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1    Introduction

Conversion of biomass to renewable fuels and chemicals 
is an important aspect of renewable energy and materials 
research. Current efforts are focused on improving bio-
conversion technologies by reducing lignocellulosic bio-
mass recalcitrance, leading to a reduction in biofuel 

production costs and competitive biomass-derived prod-
ucts in the chemical and fuel markets. Methods used to 
reduce biomass recalcitrance have involved altering the 
structure and composition of the lignin within the bio-
mass cell walls [1–6]. Lignin is an irregular biopolymer 
constructed from three phenylpropane units; p-hydroxy-
phenyl or coumaryl (H), coniferyl (G), and syringyl (S), by 
various types of linkages. Understanding lignin structure 
and composition is essential for developing efficient 
methods to obtain renewable chemicals and materials 
from biomass. Recent work has shown that both lowering 
lignin content and altering the ratio of the monomer units 
can reduce biomass recalcitrance [1, 2, 4, 5]. For example, 
hardwood lignins with higher S/G ratios degrade faster 
for certain conversion processes and increases in S/G 
ratios have been linked to increases in delignification 
rates [7]. Increases in lignin solubility and pulping effi-
ciency have also been linked to a higher content of 
S units in lignin [8]. 
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Various types of chemical degradation techniques, 
such as thioacidolysis, nitrobenzene oxidation and deri-
vatization followed by reductive cleavage (DFRC) meth-
ods, are capable of analyzing lignin structure and content 
[9, 10]. Thioacidolysis of lignin, the reaction scheme in 
Fig. 1, is often preferred due to its ability to cleave ether 
linkages and efficiently release monomers [11]. Thioacid-
olysis relies only on the cleavage of β-O-4 ether linkages 
to generate thioethylated H, G and S monomers [12, 13]. 
Monomer products from thioacidolysis are analyzed by 
GC/MS and are typically quantified relative to an internal 
standard when authentic standards are not available. 
There are many chemicals and steps incorporated in a 
thioacidolysis reaction and typical methods are low 
throughput and labor intensive, requiring sample concen-
tration and numerous postreaction workup steps followed 
by GC analysis using methods requiring at least 30 min/
sample. Recently, the original thioacidolysis methodology 
has undergone some modifications aimed at high through-
put analysis and improved quantitation using standards 
on GC/MS [14–17]. 

The results presented describe a quantitative thioac-
idolysis technique tailored for high-throughput analysis 
for screening large quantities of biomass. The rapid 
method eliminates laborious steps such as collection and 
purification of arylglycerol standard thioethylated prod-
ucts to generate calibration curves. Additionally, the 
method is microscale, does not utilize chlorinated sol-
vents and eliminates steps used to concentrate the prod-
ucts prior to analysis utilizing previous improvements 
reported in Foster et al. [17]. Further reductions in analysis 

time were accomplished by analyzing the thioethylated 
reaction products utilizing a low thermal mass modular 
accelerated column heater equipped gas chromatogra-
phy instrument (LTM MACH GC/FID). The thioacidolysis 
method we report here was validated across two different 
laboratories and compared to a commonly used method in 
literature [15].

2    Materials and methods

2.1    �Preparation of lignin monomer calibration 
standards

Syringyl, coniferyl and coumaryl arylglycerol monomers 
were synthesized according to the procedure reported in 
Yue et al. [14]. Monomers were purified and stock solu-
tions of 10 mg/mL of each monomer in dioxane (DriSolv, 
Fisher) were mixed and diluted in dioxane to generate 
standards with a range of S, G and H abundances 
(S/G/H  =  1/1/0.25). Known volumes of standards were 
added to 1/2-dram vials and the dioxane was gently 
evaporated using nitrogen to generate standards for thio-
acidolysis reactions ranging from 0.125 to 600 μg of each 
of the added monomers in the vials. 1000 μL of the thioac-
idolysis reaction mixture was added to each vial where 
the reaction and product work-up was performed using 
the same method as described for biomass samples (Sec-
tion 2.2). Calibration lines were generated by plotting the 
concentration ratio of each arylglycerol monomer with 
internal standard vs. the area ratio of the corresponding 
thioethylated products with internal standard to extrapo-
late the thioethylated product recovery from biomass 
samples.

