal 

amplifications and 37 focal deletions along with 23 recurrently altered whole arms 

(Extended Data Fig. 3c and Supplemental Table 7). Novel recurrent focal amplification 

events were identified (in genomic order) at 7p11.2 (EGFR; 17%), 9p24.1 (CD274, 
PDCD1LG2; 21%), 13q22.1 (KLF5; 18%), and 16p13.13 (BCAR4; 20%). Other previously 

reported amplification events occurred at 3q26.31 (TERC, MECOM; 78%), 3q28 (TP63; 
77%), 8q24.21 (MYC, PVT1; 42%), 11q22.1 (YAP1, BIRC2/3; 17%), and 17q12 (ERBB2; 
17%). Novel recurrent deletions were identified at 3p24.1 (TGFBR2; 36%) and 18q21.2 

(SMAD4; 28%), in addition to previously identified deletions at 4q35.2 (FAT1; 36%) and 

10q23.31 (PTEN; 31%). A CN high cluster largely contained squamous tumors with 

amplification events involving 11q22 (YAP1, BIRC2/3) and 7p11.2 (EGFR), while the CN 

low cluster included most adenocarcinomas and was enriched for tumors with deletions in 

TGFBR2 and SMAD4 and gains in ERBB2 and KLF5 (Extended Data Fig. 3a, b). Notably, 

both groups had amplifications involving CD274 (PD-L1) and PDCD1LG2 (PD-L2) that 

correlated significantly (p<0.0001) with expression of two key immune cytolytic effector 

genes, granzyme A and perforin18 (Extended Data Fig. 3d). This highlights the potential of 

immunotherapeutic strategies for a subset of cervical cancers.

Structural rearrangements were identified through analysis of RNA-seq (Core Set, n=178) 

and whole genome sequencing (WGS) data with low-pass (n=50) and deep (n=19) coverage. 

Both RNA-seq and WGS detected 22 putative structural rearrangements in 14 patients 

(Supplemental Table 8). In total, 26 recurrent fusions were found (Supplemental Table 9, 

with examples in Extended Data Fig. 4d). RNA-seq analysis revealed 4 cases harboring 

16p13 ZC3H7A-BCAR4 gene fusions, with exon 1 of ZC3H7A linked to the last exon of 

BCAR4. Whole genome sequencing revealed tandem duplication and copy number gain of 

BCAR4 on chromosome 16p13.13 (Extended Data Fig. 4c). BCAR4 is a metastasis-

promoting lncRNA that enhances cell proliferation in estrogen-resistant breast cancer by 

activating the HER2/3 pathway. Lapatinib, an EGFR/HER2 inhibitor, counteracts BCAR4-

driven tumor growth in vitro, and warrants evaluation as a possible therapeutic agent in 

BCAR4-positive cervical cancer19.
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Integrated analysis of molecular subgroups and pathways

Integration of copy number, methylation, mRNA, and miRNA data using iCluster20 

highlighted the molecular heterogeneity of cervical carcinomas. Three clusters were 

identified that largely corresponded to mRNA clusters (Supplemental Fig. S9): a squamous 

cluster with high expression of keratin gene family members (Keratin-high), another 

squamous cluster with lower expression of keratin genes (Keratin-low), and an 

Adenocarcinoma-rich cluster (Adenocarcinoma). Keratin-high and Keratin-low clusters 

included 133 of 144 squamous cell carcinomas and the Adenocarcinoma cluster contained 

29 of 31 adenocarcinomas (Fig. 2). KRAS (p=9.7e-5), ERBB3 (p=2.6e-3), and HLA-A 
(p=0.03) mutations were significantly associated with iClusters, with KRAS mutations 

absent from the Keratin-high cluster and HLA-A mutations missing in the Adenocarcinoma 

cluster (Fig. 2). Members of the SPRR and TMPRSS cornification gene families and the 

SMGs ARID1A (p=0.02), NFE2L2 (p=6.9e-6), and PIK3CA (p=0.01) were differentially 

expressed between Keratin-low and Keratin-high clusters (Extended Data Fig. 4b).

Unsupervised hierarchical clustering of variable DNA methylation probes produced three 

groups (Extended Data Fig. 5a), including a small “CpG island hypermethylated” (CIMP-

high) cluster, a CIMP-intermediate cluster, and a CIMP-low cluster that were associated 

with an epithelial-mesenchymal transition (EMT) mRNA score (Extended Data Fig. 

5b)10,21. Most of the cases in the Adenocarcinoma iCluster were CIMP-high, while the other 

iClusters contained a mixture of CIMP-intermediate and CIMP-low samples (Fig. 2). 

Comparing all cervical carcinomas to 120 normal samples drawn from 12 TCGA projects, 

we identified 1026 epigenetically silenced genes that were methylated to a greater extent in 

cancers than in normal tissues, including several zinc-finger (ZNF), protease (ADAM, 

ADAMTS), and collagen (COL) genes (Supplemental Tables 11 and 12).

Unsupervised clustering resulted in 6 miRNA clusters associated with iClusters (p=1.7e-19) 

(Extended Data Fig. 6a). Samples from the Adenocarcinoma iCluster almost exclusively 

overlapped with miRNA cluster 5, and were characterized by high expression of miR-375 

and low expression of miR-205-5p and miR-944 (Supplemental Table 31). Expression levels 

of tumor suppressors miR-99a-5p and miR-203a were significantly higher in Keratin-high 

cluster samples than Keratin-low cluster samples (Supplemental Table 31; p=0.01 and 0.008, 

respectively). Among miRNAs with significant and functionally validated gene and protein 

anti-correlations22, one large subnetwork involved miR-200-family and other miRs with 

expression patterns anti-correlated with those of the EMT-related transcription factors ZEB1, 
ZEB2, and SNAI2, the Hippo and p73 transcriptional co-factor YAP1, the receptor tyrosine 

kinases (RTKs) ERBB2, ERBB3, and AXL, and the hormone receptor ESR1 (Extended 

Data Fig. 6b, Supplemental Fig. S17, Supplemental Fig. S18, and Supplemental Table 15).

Reverse Phase Protein Array (RPPA) analysis of 155 samples with 192 antibodies (Extended 

Data Fig. 1a and Supplemental Table 17) identified three clusters significantly associated 

with iClusters (p=1.8e-4) and EMT mRNA score (Fig. 3a, c, d and Supplemental Table 16). 

EMT cluster samples were enriched in the Keratin-low iCluster, while PI3K/AKT and 

Hormone cluster samples were enriched in the Keratin-high and Adenocarcinoma iClusters, 

respectively, suggesting distinct pathway activation across integrated cervical cancer 
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subtypes. Differential expression levels of Phospho-MAPK, Phospho-EGFR (Y1068), 

Phospho-Src (Y416), IGFBP2, and TIGAR between Keratin-high and Keratin-low iClusters 

suggest diverse activation patterns of RTK, MAPK, PI3K, and metabolic signaling pathways 

that may underlie the molecular diversity of cervical squamous cancers (Fig. 2).

The core members of each RPPA cluster with the highest silhouette width (>0.02, n=115) 

were associated with five-year survival (Fig. 3b; p=6.1e-4), with the EMT group exhibiting 

worse outcome. Interestingly, this was the only platform where clusters associated with 

outcomes (Supplemental Figs. S8, S9, S12, and S22; Supplemental Information S6). 

