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Background: Preoperative differentiation of benign and malignant tumor types is critical
for providing individualized treatment interventions to improve prognosis of patients with
ovarian cancer. High-throughput proteomics analysis of urine samples was performed to
identify reliable and non-invasive biomarkers that could effectively discriminate between
the two ovarian tumor types.

Methods: In total, 132 urine samples from 73 malignant and 59 benign cases of ovarian
carcinoma were divided into C1 (training and test datasets) and C2 (validation dataset)
cohorts. Mass spectrometry (MS) data of all samples were acquired in data-independent
acquisition (DIA) mode with an Orbitrap mass spectrometer and analyzed using DIA-NN
software. The generated classifier was trained with Random Forest algorithm from the
training dataset and validated in the test and validation datasets. Serum CA125 and
HE4 levels were additionally determined in all patients. Finally, classification accuracy of
the classifier, serum CA125 and serum HE4 in all samples were evaluated and plotted
via receiver operating characteristic (ROC) analysis.

Results: In total, 2,199 proteins were quantified and 69 identified with differential
expression in benign and malignant groups of the C1 cohort. A classifier incorporating
five proteins (WFDC2, PTMA, PVRL4, FIBA, and PVRL2) was trained and validated in
this study. Evaluation of the performance of the classifier revealed AUC values of 0.970
and 0.952 in the test and validation datasets, respectively. In all 132 patients, AUCs of
0.966, 0.947, and 0.979 were achieved with the classifier, serum CA125, and serum
HE4, respectively. Among eight patients with early stage malignancy, 7, 6, and 4 were
accurately diagnosed based on classifier, serum CA125, and serum HE4, respectively.

Conclusion: The novel classifier incorporating a urinary protein panel presents
a promising non-invasive diagnostic biomarker for classifying benign and
malignant ovarian tumors.
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INTRODUCTION

Ovarian cancer (OC) is a common malignant disease and the
fifth leading cause of cancer-related mortality in women (Siegel
et al., 2021). The ovaries, located in the pelvic cavity, are
relatively concealed. In addition, obvious clinical manifestations
and effective diagnostic methods are lacking for early OC,
making early diagnosis and discrimination from benign ovarian
tumors difficult. In more than 70% cases, OC is diagnosed at
an advanced phase (Dochez et al., 2019). The survival rates
of OC have improved only slightly over the past few decades,
and even in countries with abundant medical resources such as
the United States and Canada, the 5-year survival rate remains
around 47% after diagnosis (Lheureux et al., 2019).

Early stage or preoperative differentiation of benign and
malignant tumors is critical to improve prognosis of patients
with OC. Differentiation of malignant from benign tumors is
recommended to facilitate referral of patients with malignant
tumors to a specialized center or an oncology surgeon, since
therapeutic results have been shown to be superior to general
treatment by an obstetrician/gynecologist (Nagell and Miller,
2016; Abramowicz and Timmerman, 2017). Cancer antigen
125 (CA125) in serum is currently the most widely used
tumor marker for detection of OC but has limited diagnostic
specificity (Shipeng et al., 2019). Human epididymis protein 4
(HE4, also named WFDC2) in serum is another OC biomarker
with better specificity than CA125 that has attracted significant
research attention in recent years. However, HE4 levels may
be affected by menopausal status and age (Cheng et al.,
2020). Thus, clinical diagnosis of the two types is primarily
conducted based on Risk of Malignancy Index, CA125/HE4,
clinical symptoms, menopausal status and ultrasound imaging
(Goff et al., 2004; Manegold-Brauer et al., 2014; Soletormos
et al., 2016; Chacon et al., 2019). Clinically useful rules have
been established by the International Ovarian Tumor Analysis
group to distinguish between benign and malignant tumors.
Nevertheless, in approximately 10–20% of cases, the nature of
ovarian tumor remains undefined (Zhang et al., 2019). Therefore,
novel effective methods and biomarkers for rapid, inexpensive
and non-invasive monitoring of high-risk populations and
preoperative discrimination between benign and malignant
ovarian tumors are an urgent requirement.

As a readily available and cost-effective biospecimen, liquid
samples provide a useful tool for cancer biomarker discovery.
Serum is the most commonly used liquid biospecimen in clinical
applications and scientific research. Urine is easily attainable with
no requirement of an invasive procedure, making it more suitable
for disease surveillance in high-risk patients requiring frequent
examination. Additionally, proteins, peptides and metabolites
excreted in urine are less complex and more stable than those
in plasma, making urine a more suitable medium for biomarker
discovery (Jing and Gao, 2018; Grayson et al., 2019). Urine has
been routinely used as “non-invasive liquid biopsy” for clinical
research and diagnosis (Thomas et al., 2016; Njoku et al., 2020;
Zhao et al., 2020). To date, however, no urinary biomarkers have
been identified that can effectively distinguish malignant from
benign ovarian tumors.