2.2    High-throughput thioacidolysis method 

Prior to thioacidolysis, biomass samples were milled to 
60-mesh, extracted with ethanol and cryomilled. 2 mg of 
extracted biomass was weighed in to a 2 mL screw-cap 
vial with a Teflon-lined cap. Thioacidolysis reagent con-
sisted of 2.5% boron trifluoride diethyl etherate (>47.5% 
BF3, Sigma Aldrich) 10% ethanethiol (97%, Alfa Aesar) 
and 87.5% dioxane by volume and contained bisphenol-E 
as a surrogate internal standard (reagent grade, TCI 
Chemical) at a concentration of 0.05 mg/mL. 1000 μL of 
the thioacidolysis reagent was added to the vial contain-
ing biomass, purged with nitrogen, capped and heated to 
100°C for 4 h. The reaction was quenched by cooling on 
ice for 5 min. The vial was then vortexed and the insoluble 
residue was allowed to settle prior to transferring 400 μL 
to a culture tube. The reaction was neutralized by adding 
250  μL of 1  M aqueous sodium bicarbonate and then 
acidified with the addition of 2 N HCl sufficient to bring 
the pH down to 1 (100–130  μL). 1000  μL of water was 
added to the culture tube followed by 500  μL of ethyl 

Figure 1.  Thioacidolysis converts arylglycerol lignin monomers bound by 
β-O-4 linkages to corresponding thioethylated monomers. 
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acetate (99.9%, Fisher) and vortexed to ensure mixing. 
2000 μL of water was added to the culture tube to increase 
the volume for pipetting and the tube was covered and 
allowed to sit for 10 min. 100 μL of the organic layer was 
then transferred to a GC vial (with insert). 10 μL of pyri-
dine, 50 μL of bis(trimethylsilyl) acetamide (Sigma Aldrich) 
and optional 10 μL of 0.5 mg/mL tetracosane (additional 
internal standard) or ethyl acetate were added to the GC 
vial and allowed to sit for 2 h at room temperature prior to 
GC analysis. Silanized glassware should be used to ensure 
inertness and a fresh set of arylglycerol calibration stand-
ards should be run with each sample set. 

2.3    Thioacidolysis product analysis

High-throughput GC analysis of less than 5 min/sample 
is possible with the use of a Low Thermal Mass Modular 
Accelerated Column Heater (LTM-MACH). An Agilent 
7890B LTM Series II was used with a 10 m × 100 μm × 
0.10 μm DB-5 column coupled to the inlet and detector 
by 0.5 m of fused silica deactivated transfer lines. The 
inlet, main GC oven and FID were held at 250°C with a 
column flow of 0.6 mL/min. The LTM column tempera-
ture program began at 130°C for 2 min and was ramped 
at 150°C/min to 325°C. GC/MS analysis of the thio
ethylated products can be performed using a 15 or 
30 m × 250 μm × 0.25 μm DB-5 column with or without a 
guard column (i.e. Phenomenex Zebron 10 m × 0.25 mm) 
with an oven program of 130°C to 300°C at 5°C/min and 
hold at the final temperature for 5 min. A 15 m GC column 
was used with a guard column at one laboratory and the 
30 m column was used at the other; these parameters do 
not affect the analysis of the products when each lab 
references its own calibration standards. The inlet was 
held at 270°C and used a splitless single tapered inert 
liner and the transfer line to the MS was held at 280°C. 
The mass spectrometer source was 70  eV and run in 
Selective Ion Monitoring (SIM) mode for the following 
ions: 299 (thioethylated syringyl monomer TMS), 269 
(thioethylated coniferyl monomer TMS), 239 (thioethyl-
ated coumaryl monomer TMS), 343 (bisphenol-E internal 
standard). m/z 293 was also monitored to detect the pres-
ence of coumaric acid and m/z 338 was monitored for 
ferulic acid. The GC/MS oven ramp may also be increased 
for higher-throughput (Lab 1) using the following tem-
perature program: start 160°C, 2  min hold to 250°C at 
25°C/min with a 4 min hold (~10 min/sample). Thioacid-
olysis products that have undergone work-up for GC 
analysis may sit at room temperature for 24  h prior to 
injection, however, after piercing the vials, degradation 
of the silylated monomers was observed. Prior to each 
analysis consisting of a fresh set of calibration standards 
and reacted material, a new septum, GC liner and gold 
seal were installed and the column was trimmed. Reac-
tive sites within unclean GC parts were found to influ-
ence product recoveries. 