Samples in the EMT cluster exhibited high “reactive” pathway scores (Supplemental Fig. 

S20)11, illustrating for the first time in cervical cancer the presence of a subset of stromal 

“reactive” tumors with high expression of Caveolin-1, MYH11, and Rab11, which also 

appear in other diseases (Supplemental Table 16)23. YAP was the most significantly 

differentially expressed protein distinguishing EMT cluster samples from all others 

(Supplemental Table 18; p=1.7e-15) and YAP1 was significantly amplified in the EMT 

cluster samples compared with the Hormone (p=1.1e-5) and PI3K/AKT cluster (p=6.4e-4) 

samples. Regulation of the EMT-related molecules YAP and ZEB124–26 may also be driven 

by significantly lower expression levels of miR-200a-3p in the EMT cluster samples 

compared with other RPPA cluster samples (Extended Data Fig. 6b and Extended Data Fig. 

7a; p=3.8e-3). These results highlight potential roles for YAP and reactive stroma in the 

context of EMT-regulated cervical cancer progression.

The Mutual Exclusivity Modules in cancer (MEMo) algorithm27 uses somatic mutation and 

copy number data to identify oncogenic networks with mutually exclusive genomic 

alterations. Since miR-200a and miR-200b (miR-200a/b) expression were negatively 

correlated with EMT mRNA scores (Extended Data Fig. 7b, d), we used MEMo to examine 

alterations in miR-200a/b and EMT networks and found a potential link between TGFβ 
pathway and miR-200a/b alterations in regulating EMT28,29. Deletions and mutations 

affecting the receptor gene TGFBR2, the modulating genes CREBBP and EP300, and the 

transcription factor SMAD4 all likely impinge on growth suppressive and pro-apoptotic 

functions driven by TGFβ (Fig. 4c) and were observed in 30% of squamous cell carcinomas 

(Fig. 4d). Tumors with both hypermethylation and downregulation of miR-200a/b (referred 

to as altered) were restricted to squamous cell carcinomas, were enriched in the Keratin-low 

iCluster (Fig. 4d and Extended Data Fig. 8; p=0.001 for both miR-200a and miR-200b), 

showed significant upregulation of both ZEB1 and ZEB2 (Extended Data Fig. 9a–d), and 

were mutually exclusive with TGFβ signaling pathway alterations (Fig. 4d). Importantly, 

samples with altered miR-200a/b exhibited higher EMT mRNA scores than unaltered 

samples, while there was no significant difference between samples with or without TGFβ 
pathway alterations (Fig. 4d and Extended Data Fig. 7c, e). These findings highlight 

potential treatment approaches for this subgroup of cervical cancer patients, as targeting 

EMT may render tumors more sensitive to small molecule inhibitors and cytotoxic 

chemotherapy21,30,31.

MEMo analysis also showed differences in therapeutically-relevant RTK, PI3K, and MAPK 

pathway alterations across cervical cancers. MEMo identified mutual exclusivity modules 

involving alterations within both the PI3K and MAPK pathways (Supplemental Table 27; 

Page 5

Nature. Author manuscript; available in PMC 2017 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



adjusted p=0.06); however, there was a strong tendency for co-occurrence of ERBB2 and 

ERBB3 alterations within adenocarcinomas (p<0.001, log odds-ratio > 3), indicating that a 

subset of these tumors may exhibit aberrant HER3 signaling through interactions between 

mutant HER3 and activated HER2 and therefore could potentially benefit from HER2- and 

HER3-targeted therapies (Fig. 4a, b)32. Although not statistically significant, aberrations in 

PIK3CA also tended to co-occur with PTEN somatic mutations and deletions (p=0.078, log-

odds ratio=0.71), which is similar to copy number-low endometrial tumors and suggests 

potential therapeutic benefit from PI3K pathway targeting agents17.

PARADIGM33,34, which integrates copy number, RNA-seq, and pathway interaction data, 

showed markedly different pathway activation profiles between squamous carcinomas and 

adenocarcinomas (Extended Data Fig. 10 and Supplemental Fig. S48). PARADIGM 

identified higher inferred activation of p53, p63, p73, AP-1, MYC, HIF1A, FGFR3, and 

MAPK signaling as key distinguishing signaling features of squamous cell carcinomas, 

similar to other squamous cancers35. In contrast, adenocarcinomas exhibited higher inferred 

activation of ERα, FOXA1, FOXA2, and FGFR1 pathways (Extended Data Fig. 10, 

Supplemental Fig. S25, Supplemental Fig. S48, and Supplemental Table 18). Possible 

underlying mechanisms for ERα upregulation may stem from the expression of 

miR-193b-3p, a direct regulator of ESR1 that was significantly downregulated in 

adenocarcinomas compared with squamous carcinomas (Fig. 2, Extended Data Fig. 6, and 

Supplemental Table 14; p=0.04), or from estrogen signaling in stromal cells36.

Cross-cancer analysis

To evaluate the relationship of cervical cancer subtypes with endometrial cancer, an adjacent 

cancer site with hormone-related carcinogenesis, and HNSC, a subset of which is caused by 

HPV, hierarchical clustering of cervical, uterine corpus endometrial (UCEC)17, and HNSC10 

mRNA expression data was performed. Three major groups were observed, with Cluster 1 

including all UCEC samples and most cervical adenocarcinomas and characterized by 

overexpression of hormone receptor genes ESR1 and PGR (Extended Data Fig. 4a). Cluster 

2 included predominantly squamous cervical carcinomas and 23/27 HPV-positive HNSC 

samples. Cluster 3 included few cervical cancers and the remaining HNSC cancers, which 

were mostly HPV-negative. This highlights the similarity of HPV-related squamous cancers 

at different anatomical sites.

Since a subset of cervical cancers clustered with endometrial samples, a gene expression 

classifier was developed to predict whether carcinomas were cervical or endometrial 

(Supplemental Information S5). We classified 8 of 178 (4.5%) cervical cancer samples as 

endometrial-like (UCEC-like) cancers, which were confirmed to be cervical cancers by 

study pathologists (Extended Data Fig. 1f, g). These tumors included 7 of 9 HPV-negative 

cancers and 5 of the 8 were adenocarcinomas. Six UCEC-like cancers were in the 

Adenocarcinoma iCluster and 2 were in the Keratin-low iCluster. Despite their low number, 

the UCEC-like tumors accounted for 33%, 27%, and 20% of mutations in ARID1A, KRAS, 

and PTEN, respectively. They were associated with the RPPA Hormone and miRNA C6 

clusters, and all but one sample was CIMP-low and CN low (Supplemental Table 1).
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HPV genotypes, variants, and integration

Of 178 Core Set tumors, 169 (95%) were HPV-positive, 120 (67%) had alpha-9 (A9) types 

(103 HPV16), 45 (25%) had alpha-7 (A7) types (27 HPV18), and 9 (5%) were HPV-

negative (Supplemental Table 3). HPV variants were predominantly European (137 of 169, 

81% A variants), and there was a significant association of non-European HPV16 variants 

with cervical adenocarcinomas (Supplemental Table 3; OR 5.3, p=3e-3). All HPV-positive 

cancers had detectable expression of HPV E6 and E7 oncogene mRNAs, which encode 

proteins that inhibit p53 and Rb function, respectively37,38. Interestingly, HPV18 cancers 

had significantly higher levels of unspliced/spliced transcripts encoding active E6 

oncoprotein than the HPV16 cancers (Extended Data Fig. 11a; p=2e-10), suggesting 

different functional implications of E6 and E7 in cancers associated with different HPV 

genotypes.

