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Abstract
Atherosclerosis is among the leading causes of death and disability. Combining information

from multi-modal vascular images is an effective and efficient way to diagnose and monitor

atherosclerosis, in which image registration is a key technique. In this paper a feature-

based registration algorithm, Two-step Auto-labeling Conditional Iterative Closed Points

(TACICP) algorithm, is proposed to align three-dimensional carotid image datasets from

ultrasound (US) and magnetic resonance (MR). Based on 2D segmented contours, a

coarse-to-fine strategy is employed with two steps: rigid initialization step and non-rigid

refinement step. Conditional Iterative Closest Points (CICP) algorithm is given in rigid initiali-

zation step to obtain the robust rigid transformation and label configurations. Then the labels

and CICP algorithm with non-rigid thin-plate-spline (TPS) transformation model is intro-

duced to solve non-rigid carotid deformation between different body positions. The results

demonstrate that proposed TACICP algorithm has achieved an average registration error of

less than 0.2mm with no failure case, which is superior to the state-of-the-art feature-based

methods.

Introduction
Atherosclerotic plaque is prevalent in carotid bifurcation, which is one of the major causes of
ischemic stroke [1]. Several non-invasive medical imaging modalities are potential to evaluate
the vulnerability of carotid plaque by its morphology and composition [2]. Ultrasound (US)
provides a low-cost and real-time method for plaque imaging [3], while magnetic resonance
(MR) imaging provides more comprehensive plaque characterization [4] compared with US. It
is beneficial to validate US findings with MR to improve the efficiency of vulnerable plaque
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diagnosis and optimize the turning point of clinical procedure [5]. Thus, it is critical to perform
image registration [6] aligning multi-modal image sets from the same patient during image
analysis.

Due to huge modality variance and very few accurate anatomical landmarks in carotid
artery images [7], multi-modal carotid image registration between MR and US is a challenging
task. Several algorithms have been proposed, which can be divided into three categories: fea-
ture-based methods [8], intensity-based methods [9][10], and hybrid model methods [11]. Fea-
ture-based methods first extract landmarks such as vessel centerlines or lumen surfaces from
both images. Transformation models among corresponding landmarks are then estimated
using point set registration algorithms such as iterative closest points (ICP) [12]. Chui et al. [8]
developed a feature-based 3D rigid registration method using ICP algorithm. Optimized rota-
tion matrix was calculated for 3D surfaces after manual lumen contour segmentation and
carotid bifurcation alignment for MR and US images. Their methods achieved an average error
of less than 1mm among three patients. Intensity-based methods, on the other hand, match
the image intensity directly using metrics like mutual information(MI) [9][13][10] without
extracting features. Furthermore, hybrid model methods combine both methods to achieve bet-
ter registration results. Carvalho et al. [11] introduced a hybrid model into the multi-modal
carotid image registration. They combined feature-based and intensity-based algorithms into a
cost function, and obtained an average Dice similarity coefficient (DSC) of 0.69 ± 0.08 and
mean surface distance (MSD) of 0.87 ± 0.25mm in test set.

Compared with other algorithms, feature-based methods are fast to compute and have a
bigger capture range than intensity-based methods [14]. They can serve as independent regis-
tration algorithms [8], or good initialization for intensity-based methods to avoid local mini-
mum (landmark matching in [10] and rigid centerline registration in [11]). Moreover, feature-
based registration can also form a penalty term in hybrid model methods [11] to constrain the
transformation.

Although a variety of feature-based algorithms existed, they all have some limitations: (1)
None of current feature-based algorithms for multi-modal carotid image registration employ
non-rigid models, which are necessary because of twisting and bending transformation caused
by different patient positions during US and MR scan [10]. (2) The best average registration
error is 0.55 ± 0.29mm with manual adjustment in [8], which is relative large compared to the
vessel wall thickness. Such large error may deteriorates the component analysis after registra-
tion. (3) Manual alignment of bifurcation is required in [8]. It increases the burden of operators
and may introduce extra manual errors for registration.

In this paper, we propose a novel feature-based non-rigid algorithm for multi-modal carotid
image registration, Two-step Auto-labeling Conditional Iterative Closest Points (TACICP)
algorithm, which takes advantage of label information of the vessels. The label of each point
indicates the vessel it belongs to and is assigned automatically. A coarse-to-fine strategy is
applied for robustness and accuracy, including rigid initialization step and non-rigid refine-
ment step. Compared with other coarse-to-fine methods in non-rigid registration [15], differ-
ent calculated features from 2D contours are exploited in two steps for our method. In rigid
step, we present conditional iterative closest points (CICP) algorithm for robust initialization
and automatic labeling using centerlines. Then in non-rigid step, the CICP algorithm com-
bined with thin-plate-spline (TPS) model is employed for accurate non-rigid refinement with
interpolated surface features. Proposed TACICP algorithm is evaluated on our US-MR datasets
with three metrics, which reflect robustness, global and local accuracy of registration respec-
tively. Compared with state-of-the-art feature-based algorithms, the TACICP algorithm
achieves the best performance under all metrics, whose registration error is less than half of the
best results from other methods.