2.4    �Validation of high-throughput thioacidolysis 
method by cross-laboratory tests and by 
comparison to another method

Different types of biomass with a range of S/G ratios were 
selected for analysis using the reported thioacidolysis 
method. Poplar (hybrid clone NE-19 Populus nigra 
charkowiensis × P. Nigra caudina) provided by the Great 
Lakes BioEnergy Research Center (Laboratory 1) was 
used as a hardwood, high S/G ratio feedstock. NIST Mon-
terey pine (Pinus radiata) was used as a softwood, low S/G 
ratio feedstock, and switchgrass (Panicum virgatum) 
provided by the Bioenergy Science Center at the National 
Renewable Energy Laboratory (Laboratory 2) was used as 
an herbaceous feedstock. Each sample underwent thioac-
idolysis at both Laboratory 1 and Laboratory 2. The 
method was developed for analysis of lignin present in 
extracted, cryomilled biomass and not tested on lignins 
isolated from biomass (i.e. Klason or organosolv lignin) as 
their linkages may be altered upon isolation, yielding 
thioethylated products that may not be demonstrative of 
the native lignin structure.

A previously reported thioacidolysis method was 
employed for validation and comparison purposes [15]. 
The traditional validation method incorporates a sodium 
sulfate drying step using a vacuum manifold along with a 
concentration step that utilized a vacufuge resulting in 
more labor and lower throughput. The validation method 
also used more chemicals, including dichloromethane 
(less favorable with respect to safety and the environ-
ment) as the organic extraction solvent. The same aryl-
glycerol calibration standards were used for testing this 
method. Klason lignin content was determined using the 
method outlined in the NREL laboratory analytical proce-
dure [18].

3    Results and discussion

3.1    �Calibration using arylglycerol monomer 
thioacidolysis products

The calibration of the GC/MS and LTM-MACH for the 
analysis of the thioacidolysis products is based on the 
method reported by Yue et al. [14]. Briefly, syringyl (S), 
coniferyl (G) and coumaryl (H) arylglycerol monomers 
underwent thioacidolysis to generate the same thioethyl-
ated monomers obtained from β-O-4 linkages present in 
lignin polymers. Using SIM mode to detect and quantitate 
the monomers is recommended due to the typically low H 
monomer concentrations obtained from biomass and 
potential coelution with other species. Response factors 
for each thioethylated analyte relative to the internal 
standard were not generated as the concentration of the 
thioethylated products was not known; deviating from the 
calibration method reported in Yue et al. [14]. For our 
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high-throughput analysis, the concentration of the start-
ing arylglycerol monomer relative to internal standard 
was used as the independent variable and the area of the 
corresponding thioethylated product relative to the inter-
nal standard area was used as the dependent variable for 
the construction of calibration lines. Using the concentra-
tion of the starting arylglycerol monomer eliminates the 
need for the laborious purification of the thioethylated 
products from the arylglycerol monomers that would need 
to be produced in substantial quantities if a large number 
of biomass samples are analyzed to identify genes or 
quantitative trait loci (QTLs) associated with lignin con-
tent and/or S/G ratios [19]. As reported in Yue et al., the 
thioacidolysis reaction of the arylglycerol monomers is 
approximately 90% efficient and hence, the molar concen-
tration response factors should be comparable [14]. There-
fore, the method reported here substantially increases the 
throughput, ease of execution and cost of a similar 
method by eliminating the standard purification step.

The LTM-MACH GC was capable of resolving the 
three monomers and the internal standard in less than five 
minutes. The use of the LTM-MACH GC increases 
throughput of a typical GC method by at least 4-fold due 
to the decreased run and column cooling time. Figure 2 
shows SIM chromatograms (long GC/MS method) 
obtained from the thioethylated products of a calibration 
standard and the three biomass feedstocks. The calibra-
tion lines for each H, G and S monomer showed a high 
degree of correlation, R2 > 0.99 for all GC methods, indicat-
ing that the extent of reaction and derivatization in this 
method are not concentration dependent within the 
dynamic range. Additionally, this method is capable of 
detecting the analytes without having to concentrate the 

products in the post-reaction workup. Coumaric and feru-
lic acids may be detectable using this method, but were 
not optimized for analysis and quantified in this report.