HPV A7 types were enriched in Keratin-low and Adenocarcinoma iClusters (p=5e-4). Most 

HPV clade A7 tumors were CIMP-low, and HPV-negative tumors formed a distinct 

subgroup within the CIMP-low cluster with a significantly lower mean promoter 

methylation level than other samples in that cluster (Extended Data Fig. 5a; p=5e-3). 

Samples with the highest rate of silencing were HPV-positive adenocarcinomas, particularly 

those related to A9 types (t-test p-values <0.001). Functional Epigenetic Module (FEM; 

Supplemental Information S13) analysis39, which integrates DNA methylation and gene 

expression data using protein-protein-interaction networks, identified inverse correlations 

between methylation and gene expression in HPV-positive vs. HPV-negative cervical cancers 

and HPV-positive (n=36) vs. HPV-negative (n=243) HNSCs. The analysis revealed 12 

statistically significant subnetworks for cervical cancer and 11 for HNSCs, with one 

common subnetwork centered around Forkhead Box A2 (FOXA2) (Supplemental Table 19 

and Supplemental Fig. S32). miR-944, miR-767-5p, and miR-105-5p were the most 

differentially expressed miRNAs between HPV-positive and HPV-negative samples 

(Supplemental Fig. S14e). miR-944 expression was also significantly higher while miR-375 

expression was significantly lower in HPV16-positive squamous cancers compared with 

HPV18-positive squamous cancers (Supplemental Fig. S14d). Interestingly, HPV-negative 

cancers displayed a significantly higher EMT mRNA score and a lower frequency of the 

APOBEC mutagenesis signature compared with HPV-positive tumors (Extended Data Fig. 

11b and Supplementary Figure S27; p=0.02 and p=0.004, respectively).

PARADIGM was used to evaluate molecular pathways differentially activated in squamous 

samples with A7 and A9 HPV infections. We observed higher inferred activation of p53 and 

p63 signaling and lower FOXA1 signaling in tumors infected with A9 types (Fig. 5a and 

Supplemental Fig. S23a). Higher SFN pathway activation was also observed for A9-positive 

tumors, which is consistent with the low methylation and high gene expression patterns of 

SFN revealed by FEM analysis (Fig. 5a and Supplemental Table 19). Interestingly, the SFN-

encoded Stratifin/14-3-3σ adapter protein has previously been associated with epithelial 

immortalization and squamous cell cancers40,41, altered p53 pathway activation42, and Wnt-

mediated β-catenin signaling43.
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Viral-cellular fusion transcripts indicating integration of HPV into the host genome were 

observed in 141 of 169 (83%) HPV-positive cancers, including all HPV18-positive cancers. 

Of these 141 cases, 90 (64%) had a single HPV integration event, 35 had two events, and 16 

had three or more events (totaling 220 unique integration events) (Supplemental Table 3). 

HPV integration events affected all chromosomes, including some previously described 

hotspots such as 3q28 and 8q24 (Fig. 5b)44. Genomic loci affected by integration were 

characterized by increased SCNAs (p=6.9e-13 for HPV16 and p=0.058 for HPV18) and 

increased gene expression (p=1.6e-11 for HPV16 and p=0.011 for HPV18) (Extended Data 

Fig. 11c, d). One hundred fifty-three (70%) fusion transcripts included known or predicted 

genes, while the remainder included intergenic regions (Fig. 5b and Supplemental Table 3).

Conclusion

Through comprehensive molecular and integrative profiling, we identified novel genomic 

and proteomic characteristics that subclassify cervical cancers. Integrated clustering 

identified Keratin-low squamous, Keratin-high squamous, and Adenocarcinoma-rich clusters 

defined by different HPV and molecular features (Extended Data Fig. 8). ERBB3, CASP8, 
HLA-A, SHKBP1, and TGFBR2 were identified as SMGs for the first time in cervical 

cancer, with ERBB3 (HER3) immediately applicable as a therapeutic target. Notably, we 

report amplifications and fusion events involving the BCAR4 gene for the first time in 

cancer, which can be targeted indirectly by lapatinib. Further, we identified amplifications in 

CD274 and PDCD1LG2, two genes that encode for well-known immunotherapy targets. A 

set of endometrial-like cervical cancers comprised predominantly of HPV-negative tumors 

and characterized by mutations in KRAS, ARID1A, and PTEN was discovered, with PTEN 

and potentially ARID1A proteins serving as therapeutic targets. Importantly, over 70% of 

cervical cancers exhibited genomic alterations in either one or both of the PI3K/MAPK and 

TGFβ signaling pathways (Extended Data Fig. 9e), illustrating the potential clinical 

significance of therapeutic agents targeting members of these pathways. For the first time, 

we report distinct molecular pathways activated in cervical carcinomas caused by different 

HPV types, highlighting the biologic diversity of HPV.

Together, these findings provide insight into the molecular subtypes of cervical cancers and 

rationales for developing clinical trials to treat populations of cervical cancer patients with 

distinct therapies.

Methods

Samples and data freeze

The Core Data Freeze (Core Set) included 178 cases from cervical carcinoma (CESC) 

batches 88, 114, 127, 148, 169, 179, 200, 217, 236, 256, 280, 297, 335, and 350 

(Supplemental Table 1). Samples in the Core Set had mRNA-seq, whole exome DNA-seq 

(WES), miRNA-seq, methylation, SNP6 copy number, and clinical data available. 

Additional cases having multicenter mutation calls and/or RPPA data included 67 cases from 

CESC batches 88, 114, 127, 148, 169, 179, 200, 217, 236, 256, 280, 297, 335, 350, 361, 

373, 380, 394, and 420 (Supplemental Table 2). Of these cases, 14 had mutations called and 

60 had RPPA data available; however, RPPA data for 17 cases was excluded due to low 
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protein content within samples (Supplemental Table 2). Mutations were called for 192 

samples (Extended Set), while all other platform and integrated analyses (aside from 

protein) were performed on the subset of 178 Core Set samples. Protein levels were 

measured on 155 samples, which included 119 total samples from both the Core and 

Extended Sets as well as 36 samples outside of these sets. The total number of non-

overlapping samples across Core, Extended, and RPPA datasets is 228 (Extended Data Fig. 

1a).