TACICP Algorithm for 3D Carotid Image Registration
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Our contributions are threefold: (1) We present a novel two-step non-rigid registration
algorithm between 3D US and MR carotid images, which outperforms the state-of-the-art fea-
ture-based methods on US-MR datasets. (2) In TACICP algorithm, we propose an automatic
labeling method for vessel categorization to achieve better point set matching accuracy. (3) We
design a novel strategy to exploit different models and different features for different steps,
which guarantees the robustness and accuracy of the algorithm.

Methods

Overview of registration framework
Shown in Fig 1, the TACICP algorithm consists of two steps: rigid initialization step and non-
rigid refinement step. Each step employs 2D segmented contours from cross-sectional slices as
input. An auto-labeling CICP algorithm is employed in rigid initialization step using calcu-
lated centerline from contours to obtain robust rigid transformation. Then labels and the
same 2D contours after rigid registration are fed into non-rigid step, and a TPS model with
surface features reconstructed from contours is optimized to solve the non-rigid deformation
caused by different body positions. Final transformation is applied on the images. Next two
subsections provide these two steps respectively. The last subsection describes the details of
segmentation.

Rigid initialization step
A feature-based registration algorithm is designed to calculate 3 translation parameters and 3
rotation parameters of rigid transformation as the initialization for non-rigid step. Centerlines
are used as registration feature because they contain less noise with average of contour points.
They are extracted using the geometrical centroid of 2D contours in each slice. Suppose the 2D
contours are made up of line segments between N vertices (xi, yi), i = 0, . . ., N − 1, and let (xN,
yN) = (x0, y0), the centroid (xc, yc) can be formulated as [16]:

xc ¼
PN�1

i¼0 ðxi þ xiþ1Þðxiyiþ1 � xiþ1yiÞ
3
PN�1

i¼0 ðxiyiþ1 � xiþ1yiÞ
ð1Þ

yc ¼
PN�1

i¼0 ðyi þ yiþ1Þðxiyiþ1 � xiþ1yiÞ
3
PN�1

i¼0 ðxiyiþ1 � xiþ1yiÞ
ð2Þ

The centroid sets are then interpolated with B-spline and sampled in the interval of 1mm.
ICP algorithm [12] is a classical and effective feature-based registration algorithm. When

applying ICP directly on centerline registration, the centerline of internal carotid artery (ICA)
and external carotid artery (ECA) may be incorrectly paired. To deal with such local minimum,
we introduce vessel category labels as new registration cues. With labels, we propose a new ver-
sion of ICP algorithm, named Conditional Iterative Closest Points (CICP).

Labels and Automatic labeling strategy. Each point p on the contours is labeled Lp by its
vessel category. Though the reviewers can label them during manual segmentation, sometimes
the contours of ECA and ICA in the same slice are difficult to distinguish, especially in US
images. To automatically obtain correct label configuration for 2D contours, we employ a label-
ing strategy for the special bifurcation structure of carotid vessel.

For unlabeled 2D contours, we set the labels of points to common carotid artery (CCA) in all
the slices that contain only one contour. For slices with two contours, the label orders are ambig-
uous: ECA-ICA or ICA-ECA. Notice that the structure of carotid bifurcation are asymmetrical,
the wrong configuration will lead to a larger registration error than correct configuration. Our
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algorithm fixes the labels in fixed images as ECA-ICA and assigns two possible configurations
(i.e. ECA-ICA and ICA-ECA) in moving images. The registration errors for both configurations
are calculated and the configuration with smaller registration error is automatically chosen as
the correct labels. Here we employ LMSDmetric as registration error, which will be introduced
latter (see Evaluation measures).

Conditional Iterative Closest Points (CICP). LetM ¼ fmigNm
i¼1 and F ¼ ff ig

Nf
i¼1 from

R
3 be two point sets for registration, denoted bymoving point set and fixed point set with total

point number Nm and Nf respectively. The goal of registration is to find the optimal transfor-
mation T aligning the moving point set to the fixed one. Original ICP algorithm consists of two
stages: match stage and transform stage. The match stage aims to find a subset

F0 ¼ ff 0igNm
i¼1 � F , where f 0i satisfies:

f 0i ¼ argminf j2F k f j �m0
i k2 ð3Þ

¼ argminf j2F dðf j;m0
iÞ i ¼ 1; 2; � � � ;Nm ð4Þ

where d(p1, p2) is the Euclidean distance between point p1 and p2 andm0
i is the moving points

after applying the estimated transformations in the previous stages. The transform stage is to

Fig 1. Overview of proposed TACICP algorithm for carotid image registration. The segmented 2D contours from images are the only inputs for our
algorithm. Centerline and surface features are generated automatically from contours for two steps. The final output of the registration is a transformation
composed by the rigid transformation Trigid from rigid initialization step and the thin-plate-spline transformation TTPS from non-rigid refinement step.

doi:10.1371/journal.pone.0148783.g001
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find an optimal transformation Topt in the model parameter space to minimize the total error:

Topt ¼ argmin
T2T

XNm

i¼1

k f 0i � Tðm0
iÞ k2 ð5Þ

where T is the parameter space for all possible transformation.
To apply the labels into the match stage, we introduce a symmetric conditional weight

matrixW = (wi, j)3 × 3, where wi, j is defined as the conditional distance weight between label i
and label j:

W ¼
w0 w1 w1

w1 w0 w2

w1 w2 w0

0
B@

1
CA ð6Þ

where w1, w2 � w0 > 0. By modifying the distance into conditional distance, Eq (3) changes to:

f 0i ¼ argmin
f j2F

dðf j;m0
ijLf j

; Lm0
i
Þ i ¼ 1; 2; � � � ;Nm ð7Þ

where d(p1, p2|L1, L2) = wL1, L2 d(p1, p2) is the conditional distance between point p1 with label
L1 and p2 with label L2. We simply set w0 to 1. Because the matches between ICA and ECA are
meaningless, the distance weight w2 is set to infinity. w1 is set to 1 due to the ambiguous catego-
rizing between CCA and other vessels near bifurcation. Such setting also guarantees the con-
vergence of CICP algorithm (See the Appendix for details).

Fig 2 shows an example of the difference between the match stage in ICP and the condi-
tional match stage in CICP. In fact, ICP is a special version of CICP where all the elements in
the weight matrixW are set to 1. After using labels in the match stage, the information of vessel
categories is added into match stage to promote vessel matching. So the mismatching between
vessel categories can be prevented. It is noteworthy that CICP is different from weighted ICP
[17]. In CICP algorithm the weights are applied on the match stage, while in weighted ICP
algorithms the weights are applied on the transform stage. CICP is also different from three
independent regular ICP even when w1 is set to infinity, because in the transform stage the
optimal transformation is computed by considering all the matching pairs with different labels.
The independence is only in the match stage, which relies on their labels.

Non-rigid refinement step
Only rigid model is not enough for multi-modal carotid image registration, since the neck of
the patient is in different state of bending and twisting during MR and US imaging. Based on
rigid initialization step, a non-rigid transformation is optimized to obtain high registration
accuracy. Surfaces interpolated by 3D B-spline from 2D contours are used as features instead
of centerline due to more local information in surfaces.

In non-rigid model, registration accuracy is highly dependent on the point set matching,
because the model is more flexible than rigid model. To better handle the mismatching between
ECA and ICA especially near bifurcation, we employ the same CICP algorithm with the correct
label configuration from the first step.

A widely-used model, 3D thin-plate-spline (TPS) model [13], is employed as the non-rigid
model in CICP algorithm. It fits a mapping function f(mi) between moving point set {mi} and
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Fig 2. Example of (a) match stage and (b) conditional match stage with the same point set pair at the same position. The same color indicates the
same category of points. The solid line represents the fixed point set, and the dash line represents the moving point set. The arrows are partial matching
between two point sets.

doi:10.1371/journal.pone.0148783.g002
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corresponding fixed subset ff 0ig by minimizing the energy function below:

ETPSðf Þ ¼
XNm

i¼1

k f 0i � f ðmiÞ k22

þl
Z Z Z

@2f
@x2

� �2

þ @2f
@y2

� �2

þ @2f
@z2

� �2
(

þ2
@2f
@x@y

� �2

þ @2f
@x@z

� �2

þ @2f
@y@z

� �2
" #)

dxdydz

ð8Þ

where λ� 0 is a regularization constant. Suppose each point p is represented in homogeneous
coordinates, i.e. p = [1, px, py, pz]

T, the mapping function is as follows:

f ðmiÞ ¼ D �mi þP � �ðmiÞ ð9Þ
whereD is a 4 × 4 matrix for the affine transformation, and P is a 4 × Nm warping coefficient
matrix for non-rigid deformation. The υ(mi) is an Nm × 1 vector for each pointmi, where each
element υj(mi) = kmi−mjk2. The TPS model has a closed-form solution, which can be solved
efficiently. Please refer to [18] for more details.

Feature segmentation
For 3D US, we manually drew lumen contours for each slice due to severe boundary missing
and weak image contrast. For 3DMR, a semi-automatic algorithm for carotid lumen segmenta-
tion using 2D C-V model [19] was implemented. We chose the parameters of C-V model as
follows: λ1 = λ2 = 1, μ = ν = 0, h = � = 1, Δt = 0.1. Three user-defined lumen contours of CCA,
ICA and ECA in distal slices were initialized and optimized with C-V model, and lumen con-
tours were obtained sequentially from distal slices to bifurcation. We manually adjusted the
contours where the algorithm failed. Because we separately segmented each vessel, the vessel
category information of the contours was naturally included in the segmentation without extra
operation.

Experiments
In this section, we tested the proposed approach on our US-MR datasets with different mea-
sures (see Evaluation measures). We first compared our methods with state-of-the-arts. Then
we verified several important settings of our TACICP algorithm. Finally the effect of parame-
ters and segmentation noise were investigated. In all the experiments except Section, w1 was set
to 1.