3.2    �Product recoveries from high-throughput 
thioacidolysis analysis of biomass

The yields of monomers and S/G ratios from all thioacid-
olysis reactions performed on biomass are summarized in 
Table 1. The standard deviation of the mass spectrometer 
area signal for a single poplar sample was found to be less 
than 2% for each ion monitored corresponding to the H, G 
and S monomers based on 10 injections. Total thioethyl-
ated monomer yields are reported as μmol/g biomass as 
opposed to μmol/g lignin since Klason lignin content may 
give different values depending on the laboratory, the 
purity and whether or not corrections for proteins were 
made. The “traditional” reaction that was performed for 
validation show similar trends to the method reported in 
this work while referencing the calibration standards and 
similar values for each biomass type as reported in the 
literature.

The LTM-MACH GC/FID method produced similar 
results and trends as the other methods, although consist-
ently lower for S, G and total monomers, which has been 
found using FID techniques previously [14]. The H mono-
mer recoveries were slightly higher for switchgrass and 
poplar based on the LTM-MACH method which may be 
the result of other compounds generated from these par-
ticular feedstocks coeluting at the same retention time. 
H-monomer recovery aside, the trend in product recoveries 
for each of the biomass types was the same for the LTM-
MACH method as the GC/MS methods. Overall, the LTM-

Figure 2.  Selective ion chromatograms 
of thioacidolysis products from different 
types of biomass. Major ions used for 
quantitation of peaks are indicated, 
chromatograms are from Laboratory 2 
GC/MS method. Calibration lines shown 
are obtained from single injection analy-
sis of standards from a single reaction. 
Fresh calibrations should be referenced 
each time a reaction is performed.
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MACH method would provide rapid analysis for screening 
biomass samples for variation in S/G ratios and monomer 
recoveries (relative β-O-4 abundance). Lastly, the S/G ratio 
for each biomass type was determined to be the same 
value no matter the reaction method, laboratory or the GC 
method used. Coupled with the higher-throughput thioac-
idolysis method described here, hundreds of biomass sam-
ples can be analyzed by thioacidolysis on a weekly basis.

The thioacidolysis results from each biomass type 
were typical using our higher-throughput method in com-
parison to lower-throughput methods reported elsewhere 
[11]. Three different biomass types were tested in order to 
cover a range of lignin types, monomer recoveries and 
S/G ratios. Pine, like other conifers, is known to have little 
to no syringyl monomers within the lignin polymeric 
framework and our results agree with previous findings as 
a very low abundance of syringyl-derived thioethylated 
products are detected (Table  1) [9–11, 14]. The yield of 
G-derived monomers from the pine was typical of report-
ed yields from biomass of various types (accounting for 
lignin content) and in comparison to the “traditional” 
reaction based on Robinson et al. [10, 12, 14, 15]. Based on 
t-tests, both laboratories recovered statistically similar 
(unlikely to be different) amounts of H and G monomers 
from the thioacidolysis of the pine sample and also 
obtained similar S/G ratios. The low concentration of S 
monomer is likely the source of statistical differences in 
the S-recoveries between the two laboratories.

Switchgrass total monomer yields were lower than the 
other two biomass types at both laboratories and were 
also observed in the traditional method. Low thioacidoly-
sis yields for grasses have been reported in the literature, 
and have been attributed to the presence of condensed 
linkages (C-C bonds) within the lignin polymer [9–12, 15]. 
The S/G ratio determined for the switchgrass was also 

typical based on findings reported by others [3, 9, 19, 20]. 
The two laboratories recovered statistically similar S and 
G monomers and similar S/G ratios. Switchgrass is known 
to have H monomers present as coumarates within the 
lignin structure [21] and H monomers were detected, but 
in low abundance using this thioacidolysis method. The 
low concentration of H monomer is likely the source of 
statistical differences in the H-recoveries between the 
two laboratories.

Poplar samples yielded the highest total amount of 
products. The high yields from the higher S/G ratio bio-
mass are likely due to the higher S content of the lignin 
polymer leading to a higher occurrence of β-O-4 linkages. 
Both laboratories and both thioacidolysis methods recov-
ered statistically similar amounts of G and S monomers 
from the poplar and had similar S/G ratios. H monomers 
were recovered in very small quantities and also were sta-
tistically different from the two laboratories. The S/G ratio 
of the poplar is similar to that reported by Yue et al. [14]. 