HPV detection, variant calling, and transcript analysis

HPV status was determined using consensus results from MassArray and RNA-seq 

(Supplemental Information S2). MassArray uses real-time competitive polymerase chain 

reaction and matrix-assisted laser desorption/ionization-time of flight mass spectroscopy 

with separation of products on a matrix-loaded silicon chip array, similar to the work 

described in Tang et al45. Two approaches for pathogen detection from RNA-seq data were 

used. The first used the microbial detection pipeline at the British Columbia Cancer 

Agency’s Genome Sciences Centre (BC), which is based on BioBloom Tools (BBT, 

v1.2.4b1)46. The second used the PathSeq algorithm47 at the Broad Institute (BI) to perform 

computational subtraction of human reads followed by alignment of residual reads to a 

combined database of human reference genomes and microbial reference genomes including 

HPV. In 97% of samples, complete agreement between MassArray and both RNA-seq 

approaches was observed. The remaining discrepant samples were resolved by majority 

decision, assigning the genotype called by at least two of the methods. RNA-seq data in 

FASTA format was used to identify HPV variants (Supplemental Fig. S1). Unaligned reads 

were taken from the PathSeq analysis and aligned to HPV reference genomes using 

TopHat48 with default parameters49. The HPV variant lineages/sublineages were assigned 

based on the phylogenetic topology and confirmed visually using the SNP patterns50. HPV 

splice junctions from RNA-seq were determined using TopHat. Two transcript types were 

distinguished for HPV16 and HPV18: (a) transcripts that included evidence of an unspliced 

sequence of E6, and (b) a transcript spliced at the E6 splice donor site (position 226 for 

HPV16 and position 233 for HPV18) (Supplemental Fig. S2). Read counts for unspliced, 

spliced, as well as the ratio of unspliced/spliced transcripts were categorized into quartiles 

separately for HPV16 and HPV18.

HPV integration analysis

Using RNA-seq data, concordance of integration events based on alignments of contigs from 

de novo transcriptome assembly (BC) and read alignments (BI) was evaluated 

(Supplemental Fig. S3). We identified method-specific integration events by assigning all 

sites within a 500-kb sliding window to a single integration event located at the median 

coordinate of that event’s assigned sites. An integration event was labeled as ‘confident’ 

when the total read support for each of its supporting integration sites passed center-specific 

read evidence thresholds. To take advantage of differences between the two integration 

methods (i.e. contig and read), for the concordance analysis we used all method-specific 

integration events (both confident and non-confident events). We labeled an integration event 

as ‘concordant’ when both methods reported an integration event within 500 kb in the same 

patient. For some concordant events, both methods reported a confident event. An 
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integration event was labeled as ‘discordant’ when only one center reported a confident 

integration event within 500 kb (Supplemental Figs. S4 and S5). For both intragenic and 

intergenic concordant events, we reported a range of coordinates that extends from the most 

proximal to the most distal supporting integration site. We assessed gene-level expression 

relative to somatic copy number and structural variant data for genes into which we had 

mapped viral-human junctions from RNA sequencing data and for genes that were 

associated with enhancers into which we had mapped RNA junctions.

DNA sequencing and mutation calling

Detailed methods for library hybrid capture, read alignments, and somatic variant calling are 

documented in Supplemental Information S3. MutSig2CV6 was utilized to identify 

significantly mutated genes (SMGs) within the cervical cancer exome sequencing data. 

Mutations were analyzed for the Core Set plus 14 samples to total 192 Extended Set 

samples. Eleven samples were identified to exhibit greater than average mutations rates and 

were termed “hypermutants” (somatic mutations >600). These 11 samples were excluded 

from the analysis for identifying SMGs. All 3 sample subsets (all samples, squamous 

carcinomas only, adenocarcinomas only) without “hypermutants” (Supplemental Table 4) 

were analyzed using an FDR cutoff of 0.1. FDR values are shown in Supplemental Table 4. 

SMG analysis using the entire sample cohort in Ojesina et al. was performed as described 

previously8.

Copy number analysis

DNA from each tumor or germline sample was hybridized to Affymetrix SNP 6.0 arrays 

using protocols at the Genome Analysis Platform of the Broad Institute as previously 

described51. Briefly, Birdseed was used to infer a preliminary copy number at each probe 

locus from raw. CEL files52. For each tumor, genome-wide copy number estimates were 

refined using tangent normalization, in which tumor signal intensities are divided by signal 

intensities from the linear combination of all normal samples that are most similar to the 

tumor16. Individual copy number estimates then underwent segmentation using Circular 

Binary Segmentation53, and segmented copy number profiles for tumor and matched control 

DNAs were analyzed using Ziggurat Deconstruction54. Significance of copy number 

alterations were assessed from the segmented data using GISTIC2.0 (Version 2.0.22)54. For 

the purpose of this analysis, an arm-level event was defined as any event spanning more than 

50% of a chromosome arm. For copy number based clustering, tumors were clustered based 

on log2 copy number at regions revealed by GISTIC analysis. Clustering was done in R 

based on Euclidean distance using Ward’s method. Allelic and integer copy number, tumor 

purity, and tumor ploidy were calculated using the ABSOLUTE algorithm55.

Detecting structural variants from RNA-seq and WGS data

Integrative analysis was performed to identify putative driver fusions using both WGS (low-

pass and high-coverage) and RNA-seq data. RNA-seq data for 178 Core Set cases were 

analyzed using the TopHat-Fusion and BreakFusion, PRADA, and MapSplice algorithms. 

To identify structural variations in WGS data, 50 low-pass WGS and 19 high-pass WGS 

samples were analyzed. Detection of structural variations in low-pass WGS data was 

performed using two algorithms, BreakDancer56 and Meerkat57, with a requirement for at 
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least two discordant read pairs supporting each event and at least one read covering the 

breakpoint junction. High-pass WGS data were analyzed to detect somatic structural 

variations using two runs of BreakDancer and one run of SquareDancer (https://github.com/

ding-lab/squaredancer). The gene fusion lists generated by all methods and platforms were 

integrated (See Supplemental Tables 8–10).

APOBEC mutagenesis analysis

Analysis is based on previous findings that APOBECs deaminate cytidines predominantly in 

a tCw motif and that the APOBEC mutagenesis signature is composed of approximately 

equal numbers of two kinds of changes in this motif: tCw→tTw and tCw→tGw mutations 

(flanking nucleotides are shown in small letters; w=A or T). Using mutation data from all 

192 Extended Set samples, we calculated on a per sample basis the enrichment of the 

APOBEC mutation signature among all mutated cytosines in comparison to the fraction of 

cytosines that occur in the tCw motif among the +/- 20 nucleotides surrounding each 

mutated cytosine (“APOBEC_enrich” column in data files). The minimum estimate of the 

number of APOBEC-induced mutations in a sample (APOBEC_MutLoad_MinEstimate) 

was calculated using the formula: [“tCw→G+tCw→T”]x[(“APOBEC_enrich”-1)/

“APOBEC_enrich”], which allows estimating the number of APOBEC signature mutations 

in excess of what would be expected by random mutagenesis. 

“APOBEC_MutLoad_MinEstimate” was calculated only for samples passing 0.05 FDR 

threshold for APOBEC enrichment ([“BH_Fisher_p-value_tCw”]<0.05. Samples with 

“BH_Fisher_p-value_tCw” value greater than 0.05 received a value of 0. The 

“APOBEC_MutLoad_MinEstimate” value shows high correlation (0.9–0.95) with all other 

parameters used to characterize the APOBEC mutagenesis pattern, such as APOBEC 

enrichment as well as absolute and relative APOBEC mutation loads. For some analyses and 

figures, the “APOBEC_MutLoad_MinEstimate” parameter was converted into categorical 

values as follows:

1. “no”: “APOBEC_MutLoad_MinEstimate”=0

2. “low”: 0<“APOBEC_MutLoad_MinEstimate”≤median of non-zero values

3. “high”: “APOBEC_MutLoad_MinEstimate”>median of non-zero values

The median of non-zero values in the Extended Set = 33.