Data acquisition
Because there is no public dataset, we collected our own US-MR datasets for evaluation. Three-
dimensional US images and 3D multi-contrast MR images were acquired from 6 healthy vol-
unteers without carotid plaque and 5 patients with carotid plaques consecutively. All the sub-
jects were older than 58 years old. Six of them are male.

All the subjects received US scans for bilateral carotid arteries except 2 patients with one-
side carotid arteries. Data were acquired perpendicularly to carotid arteries centered at bifurca-
tion using a Philips iU22 US system (Philips Medical Systems, Bothell, WA, USA) with a
VL13-5 linear array transducer, which has a center frequency of 7.5MHz. The linear transducer
is driven by a motor to rotate with a virtual tilting axis at a certain point above the face of
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transducer. Volumetric data was acquired and reconstructed to slices in Cartesian coordinates
with an approximate voxel size of 0.2 × 0.1 × 0.2mm3. The final 3D volume in DICOM format
is composed of 256 2D images with the distance of 0.1mm.

Two black-blood imaging sequences including Motion-sensitized driven Equilibrium pre-
pared Rapid Gradient Echo (MERGE) [20] and Simultaneous Noncontrast Angiography and
intraPlaque hemorrhage (SNAP) [21] were used to obtain 3D multi-contrast MR carotid
images on a Philips Achieva 3.0T TXMR system (Philips, Best, the Netherlands). Coronal
images with a round 0.4mm slice thickness were acquired with an in-plane resolution of
0.35 × 0.35mm2 for MERGE images and with an in-plane resolution of 0.39 × 0.39mm2 for
SNAP images.

All the experiments were performed on 2 dataset pairs: US-MERGE with 20 image sets, and
US-SNAP with 18 image sets (two SNAP images of one healthy volunteer were discarded due
to poor image quality). Examples for US and MR images were displayed in Fig 3. For point set
registration, about 3500 points for surface feature and 350 points for centerline feature were
used in each image.

Evaluation measures
Manual lumen segmentations and their labels were implemented as ground truth. Two-dimen-
sional lumen contours with labels for each slice were segmented by two experienced reviewers,
where each modality was operated by one separate reviewer. These contours were recon-
structed into 3D surfaces with interpolation [22] for evaluation.

The main measure for registration is based on a modified version of mean surface distance
(MSD), which is a 3D-based metric calculated between the fixed surface and the transformed
moving surface. The original MSD [11] uses the mean distances between the closest corre-
sponding point pairs from two surfaces. In carotid application the matching point pairs
ECA-ICA are meaningless, so we restrict the corresponding point pairs by using the labels as in
the registration algorithm. We call the new metric Labeled Mean Surface Distance (LMSD):

LMSD ¼ 1

n

Xn

i¼1

min
q2Sf ðLpi Þ

k pi � q k2 ð10Þ

where pi is a point on the registered moving surface, q is a point on the subset of fixed lumen
surface Sf(Lpi

) with all the points allowed to match the label of pi, and n is the total number of

Fig 3. Example slices near the carotid bifurcation from a healthy volunteer for MERGE (left), SNAP (middle), and US (right) images.

doi:10.1371/journal.pone.0148783.g003
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points on the moving surface. Because the label of the vessels near bifurcation may be uncer-
tain, CCA-ICA and CCA-ECA pairs are allowed for evaluation. LMSD is also employed in
automatic labeling strategy as a measure of label configurations.

The LMSD can only reflect the global accuracy for registration. To evaluate the local accu-
racy, we also define labeled maximum surface distance (LMAXD) as the maximum distance
among all the closest corresponding point pairs:

LMAXD ¼ max
i¼1;���;n

min
q2Sf ðLpi Þ

k pi � q k2 ð11Þ

The LMSD or LMAXD alone is obscure to assess the registration robustness in application.
To evaluate the success rate of registration algorithm for the whole dataset, we introduce a new
dataset-based measure named Registration Success Rate (RSR) w.r.t a certain success discrimi-
nation threshold, which is defined by the ratio of cases with LMSD more than the threshold
(unit: mm) in the dataset:

RSRx ¼
nLMSD<x

n
ð12Þ

We use a threshold of 1.5mm as suggested in [7] for evaluation.
In the experiments, we applied significance tests on LMSD and LMAXD between paired

data. When both of the data pass the Kolmogorov-Smirnov normality test, paired t-test
(p< 0.05) is chosen. Otherwise, non-parametric Kruskal-Wallis test (p< 0.05) is used.

Comparison with other feature-based algorithms
Several state-of-the-art feature-based registration methods for multi-modal carotid images
were implemented to compare with our TACICP algorithm, including surface-based rigid ICP
algorithm (S-ICP) [8], rigid Gaussian mixture models based point set registration with center-
lines (C-GMM) [23], and thin-plate-spline robust point matching methods (TPS-RPM) [24]
with centerlines (C-RPM) or surfaces (S-RPM). The latter two methods were used in [11] as a
feature-based part of hybrid model method.