The total recoveries of monomers appear to be sensi-
tive to the reagents used, moisture content of the bio-
mass, and the cleanliness of the GC and could deviate in 
day-to-day analyses. Hence, dry reagents, dry biomass, 
silanized glassware, clean GC inlet parts and a trimmed 
column are necessary for accurate results and the consist-
ent yields. Also, control samples and standards should be 
run in the same thioacidolysis reaction set as any experi-
mental samples for comparisons and observations of 
experimental error.

4    Concluding remarks

A higher-throughput and quantitative thioacidolysis 
method was applied to different types of biomass and the 

Table 1.  Monomer recoveries (μmol/g biomass) and S/G ratios of various types of biomass determined using thioacidolysis techniques. 

Lab 1 – GCMS Lab 2 – GCMS Traditional Method -GCMS LTM-MACH GC/FID

  SG Pine Poplar SG Pine Poplar SG Pine Poplar SG Pine Poplar

Total Klason 
Lignin (wt%)

23.8 30.4 29.2 23.9 26.6 29.7 23.9 26.6 29.7 23.9 26.6 29.7

H 5.4  
(±0.1)a)

7.9  
(±0.9)

3.6  
(±0.5)a)

12.0  
(±0.2)a)

6.67  
(±0.2)

5.5  
(±0.0)a)

3.9  
(±0.2)

6.3  
(±0.3)

1.9  
(±0.3)

15.6  
(±0.6)

5.4  
(±3.2)

25.9  
(±2.3)

G 68.2  
(±0.2)

198.6  
(±32.4)

195.5  
(±2.5)

68.7  
(±1.43)

205.7  
(±12.4)

200.7  
(±12.3)

55.1  
(±1.1)

215.1  
(±9.1)

167.1  
(±3.9)

 55.5  
(±3.6)

145.8  
(±2.8)

183.2  
(±14.4)

S 57.1  
(±5.8)

5.0  
(±0.1)a)

333.3  
(±1.5)

52.8  
(±0.9)

0.4  
(±0.6)a)

344.2  
(±20.7)

44.8  
(±1.7)

6.7  
(±0.0)

288.6  
(±6.7)

 43.5  
(±2.0)

0.0  
(±0.0)

297.9  
(±14.3)

Total 130.7  
(±5.5)

211.5  
(±33.3)

532.4  
(±4.0)

133.5  
(±2.5)

212.7  
(±13.2)

550.5  
(±33.0)

103.8  
(±3.0)

228.1  
(±9.3)

457.6  
(±10.7)

 122.8  
(±6.5)

151.4  
(±7.8)

520.7  
(±35.4)

S/G ratio 0.8  
(±0.1)

0.0  
(±0.0)

1.7  
(±0.0)

0.8  
(±0.0)

0.0  
(±0.0)

1.7  
(±0.0)

0.8  
(±0.0)

0.0  
(±0.0)

1.7  
(±0.0)

 0.8  
(±0.0)

0.0  
(±0.0)

1.6  
(±0.1)

a) � indicates likelihood of statistical difference (p < 0.05) between two laboratories analyses (n = 3). Samples were run in triplicate for each method comparing labora-
tories and duplicate for the traditional method and LTM-MACH analysis.
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product recoveries were reported relative to arylglycerol 
standards that simultaneously underwent thioacidolysis. 
The products from the higher-throughput thioacidolysis 
method were quantified using fast GC methods, particu-
larly an LTM-MACH GC/FID that used a method 4 times 
faster than a typical GC method. Thioethylated products 
and S/G ratios were similar in value and trends between 
two laboratories, across different GC methods and to 
those reported in the literature and for a previously report-
ed thioacidolysis method for the types of biomass ana-
lyzed here. Collection and purification of the standard 
thioethylated products was not necessary to generate 
calibration curves resulting in higher-throughput and 
lower labor costs than a similar method. Additionally, the 
method reported herein is microscale (2  mg), does not 
utilize chlorinated solvents or specialized equipment, and 
eliminates laborious steps necessary in similar methods 
to purify the standards, dry the reaction organic layer and 
concentrate the products. Overall, this thioacidolysis 
method is robust and capable of screening large popula-
tions of various types of lignocellulosic biomass for mono-
mer composition at a higher-throughput pace. 
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