Methylation analysis

The Illumina Infinium HM450 array58 was used to evaluate DNA methylation in the Core 

Set of cervical cancer samples. Unsupervised consensus clustering was performed with 

Euclidean distance and partitioning around medoids (PAM) using the most variable 1% of 

CpG island promoter probes. Epigenetically silenced genes were identified as previously 

described59. A total of 120 normal samples were used for this analysis by selecting 10 

samples at random from the 12 TCGA projects that included normal samples.

RNA-seq analysis

RNA was extracted, converted into mRNA libraries, and paired-end sequenced (paired 50 nt 

reads) on Illumina HiSeq 2000 Genome Analyzers as previously described5. RNA reads 
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were aligned to the hg19 genome assembly using Mapsplice v12_0760. Gene expression was 

quantified for the transcript models corresponding to the TCGA GAF2.1 (https://tcga-

data.nci.nih.gov/docs/GAF/GAF.hg19.June2011.bundle/outputs/TCGA.hg19.June2011.gaf.) 

using RSEM461 and normalized within a sample to a fixed upper quartile. To predict 

whether a cancer sample was from the cervix or the uterus, the data matrix of normalized 

gene-level RSEM values from 170 UCEC samples was merged with the data matrix from the 

Core Set (n=178) of cervical cancers. This merged dataset was then randomly split into a 

training set (87 CESC samples; 86 UCEC samples) and a test set (91 CESC samples; 84 

UCEC samples). A sample was predicted to be CESC if the t-statistic vs. UCEC was 

significant (p<0.05), but was not significantly different from the CESC mean (and vice versa 

for the UCEC prediction). A data matrix of RSEM values from 178 CESC, 170 UCEC, and 

279 HNSC samples was used to identify expression patterns across the 3 cancer types. The 

gene expression matrix was further filtered to only include the top 25% most variable genes 

by mean absolute deviation (n=4,039 genes).

EMT mRNA score analysis

The EMT score was computed as previously described10,21. Briefly, the EMT score was the 

value resulting from the difference between the average expression of mesenchymal (M) 

genes minus the average expression of epithelial (E) genes. All NA values were removed 

from the calculation. Two-sample t-test and ANOVA were applied to each comparison 

accordingly.

miRNA sequencing and analysis

MicroRNA sequence (miRNA-seq) data was generated for the Core Set of tumor samples 

using methods described previously11. We identified miRNAs that have been associated with 

EMT62–66 and then calculated Spearman correlations between the EMT scores and RPMs 

for 5p and 3p mature strands for each of these miRNAs using MatrixEQTL and filtering by 

FDR<0.05. An miRNA was considered to be epigenetically controlled if BH-corrected p-

values were less than 0.01 for both a) a Spearman correlation of miRNA abundance (RPM) 

to beta for probes in promoter regions associated with the miRNAs, and for b) a t-test of 

RPM between unmethylated (β<0.1) and methylated (β>0.3) samples (an “epigenetically-

controlled pattern”). We assessed potential miRNA targeting for all 178 samples and then 

separately for the 144 squamous samples by calculating miR-mRNA and miR-protein 

(RPPA) Spearman correlations with MatrixEQTL v2.1.1 using gene-level normalized 

abundance RNA-seq (RSEM) data and normalized RPPA data. Correlations were calculated 

with a p-value threshold of 0.05, and then the anti-correlations were filtered at FDR<0.05. 

We extracted miR-gene pairs that corresponded to functional validation publications 

reported by miRTarBase v4.522. For miR-RPPA anti-correlations, all gene names that were 

associated with each antibody were used. Results were displayed with Cytoscape v2.8.3.

PARADIGM analysis

Integration of copy number, RNA-seq, and pathway interaction data was performed on the 

Core Set of samples using PARADIGM33,34. Briefly, PARADIGM infers integrated pathway 

levels (IPLs) for genes, complexes, and processes using pathway interactions, genomic, and 

functional genomic data from each patient sample. One was added to all expression values, 
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which were then log2-transformed and median-centered across samples for each gene. The 

log2-transformed, median-centered mRNA data were rank-transformed based on the global 

ranking across all samples and all genes and discretized (+1 for values with ranks in the 

highest tertile, -1 for values with ranks in the lowest tertile, and 0 otherwise) prior to 

PARADIGM analysis.

Pathways were obtained in BioPax Level 3 format, and included the NCIPID and BioCarta 

databases from http://pid.nci.nih.gov and the Reactome database from http://reactome.org. 

Gene identifiers were unified by UniProt ID and then converted to Human Genome 

Nomenclature Committee’s HUGO symbols using mappings provided by HGNC (http://

www.genenames.org/). Altogether, 1524 pathways were obtained. Interactions from all of 

these sources were then combined into a merged Superimposed Pathway (SuperPathway). 

Genes, complexes, and abstract processes (e.g. “cell cycle” and “apoptosis”) were retained 

and henceforth referred to collectively as pathway features. The resulting pathway structure 

contained a total of 19504 features, representing 7369 protein-coding genes, 9354 

complexes, 2092 families, 82 RNAs, 15 miRNAs, and 592 abstract processes.

The PARADIGM algorithm infers an IPL for each pathway element that reflects the log 

likelihood contrasting the probability of activity against inactivity. An initial minimum 

variation filter (at least 1 sample with absolute activity > 0.05) was applied, resulting in 

15502 concepts (5898 protein-coding genes, 7307 complexes, 1916 families, 12 RNAs, 15 

miRNAs, and 354 abstract processes) with relative activities showing distinguishable 

variation across tumors.

iCluster analysis

Integrative clustering of RNA-seq, methylation, copy number, and miRNA data was 

performed using R package “iCluster20.” The Core Set of samples was used since all 

samples in this Set had data available across these four platforms. RNA-seq, methylation, 

copy number, and mature-strand miRNA datasets had 20531, 395552, 23109, and 1213 

features, respectively. The 500 most variable features based on the standard deviation from 

each dataset were selected for the integrative clustering analyses. For analysis involving the 

RNA-seq and miRNA datasets, a log(x+1) transformation was used in order to deal with 

skewness in the data67. Methylation data was logit transformed to make it closer to normal 

distribution. The copy number variation data included the regions determined from 

GISTIC2.0, with copy number variation treated as a continuous measurement based on the 

segmentation mean value for the region.