To make a fair comparison, same centerlines or surfaces were used as inputs in all compared
methods. We set the regularization parameter λ = 1 as in [11]. And as in [11], the TPS-RPM
methods used rigid C-GMM algorithms for initialization.

Average LMSD, LMAXD and RSR1.5 were evaluated for different algorithms. Significance
test (p< 0.05) was performed between the average LMSD and LMAXD of TACICP and that of
the other algorithms. The average registration time of all the algorithms was also counted in
the same environment with the same dataset.

Automatic labeling
To verify the effectiveness of automatic labeling strategy, we evaluated LMSD after rigid CICP
for both candidate label configurations on US-MERGE and US-SNAP datasets. To compare
fairly, the reference labels for calculating LMSD were the same with the labels in registration
for each configuration. Significance test (p< 0.05) was performed between two configurations.

CICP algorithm in two steps
We studied the importance of labels in CICP algorithm by comparing CICP with ICP algo-
rithm in two step separately. Average LMSD and LMAXD were calculated on US-MERGE
and US-SNAP datasets for two algorithms in the rigid and non-rigid steps. Significance test
(p< 0.05) was performed between CICP and ICP algorithms. RSR1.5 was also calculated to
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evaluate the overall performance on the datasets. Both the CICP and ICP algorithm in non-
rigid step used the same initialization by rigid CICP algorithm for a fair comparison.

Two-step framework
To demonstrate the necessarity of both rigid and non-rigid registration steps, we compared the
two-step CICP algorithms with single-step versions, i.e. only rigid initialization step or only
non-rigid refinement step. For single-step CICP algorithm, we used correct configuration of
labels for registration. Average LMSD, LMAXD and RSR1.5 were calculated and significance
test (p< 0.05) was performed between the average LMSD and LMAXD of two-step CICP and
that of single-step versions.

Effect of conditional distance weights
In TACICP algorithm, the conditional distance weight on the misalignment between
CCA-ICA pair or CCA-ECA pair (i.e. w1) is the only parameter. Different values were tested
from 1.0 to 5.0 with an interval of 0.5. Infinite weight was also involved for comparison. In
practical, w1 was set to 10000 to represent the infinite weight.

Effect of segmentation errors
The accuracy of feature-based registration algorithm relies on the accuracy of manual segmen-
tations. Independent Gaussian noise with zero mean were added to x and y coordinate in each
2D contour to investigate the dependency on segmentation error of contours. We tested differ-
ent amplitude (standard deviation) of Gaussian noise, from 0.2 to 2.0 mm with a step of
0.2mm. For each standard deviation, we repeatedly added perturbation on the original con-
tours and ran TACICP algorithm 3 times. The average increment of LMSD after perturbation,
notated ΔLMSD, was calculated on both datasets.

Registration errors of different positions
We compared the distribution of registration errors on different positions between our algo-
rithm and single step CICP. Average LMSD was calculated for each slice and aligned by the rel-
ative distance from the MR bifurcation slices (the closest slice to vessel bifurcation). We chosen
the distance interval as [-10mm, 8mm] due to the image size of US.

Implementation details
We developed an in-house registration software Medical Image Registration, Visualization and
Analysis Platform (MIRVAP) for registration with the ICP and TACICP. The MIRVAP soft-
ware was developed in Python based on VTK [25] and ITK [26].

Open source software GMMREG [23] was used to implement the state-of-the-art feature-
based methods GMM and TPS-RPM. Interfaces between the softwares were also handled by
the MIRVAP.

Results
All the experiments were performed in the MIRVAP. They were run on 64-bit Windows 8 OS
with an Intel i7-4700HQ CPU and 8 GB of RAM.

TACICP Algorithm for 3D Carotid Image Registration
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Comparison with other feature-based algorithms
Fig 4 showed the results for comparison with the state-of-the-art feature-based algorithms.
From Fig 4, our TACICP algorithm significantly outperformed all the other algorithms on
both dataset evaluated by LMSD and LMAXD, which produced an average LMSD of
0.18 ± 0.03mm (US-MERGE) or 0.19 ± 0.03mm (US-SNAP) and an average LMAX of 1.22mm
(US-MERGE) or 1.28mm (US-SNAP). It reached 100% RSR with level of 1.5mm on both data-
sets. And the computation time for proposed algorithm (within 2 minutes) was shorter than
S-RPM using the same surface feature and same TPS model (see Table 1). Though rigid meth-
ods and C-RPM were faster, their registration performance was much poorer.

Fig 5 showed the contours of both MRI and US simultaneously. All the non-rigid algorithms
achieved better results than rigid methods except C-RPM algorithm, which failed to align the
contours with only centerline input. This is because with only centerline features, C-RPM
encountered over-fitting for registration in the neighborhood of centerlines due to the flexibil-
ity and locality of TPS model. Among all the results, the contours of MR and US matched the
best after registration using our TACICP algorithm.