MEMo analysis

High DNA methylation levels upstream of miR-200a and miR-200b corresponded to 

transcriptional downregulation of the miRs (Extended Data Fig. 9a). For a sample to be 

called altered for either miR-200a or miR-200b (or both), we required both high DNA 

methylation level upstream of the miR (β-value>0.3) and low miR expression (log2(RPM) < 

9.3 for miR-200a and log2(RPM) < 9 for miR-200b). Binary calls were given to altered and 

unaltered samples based on this double threshold (1 = altered, 0 = unaltered).
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The Mutual Exclusivity Modules in cancer (MEMo) algorithm27 was run on all Core Set 

samples. MEMo was initially run on 27 regions of recurrent copy number gain, 36 of copy 

number loss, and 22 recurrently mutated genes. In order to include alterations for miR-200a 

and miR-200b in the MEMo analysis, a custom network was designed where each miR was 

connected to its known and validated targets (see above). Second, this network was merged 

with the comprehensive pathway network used by MEMo to search for modules of altered 

genes that include at least one of the miRs. Extracted modules were tested for mutual 

exclusivity using MEMo’s statistical framework (Supplemental Table 27). Student’s t-test 

was performed for comparing EMT mRNA scores between groups.
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Extended Data

Extended Data Figure 1. Sample sets and histologic patterns of cervical cancer
a, Summary of sample numbers and degree of overlap between the Core, Extended, and 

RPPA datasets. b, Squamous cell carcinoma of the large cell non-keratinizing type. Tongues 

of highly atypical polygonal neoplastic squamous cells infiltrate through a fibrotic stroma. 

The cells show abundant eosinophilic cytoplasm with pleomorphic nuclei and prominent 

mitotic figures. Although the tumor cells contain abundant cytokeratin filaments, this tumor 
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has traditionally been termed “non-keratinizing” because of the absence of characteristic 

keratin pearls. c, Squamous cell carcinoma of the large cell keratinizing type. Nests of 

atypical squamous cells infiltrate through a fibrotic stroma. In addition, this tumor shows 

highly eosinophilic keratin pearls with small, inky dark nuclei that imperfectly mimic the 

normal keratinization that is found in the epidermis. This differentiation pattern is aberrant 

in the cervix in which the squamous epithelium is normally a non-keratinizing squamous 

mucosa. d, Adenocarcinoma of endocervical type (well-differentiated). Closely set, atypical 

glands with enlarged nuclei and scattered mitotic figures infiltrate through the connective 

tissue of the cervix. The tall columnar tumor cells show basally-placed, crowded, enlarged 

nuclei that show frequent mitotic figures. Compared with normal endocervical cells, the 

tumor cells show relative loss of intra-cytoplasmic mucin and are frequently called “mucin-

depleted,” although most, but not all endocervical adenocarcinomas show varying amounts 

of intracytoplasmic mucin at least focally. e, Adenosquamous carcinoma of cervix. This 

tumor shows both nests of non-keratinizing squamous cell carcinoma and glands composed 

of tall columnar adenocarcinoma reflecting the origin of most cervical cancers in the 

transformation zone of the cervix in which both squamous and glandular cells normally 

differentiate. Despite this biphasic differentiation potential, adenosquamous carcinomas are 

relatively uncommon in the cervix. f, UCEC-like HPV negative adenocarcinoma of 

endocervical type from a radical hysterectomy specimen. The endometrium in the uterus 

was benign. g, UCEC-like HPV positive adenocarcinoma of endocervical type from a 

radical hysterectomy specimen. The endometrium in the uterus was benign. All samples 

were stained with hematoxylin and eosin (20×).
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Extended Data Figure 2. Significantly mutated genes and the role of APOBEC in cervical cancer 
mutagenesis
a–f, High-confidence somatic mutations in significantly mutated genes (SMGs) among 192 

exome-sequenced samples in the Extended case set are shown. Domains are labeled in 

accordance with Gencode 19 corresponding to Ensembl 74. Mutations at canonical intronic 

splice acceptor (e-1 and e-2) are labeled based on proximity to the nearest coding exon. 

Panels display somatic mutations detected in novel cervical cancer SMGs, with HLA-B 
included for comparison with its family member HLA-A. Each axis is the protein-coding 
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portion of a gene and each highlighted section represents the UniProt functional domain. 

Vertical lines indicate the boundaries of multiple annotation sources within common domain 

annotations as outlined in Supplemental Table 5. Horizontal lines distinguish overlapping 

domains. Circles represent a single mutation and are colored based on mutation type. 

Mutations present in squamous cell carcinomas are outlined in black while those present in 

adenocarcinomas are outlined in pink. g, PIK3CA mutations and recurrence are shown in a 

stacked circle plot, as above. Additionally, lolliplot sticks are colored red if the mutation 

type coincides with patterns of APOBEC mutagenesis. h, The minimal estimated number of 

APOBEC-induced mutations (“APOBEC_MutLoad_MinEstimate” column in Supplemental 

Table 1) strongly correlates with total number of mutations in a sample, as well as with the 

number of single nucleotide variants (SNVs) in G:C pairs which are the exclusive substrate 

for mutagenesis by APOBEC cytidine deaminases. While correlation with mutagenesis in 

A:T base pairs, which cannot be mutated by APOBEC enzymes is statistically significant 

(two-tailed P=0.047), it is very weak. Pearson correlation and R2 were calculated for all 192 

exome-sequenced samples, including samples with zero values. Only samples with non-zero 

values of “APOBEC_MutLoad_MinEstimate” are presented.
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Extended Data Figure 3. Copy number alterations in cervical cancer
a, Log2-centered heatmap of somatic copy number alterations across 178 Core Set cervical 

tumors. The x-axis includes samples that have been ordered based on the cluster assignment. 

The y-axis is based on genomic position, from 1p to Xq. Features associated with copy 

number clusters are annotated with * or **. *: p<0.05; **: p<0.01. b, GISTIC2.0 

amplification and deletion plots within copy number clusters. Chromosomal locations for 

peaks of significantly recurrent focal amplifications (red, right side) and deletions (blue, left 

side) are plotted by −LOG10 q-value for the CN High (top) and CN Low (bottom) copy 
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number clusters. Peaks are annotated with cytoband and candidate driver genes. The total 

number of genes in the peak region is indicated in parenthesis. Peaks with more than 30 

genes in the peak region are excluded. Any genes annotated have a significant positive 

correlation with mRNA expressions. c, Chromosomal locations for peaks of significantly 

recurrent focal amplifications (red, right side) and deletions (blue, left side) are plotted by 

−LOG10 q-value for all Core Set samples. Peaks are annotated with cytoband and candidate 

driver genes. The total number of genes in the peak region is indicated in parentheses. Peaks 

consisting of more than 30 genes in the peak region are excluded. Annotated genes have a 

significant positive correlation with mRNA expression. d, Cytolytic activity (CYT) 

associations with PDL-1/2 amplification. Each bar represents a single tumor and the height 

of that bar represents the z-score of that tumor’s CYT compared with the rest of the cohort. 

Bars are colored according to their PD-L1/2 amplification status and sorted from high z-

scores to lowest.
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Extended Data Figure 4. Gene expression patterns and fusion genes found in cervical cancer
a, Hierarchical clustering (uncentered correlation with centroid linkage as the clustering 

method) was performed on 4,039 expressed and highly variable genes across 178 cervical, 

170 endometrial, and 279 head and neck cancer samples. Normalized gene-level RSEM 

values were median-centered prior to clustering and relative increased expression values are 

indicated by red color while relative decreased expression values are indicated by blue color. 

Cervical, endometrial, and head and neck cancer samples are indicated by different colors as 

noted in the figure at the bottom of the heatmap. Also included are indications of HPV 
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status, histology of cervical and endometrial cancers, and tissue site for head and neck 

cancer samples. Select genes are noted to the right of their locations on the heatmap. b, 

Boxplots of the three differentially expressed SMGs and top six significantly differentially 

expressed non-SMGs across the iCluster groups using Kruskal Wallis test. All genes are 

significantly different across the Keratin-low and Keratin-high clusters. Significant p-values 

across Keratin-low and Keratin-high clusters are presented. c, A schematic of BCAR4 
tandem duplication in one case (C5-A3HF), detected by analysis of somatic copy number 

(top) and structural variation (middle). Split reads and genomic breakpoints indicating the 

tandem duplication are shown. At the RNA level (bottom) the last exon of BCAR4 forms a 

fusion gene with the first exon of ZC3H7A (red bars indicate location of mRNA 

breakpoints; NR_024049 shown as BCAR4 representative transcript). d, Schematic of 

recurrent fusions (CPSF6-C9orf3, ARL8B-ITPR1, and MYH9-TXN2) or fusions with 

known occurrences in other cancer types (FGFR3-TACC3), detected by at least two RNA-

seq fusion callers in 178 samples. Red bars indicate the mRNA breakpoints.

Page 22

Nature. Author manuscript; available in PMC 2017 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Figure 5. Unsupervised clusters of DNA methylation data
a, Heatmap showing beta values of 178 Core Set samples ordered by CIMP clusters. 

Samples are presented in columns and the CpG island promoter CpG loci are presented in 

rows. An annotation panel on the right of the heatmap indicates CpG loci that are 

differentially methylated within a particular feature (see Supplemental Table 13). All 

features (marked with *) are statistically significantly associated with DNA methylation 

clusters (Fisher’s Exact test p-value <0.01) except APOBEC mutagenesis level, UCEC-like 
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status, and HPV integration status. b, Box plots of the EMT mRNA score and tumor purity 

by CIMP clusters. Student’s t-test p-value <0.01 (**) and <0.05 (*) are reported.

Extended Data Figure 6. miRNA clusters and miR-gene/protein anti-correlations in cervical 
cancer
a, Unsupervised clustering for miR profiles across 178 Core Set tumor samples. Top to 

bottom: a normalized abundance heatmap for the fifty 5p or 3p strands that were highly 

ranked as differentially abundant by a SAMseq multiclass analysis, silhouette width profile 

calculated from the consensus membership matrix, a heatmap of tumor sample purity, 

covariates with association p-values, and a summary table of the number of samples in each 

cluster. The scale bar shows row-scaled log10(RPM+1) normalized abundances. b, 

Subnetworks of potential targeting relationships for a subset of miRs, as significance-

thresholded (FDR<0.05) miR-mRNA and miR-RPPA anti-correlations that are supported by 

functional validation publications. For genes (nodes), color distinguishes those that are only 

present in mRNA data (grey) from those that are present in both mRNA and RPPA data 

(green). Edges represent anti-correlations, and color distinguishes anti-correlations between 

a miR and mRNA (purple) and a miR and an unphosphorylated protein (green). In the n=178 
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Core Set cohort, no correlations satisfying FDR<0.05 were reported between a miR and a 

phosphorylated protein.

Extended Data Figure 7. EMT-associated miRs and their relationship to miR clusters and 
TGFβR2 somatic alterations
a, Normalized miR-200a-3p abundance (RPM) across RPPA clusters for all 112 (top) and 92 

squamous (bottom) samples of the Core Set for which RPPA data is available. P-values 

presented are from two-sided Kolmogorov-Smirnov tests for RPPA-based EMT cluster vs 

non-EMT cluster samples. For n=112 samples, median miR-200a-3p RPM=296.4 within the 

EMT cluster (n=29) and 410.0 (n=83) in non-EMT cluster samples. For squamous samples, 

median miR-200a-3p RPM=296.4 (n=29) within the EMT cluster and 393.4 (n=63) in non-

EMT cluster samples. EK-A2R7, which is in the Hormone RPPA cluster, has an RPM value 

of 4267 and is not shown. Results are not presented for adenocarcinoma samples separately 

due to limiting sample numbers (n=18 from the Core Set with RPPA data available). b, 

Negative and positive Spearman correlation coefficients (FDR<0.05) between EMT mRNA 

score and normalized abundance (RPM) for miRNA mature strands (n=178). miRNAs that 

have been reported as associated with EMT (see Methods) are highlighted by purple bars. c, 

Normalized abundance heatmap of miRs most strongly negatively and positively correlated 

with EMT mRNA scores, with samples grouped by miRNA cluster and sorted by EMT score 
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within each cluster. Somatic mutations (MUT) and deletions (HOMDEL) are shown for 

TGFBR2, CREBBP, EP300, and SMAD4. Methylation and concomitant downregulated 

expression alterations (ALT) as defined in Methods for miR-200a/b are also shown. miRs in 

blue text represent those highlighted by purple bars in b. d–e, Same as b-c, but for the n=144 

squamous tumor samples.

Extended Data Figure 8. Distinguishing features of cervical cancer integrated molecular 
subtypes
a, Integrative clustering of 178 cervical cancer Core Set cases using mRNA, methylation, 

miRNA, and copy number data identified three iClusters: (i) Keratin-low, (ii) Keratin-high, 

and (iii) Adenocarcinoma-rich (Adenocarcinoma; top feature bar). Relative frequencies of 

various cervical cancer classifications defined by histology, HPV clade, copy number 

variation (CNV), methylation, miRNA, and RPPA are plotted. The color key for each feature 

is presented at the bottom. For each category, the statistically significantly enriched features 

in each iCluster (chi-squared test; p<0.05) are highlighted with asterisks and a listing of the 

name of the enriched feature. The width of each plot is scaled according to the number of 

samples within each cluster. b, The frequencies of somatic alterations and additional novel 

Page 26

Nature. Author manuscript; available in PMC 2017 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



features that distinguish the iClusters, specifically those that do not occur in all three 

iClusters, are plotted. The “Somatic Mutations” panel shows the presence/absence of 

mutations for 7 of the identified significantly mutated genes. The “Copy Number 

Alterations” panel shows select copy number alterations (high level amplifications and focal 

deletions) that are differentially present across the iClusters. The “Additional Features” 

panel highlights miscellaneous features that also distinguish the iClusters, including the 

presence of miR-200a/b alterations, UCEC-like cases, and BCAR4 fusion events. The color 

key for each feature is present to the right of the plots.
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Extended Data Figure 9. miR-200a/b associations with EMT-regulating genes and somatic 
alterations within RTK, PI3K, MAPK, and TGFβR2 pathways in cervical cancer
a, Expression levels for miR-200a and miR-200b compared to DNA methylation level at 

their promoter. Samples were called altered if the miRs were concurrently hypermethylated 

(β > 0.3) and downregulated (red cases). b, mRNA expression levels for ZEB2, a target of 

both miR-200a and miR-200b, in subsets of miR-200a/b altered samples. ZEB2 is 

upregulated in cases with concurrent hypermethylation and downregulation of the miRs. c, 

mRNA expression levels of both ZEB1 and ZEB2 in miR-200a/b hypermethylated/
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downregulated (Altered) and all other (WT) samples. d, Correlations of miR-200a and 

miR-200b expression with multiple genes involved in EMT signaling across squamous cell 

carcinomas and adenocarcinomas. e, Extent of genetic alterations and miR downregulation 

in the RTK, PI3K, MAPK, and TGFβ pathways across all cervical tumors.