Automatic labeling
Fig 6 showed the LMSD for each configuration. The correct configuration represents the one
consistent with ground truth labels from reviewers, and the reverted configuration represents
the one oppose to ground truth. LMSD of reverted configuration after rigid registration was

Fig 4. Comparison of different feature-based algorithms using average LMSD (a) and LMAXD (b) on US-MERGE and US-SNAP datasets. An asterisk
indicates statistically significant (p < 0.05) reduction in average LMSD or LMAXD as to TACICP algorithm.

doi:10.1371/journal.pone.0148783.g004

Table 1. RSR1.5 and computation time with the same configuration for different feature-based algorithms on US-MERGE and US-SNAP datasets.

Metric Dataset TACICP S-ICP C-GMM S-RPM C-RPM

RSR1.5/% US-MERGE 100.0 80.0 100.0 100.0 80.0

US-SNAP 100.0 88.9 100.0 100.0 83.3

Time/s US-MERGE 107.94 0.23 1.58 2436.24 20.89

US-SNAP 113.51 0.20 0.93 2919.81 15.55

doi:10.1371/journal.pone.0148783.t001
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Fig 5. Lumen contours of CCA (orange), ICA (green) and ECA (red) in single MR (MERGE) slice with ICA and ECA (a) or CCA (b) using different
feature-based algorithms. The solid lines represent the MR contours, and the dash lines represent the transformed US contours drew on the same slice.

doi:10.1371/journal.pone.0148783.g005

Fig 6. Comparison of correct label configuration (dark) and reverted configuration (light) with average LMSD on US-MERGE and US-SNAP
datasets. An asterisk indicates statistically significant (p < 0.05) increment in average LMSD from correct configuration to reverted one.

doi:10.1371/journal.pone.0148783.g006
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significantly larger than that of correct configuration. Moreover, the minimum difference of
LMSD between correct configuration and reverted configuration among all cases is 0.14mm in
US-MERGE dataset and 0.21mm in US-SNAP dataset. This implied that by LMSD the correct
configuration can be easily distinguished from the wrong one.

CICP algorithm in two steps
Fig 7 showed the experiment results for both rigid and non-rigid registration steps. In rigid
CICP, average LMSD was reduced from 1.41mm to 0.82mm and from 1.26mm to 0.74mm
for the US-MERGE and US-SNAP datasets respectively with statistically significant differ-
ence compared with ICP algorithm. And RSR at 1.5mm level was increased to 100% on both
datasets(see Table 2), shown the robustness of CICP algorithm in rigid initialization step.
The LMAXD showed the consistent improvement. For non-rigid step, labels significantly
increased the accuracy of CICP algorithm, which was reflected clearly in LMAXD with reduc-
tion of more than 0.5mm in average with smaller variance. With to LMSD, the reduction
was relatively small but significant due to improvement on each image pair in registration
accuracy.

Two-step framework
Fig 8 showed the registration results with different step combinations on LMSD and LMAXD.
With the same contour information, non-rigid model reached superior accuracy compared
with rigid model, whose LMSD was reduced by approximate 75%. Though LMSD of two-step

Fig 7. Comparison of ICP (dark) and CICP (light) in two steps with (a) average LMSD and (b) LMAXD on US-MERGE and US-SNAP datasets. An
asterisk in (a) and (b) indicates statistically significant (p < 0.05) reduction in average LMSD or LMAXD from ICP to CICP.

doi:10.1371/journal.pone.0148783.g007

Table 2. RSR1.5 of ICP and CICP algorithms in two steps on US-MERGE and US-SNAP datasets.

Metric Dataset Rigid Step Non-rigid Step

ICP CICP ICP CICP

RSR1.5/% US-MERGE 65.0 100.0 100.0 100.0

US-SNAP 66.7 100.0 100.0 100.0

doi:10.1371/journal.pone.0148783.t002
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CICP algorithm was only slightly better than single-step non-rigid CICP algorithm, LMAXD
was significantly reduced by more than one half in Fig 8(b). And LMAXD of single-step non-
rigid method was even larger than rigid CICP algorithm.

A representative result of two steps was shown in Fig 9 with checkerboard views. US patches
and MR patches appeared alternately in the checkerboards. The MR carotid lumen boundary
and the US boundary matched better using two-step CICP algorithm indicated with arrows.

Fig 8. Comparison of CICP with different steps using (a) average LMSD and (b) LMAXD on US-MERGE and US-SNAP datasets. An asterisk in (a) and
(b) indicates statistically significant (p < 0.05) reduction in average LMSD or LMAXD as to TACICP algorithm.

doi:10.1371/journal.pone.0148783.g008

Fig 9. Checkerboard views of single slice with ICA and ECA (a) or CCA (b) for MR (MERGE) and US images using CICP algorithm with different
step combinations. The patches in top left are from US images. US patches and MR patches appear alternately in the checkerboards. The arrows show the
boundary between MR carotid lumen and US carotid lumen from CCA (orange), ICA (green) and ECA (red).

doi:10.1371/journal.pone.0148783.g009
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Effect of conditional distance weights
From Fig 10, registration error was robust to different penalty weights from one to infinite on
both US-MERGE and US-SNAP dataset. The overall change in LMSD was less than 0.01mm
in all the weights included the infinite weights. The possible reason is that the proportion
of points near the bifurcation is relatively small, which means that the matches of CCA-ECA
or CCA-ICA are rare. So the change in weights makes less impact on the final registration
results.