Extended Data Figure 10. Pathway biomarkers differentiating squamous cell carcinomas and 
adenocarcinomas
a, Cytoscape display of the largest interconnected regulatory network of PARADIGM 

pathway features differentially activated between squamous cell carcinomas and 
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adenocarcinomas connected through hubs with ≥ 10 downstream targets. Hubs with ≥ 10 

downstream targets are labeled. Genes showing mRNA-miRNA expression anti-correlation 

with strong evidence support are highlighted with thicker black outline and labeled. Top 

differentially expressed genes relating to immune function are also labeled. Node size is 

proportional to significance of differential activation. b, Zoom-in display of the p63 sub-

network neighborhood. First neighbors (upstream or downstream) of four p63 complexes 

(bold text) are displayed in this view.
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Extended Data Figure 11. HPV integration and molecular characteristics in cervical cancer
a, E6 unspliced/spliced ratio for HPV16 and HPV18 intragenic, enhancer, and intergenic 

sites. HPV16: median=0.44 (n=102), HPV18: median=0.93 (n=40). The p-value is from a 

two-sided Kolmogorov-Smirnov test. b, Distribution of RNAseq-based EMT score for HPV-

negative (HPV-) and HPV-positive (HPV+) samples (n=178). c, Distributions of SCNA and 

mRNA abundance ranks (left panel) and distribution functions for SCNA and mRNA 

abundance ranks with 100 random expectation samples close to the diagonals (grey) (right 

panel) for genomic loci integrated with HPV16. d, Distributions described in c for genomic 

loci integrated with HPV18. BH-corrected p-values for the SCNA and mRNA abundance 

ranks (median p-values) are reported.
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Figure 1. Somatic alterations in cervical cancer and associations with molecular platform 
features
CESC samples are ordered by histology and mutation rate (top panel), clinical and 

molecular platform features (second panel), significantly mutated genes (SMGs; third 

panel), and select somatic copy number alterations (SCNAs; fourth panel) are presented. 

SMGs are ordered by the overall mutation frequency and color-coded by mutation type. 

Novel SMGs identified in squamous cell carcinomas are labeled in turquoise text. The 

number of APOBEC signature mutations (red) and other mutations (blue) present in every 

SMG is plotted to the right of the SMG panel and the number of gene level SCNAs across 

all genes is plotted as gain (red) and loss (blue) to the right of the SCNA panel.
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Figure 2. Multiplatform integrative clustering of cervical cancers
Integrative clustering of 178 Core Set cervical cancer cases using mRNA, methylation, 

miRNA, and copy number (CNV) data identifies two squamous carcinoma-enriched groups 

(Keratin-low and Keratin-high) and one adenocarcinoma-enriched group as shown in the 

feature bars. Features presented include histology, HPV clade, HPV integration status, 

UCEC-like status, APOBEC mutagenesis level, mRNA EMT score, tumor purity, and three 

SMGs that are significantly associated across the three iClusters (ERBB2 is presented for 

comparison purposes with its family member ERBB3). The cluster of cluster panel displays 

subtypes defined independently by mRNA, miRNA, methylation, reverse phase protein array 

(RPPA), CNV, and PARADIGM data. Black indicates that the sample is not represented in 

the cluster, red indicates that the sample is represented in the cluster, and gray represents 

data not available. The bottom heatmap panel shows select mRNAs, miRNAs, proteins, and 

CNVs that are either significantly associated with iCluster groups or identified as markers in 

other analyses. The heatmap color scale bar represents the scale for the features presented in 

the heatmap panel with a breakpoint of zero represented by white. APOBEC Mut., 

APOBEC Mutagenesis; inter., intermediate.
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Figure 3. Proteomic landscape of cervical cancer
a, Clustered heatmap of samples (columns) and 192 antibodies (rows) for 155 samples (112 

overlap with the Core Set of 178; see Extended Data Fig. 1a). Clusters presented from left to 

right include Hormone (dark blue), EMT (red), and PI3K/AKT (green). A subset of proteins 

differentially expressed between the clusters is highlighted. Clinical and molecular feature 

tracks are shown for those features which were significantly associated with RPPA clusters 

(p<0.05). Correlation between RPPA clusters and other categorical variables were detected 

by Chi-Squared test, while correlations with continuous variables were examined using the 

non-parametric Kruskal-Wallis test. In the heatmap blue color represents downregulated 

expression, red represents upregulated expression, and white represents no change in 

expression. NA represents data not available. b, Five-year Kaplan-Meier survival curves and 

log-rank test’s p-value comparing overall survival (OS) across all RPPA clusters using 115 

Silhouette Width Core samples (Silhouette Core; see Supplemental Information S8). c, EMT 

mRNA score levels were calculated for all samples and compared across RPPA clusters. A 

significant p-value is presented for a one-way ANOVA analysis. d, Pathway scores for EMT, 

hormone receptor, and PI3K/AKT signaling pathways are presented for all RPPA clusters 
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(x-axis), with significant pathway score differences between the clusters measured by 

Kruskal Wallis test.
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Figure 4. Mutual exclusivity of somatic alterations within the PI3K/MAPK and TGFβR2 
pathways
a, Multiple alterations affect receptor tyrosine kinase (RTK), AKT, and MAPK signaling in 

both squamous cell and adenocarcinoma cases. A schematic diagram of the pathways is 

shown for altered genes along with percentage of alteration in squamous cell and 

adenocarcinoma cases. Significant (p<0.05) Student’s t-test p-values for alteration frequency 

differences between squamous cell and adenocarcinomas are listed at the gene level, with 

genes marked with an asterisk (*). b, Distinct types of alterations (amplification, deletion, 

missense mutation, and truncating mutation) affect genes (rows) in these pathways in each 

sample (columns). c, TGFβ signaling is frequently altered in cervical tumors. Alterations in 

this pathway are divided between those likely impinging on TGFβ tumor suppressive 

functions and those affecting the TGFβ-driven EMT program. Legend also corresponds to 

layout in panel a. d, Samples with alterations targeting TGFβ tumor suppressive functions 

do not show significantly different EMT scores compared with all other samples (n.s = not 

significant); however, samples with low expression/high methylation of miR-200a/b have 

significantly higher EMT scores than all other samples. miR-down: met double-threshold of 

methylated and downregulated as described in Methods.
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Figure 5. HPV integration and differential pathway activation between HPV subtypes
a, Cytoscape display of the largest interconnected regulatory network of PARADIGM 

integrated pathway level (IPL) features showing differential inferred activation between 

HPV A9 and A7 squamous carcinomas (n= 101 and n=35, respectively). Node color and 

intensity reflect the level of differential activation. Node size represents level of significance. 

Regulatory nodes with at least 5 downstream targets are highlighted in bold text. SFN is 

within a subnetwork identified by Functional Epigenetic Module (FEM) analysis 

(Supplemental Information S13) as disrupted between HPV A9 and A7 squamous cell 

carcinomas, and is highlighted using a bold black outline. b, Circos plot showing frequency 

(0–100%) of gains and losses for regions of each chromosome (outer circle). Lines within 

inner circle indicate integration breakpoints from the HPV genome to the human genome as 

defined in Methods, Supplemental Information S2, and Supplemental Table 3. Lines are 

color coded by HPV clade.
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