There are another interesting results in this experiment. In theory, a weight of 1 or infinity
is the sufficient condition of the convergence for CICP algorithm (See the proof in the Appen-
dix). But according to the results, for all the weights CICP converged within at most 3 itera-
tions in the rigid step, and at most 2 iterations in the non-rigid step. This may because the
condition Eq (20) was rare to be violated. So the inequality Eq (18) will be satisfied almost all
the time.

Effect of segmentation errors
The registration error of TACICP increased as the amplitude of noise on the contours
increased from Fig 11. But we found that the change of LMSD was relatively small. Even with
noise of 2mm (larger than average thickness of carotid lumen), the increment of LMSD was
less than 0.1mm in both datasets. So TACICP algorithm was robust to the segmentation error.

Fig 10. Average LMSDwith different conditional distance weight of CCA-ECA or CCA-ICA pair on US-MERGE (dark) and US-SNAP (light) datasets.
The dash line indicated the average LMSD with approximately infinite weight (w1 = 10000) on both datasets.

doi:10.1371/journal.pone.0148783.g010
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Registration errors of different positions
Fig 12 showed the LMSD in each positions as a function of the distance from the bifurcation
to that plane for TACICP algorithm and rigid CICP algorithm. The registration errors were below
0.4mm in all the positions, which were significantly smaller than that of single step algorithm.

Discussion

Two-step registration framework
In rigid transform initialization, an automatic labeling CICP algorithm was designed using cen-
terline feature. Centerline represents the mean position set of surface points for each slice,
which can be viewed as the output of a generalized mean filter applied on the surface to reduce
the influence of the contour noise. Moreover, using centerline instead of surface can reduce the
computation cost due to fewer points. However, only centerline can not provide enough infor-
mation for rigid registration because it discards the diameter information of vessels. A 180°
mis-registration may occur between ECA and ICA when the geometry of ECA and ICA are
approximately symmetric with respect to CCA. Labels constrain the freedom for rigid registra-
tion, therefore increase its robustness.

In non-rigid refinement, surface feature instead of centerline was used to calculate the opti-
mal TPS model for better local accuracy. Introduction of labels brings a more precise matched
point set for transform stage, which is important for non-rigid registration accuracy due to its
flexibility compared with rigid model. As results, our algorithm produced the best performance.

Fig 11. AverageΔLMSD using TACICP algorithmwith different amplitude of zero mean Gaussian noise on the contours on US-MERGE and
US-SNAP datasets.

doi:10.1371/journal.pone.0148783.g011
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The coarse-to-fine strategy is critical for robustness and accuracy of our method. Only rigid
registration can not handle the practical condition because of the different patient positions
during US and MR scans. So the registration errors of only rigid step were higher in our experi-
ments compared with that of non-rigid model.

In the meanwhile, CICP with only non-rigid step may converge to local minimum. Because
the fitting accuracy of TPS model is strongly dependent on the selection of matching points, a
bad initial position will generate bad matching results and then produce a bad registration
transformation, which tends to imbalance local registration errors (a large LMAXD). By con-
trast, two-step CICP algorithm achieved best performance in both LMSD and LMAXD due to
a good initialization. So both the rigid initialization step and the non-rigid refinement step are
necessary for registration.

Evaluation metrics for carotid image registration
To evaluate the registration algorithms, most of formal literatures used distance-based
(matched points registration error [10], MSD [8][11]) or area-based (DSC [11]) measures. In
the meanwhile, visual inspection was employed to estimate the registration success rate in [9].

We employed LMSD, LMAXD and RSR simultaneously for evaluation. While LMSD repre-
sents the overall registration errors of the vessels, LMAXD reveals the distribution balance
of local registration errors. RSR is more objective for evaluation of registration success com-
pared to subjective visual inspection. In our experiments, we found that single metric can not

Fig 12. Average LMSD using TACICP algorithm and rigid CICP algorithm for different relative distance fromMR bifurcation slices (the closest slice
to vessel bifurcation) on US-MERGE and US-SNAP datasets.

doi:10.1371/journal.pone.0148783.g012
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comprehensively evaluate the non-rigid registration because of the flexibility of TPS model.
For instance, LMSD of single-step non-rigid CICP and two-step CICP were nearly the same,
while the latter showed more accuracy results on LMAXD due to more precise local registra-
tion (see Two-step framework). So multiple evaluation measures should be employed.

Comparison with state-of-the-art methods
We compared TACICP algorithm with other feature-based algorithms and showed promising
registration accuracy. Here we also implemented some state-of-the-art non-feature-based reg-
istration methods for multi-modal images using open source software Elastix [27] with the
same parameters in [11]: hybrid model method and mutual information method. Because the
semi-automatic algorithms for centerline extraction in [11] did not perform well, centerlines
from manual segmented contours were used for inputs.

Fig 13 shows the results. The TACICP algorithm significantly outperformed all the methods
on both datasets. The comparison should be careful between our TACICP methods with other
non-feature-based methods because feature-based algorithms used the information of segmen-
tation contours that was also used for evaluation.

Other applications for TACICP algorithm
We also tested proposed TACICP algorithm on multi-contrast (from different imaging
sequences) and multi-temporal (at different time points) MR datasets for carotid imaging.
Three dimensional MERGE and SNAP images (totally 18 image sets) and three extra MERGE

Fig 13. Comparison of registration results of TACICP algorithm with the state-of-the-art intensity-based and hybrid algorithms using average
LMSD on US-MERGE and US-SNAP datasets. HYBRID represents hybrid model method. MI represents mutual information method.

doi:10.1371/journal.pone.0148783.g013
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images from patients scanned in another time point (totally 6 image sets) were registered with
proposed algorithm. Table 3 showed that proposed algorithm achieved the accuracy of approx-
imate 0.2mm with small variance in the multi-contrast and multi-temporal registration.

In addition to carotid image registration, the proposed TACICP algorithm can also be
applied to other vascular beds with similar bifurcation structure, such as abdominal artery and
femoral artery.

Limitation
A limitation of our work is that we just used the manual segmentation results without auto-
matic methods. The state-of-the-art centerline or contour automatic extraction methods [28]
[29][30] did not work on our datasets because of bad image quality of US images.

However, after evaluation our method is robust enough to handle segmentation errors that
are comparable with vessel thickness, which relax the expertise requirement of segmentation
for users. It may further improve registration accuracy if combination or iterating strategy is
employed between segmentation and point set registration [31][32][33], which may be a prom-
ising direction for our future work.

Conclusion
In conclusion, proposed TACICP algorithm can serve as a robust and accurate registration
method for 3D carotid imaging. It obtains an average LMSD of 0.18 ± 0.03mm on the
US-MERGE dataset and 0.19 ± 0.03mm on the US-SNAP dataset without any failure case at
the threshold of 1.5mm, which shows the superior performance compared with the other state-
of-the-art feature-based methods. Though with limitation, our two-step algorithm has poten-
tial to be a practical carotid registration method in clinical application.

Appendix
The convergence of CICP algorithm is proved here. The definition of notation can be found in

Rigid initialization step. LetMk ¼ fmi;kgNm
i¼1 be the moving point set before kth iteration, and

F k ¼ ff i;kgNm
i¼1 be their closest corresponding points in the fixed point set. So mean squared

error(MSE) ek is

ek ¼
1

Nm

XNm

i¼1

k mi;k � f i;k k2 ð13Þ

After calculating and applying the optimal transformation Tk, the MSE e0k becomes

e0k ¼
1

Nm

XNm

i¼1

k mi;kþ1 � f i;k k2 ð14Þ

Table 3. Results for multi-contrast andmulti-temporal registration using TACICP algorithm. The sec-
ond column represent the registration errors evaluated with average LMSD. The last column represents
LMAXD.

LMSD/mm LMAXD/mm

Multi-contrast 0.21 ± 0.02 1.03 ± 0.10

Multi-temporal 0.18 ± 0.04 0.94 ± 0.17

doi:10.1371/journal.pone.0148783.t003
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wheremi, k+1 = Tk(mi, k). Obviously we have e0k � ek, or the identity transformation will be a
better choice than Tk.

Next, the new closest corresponding points in the fixed points F kþ1 can be obtained:

f i;kþ1 ¼ argmin
f j2F

WLf j ;Lmi;kþ1
k f j �mi;kþ1k2

i ¼ 1; 2; � � � ;Nm

ð15Þ

From Eq (15), it is clear that

WLf i;kþ1
;Lmi;kþ1

k f i;kþ1 �mi;kþ1 k2
� WLf i;k

;Lmi;k
k f i;k �mi;k k2

i ¼ 1; 2; � � � ;Nm

ð16Þ

For all the selected corresponding points in the fixed point set, the weights must be finite.
To simplify the notation, let ai, k =WLfi, k, Lmi, k

. So Eq (16) can rewrite as

ai;kþ1 k f i;kþ1 �mi;kþ1k2 � ai;kk f i;k �mi;k k2
i ¼ 1; 2; � � � ;Nm

ð17Þ

To guarantee the convergence of CICP, we should have

k f i;kþ1 �mi;kþ1k2 � k f i;k �mi;k k2 ð18Þ

so that the following inequality is satisfied:

0 � e0kþ1 � ekþ1 � e0k � ek for all k ð19Þ

So from Eq (17), we have

ai;k � ai;kþ1 ð20Þ

for all the i. Because ai, k 2 {w0, w1}, w1 must satisfy that w1 � w0, which means that w1 = 1.
Note that when w1 =1, CICP will also converge. So w1 = 0 or w1 =1 is the sufficient condi-
tion for convergence.
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