Proteomics based on mass spectrometry (MS) is a powerful
technique increasingly employed not only for high-throughput
identification but also quantification of multiple proteins. Data-
independent acquisition (DIA) MS has recently emerged as
a promising alternative to data-dependent acquisition (DDA)
for quantitative proteomics analysis (Azimzadeh et al., 2021;
Prestagiacomo et al., 2021). The DIA technique is widely
used in the context of multiplex biomarker detection from
clinical specimens, such as plasma and urine (Fang et al., 2020;
Burnap et al., 2021).

In this study, high-throughput urinary proteome analysis in
DIA mode was applied for the discovery of urinary biomarkers.
MS data were processed with DIN-NN software, which uses
deep neural networks to distinguish real signals from noise, as
well as new quantification and interference-correction strategies
(Demichev et al., 2020). Machine learning strategy (Random
Forest Algorithm) was subsequently applied to analyze the data
matrix (training dataset) generated with DIA-NN software and
establish a classifier for differentiating malignant from benign
ovarian tumors. The classifier was finally validated in test and
validation data sets. To our knowledge, this is the first study
to effectively use a combination of DIA proteome analysis
and machine learning strategy for OC biomarker discovery.
The novel classifier should benefit auxiliary diagnosis and may
be commercially developed into kits for effective non-invasive
surveillance of high-risk populations.

MATERIALS AND METHODS

Patients
Our study was approved by the Ethics Committee of Zhejiang
Cancer Hospital and conducted according to the ethical
guidelines of the Helsinki Declaration of 1964 and subsequent
versions. Both benign and malignant tumors were histologically
confirmed from biopsies and non-treated before patient
enrollment. Patients with a history of neoplasm of any
type and/or multiple neoplasms were excluded from this
study. Pathological benign types mainly included mucinous
cystadenoma, serous cystadenoma, and ovarian cysts while
malignant OC types included high-grade serous carcinoma.
Concentrations of serum CA125 and HE4 were detected using
the electrochemiluminescence technique based on standard
protocols. The cut-off value was 35 U/mL for CA125 and
140 pmol/L for HE4.

Samples and Study Design
Morning midstream urine samples from 132 patients with
ovarian tumors (including 73 malignant and 59 benign cases)
were collected from 2018 to 2020. The clinical characteristics of
patients are presented in Table 1. Two completely independent
cohorts were set (Figure 1). The C1 dataset contained 40
benign and 50 malignant, while the C2 dataset contained 19
benign and 23 malignant samples. In the “Machine learning
and Validation” platform, the C1 dataset was randomly
divided into a training dataset (for machine learning to
establish the classifier) and test dataset (for classifier validation)
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TABLE 1 | Clinical information of patients in this study.

C1 Cohort C2 Cohort

Training dataset Test dataset Validation dataset

Patients, number

Total 70 20 42

Benign 30 10 19

Malignant 40 10 23

Age, year

Mean ± SD 54.0 ± 14.9 53.8 ± 13.4 53.8 ± 11.7

Median 55.5 54 54.5

Range 18–91 21–84 24–77

BMI, kg/m2

Mean ± SD 22.5 ± 3.5 21.0 ± 2.1 22.2 ± 3.2

Median 22.4 21.3 22.4

Range 15.0–31.8 17.2–24.2 15.0–28.2

Menopausal status, percentage

Menopause 62.9% (44/70) 60.0% (12/20) 59.5% (25/42)

Non-menopause 37.1% (26/70) 40.0% (8/20) 40.5% (17/42)

using the “sample” function in R software (version 3.6.1).
As a completely independent cohort, the C2 dataset (also
designated validation dataset) was used for further validation
of the classifier.

Urine Sample Preparation
All urine samples were collected before treatment, divided into
aliquots, immediately frozen and stored at−80◦C. Urine samples
were thawed on ice and centrifuged at 1,000 g for 5 min at
4◦C to remove cell debris. Supernatant fractions were collected
in new tubes. Cold acetone (supernatant: acetone, 1:4, v/v) was
added to precipitate proteins overnight at −20◦C. Samples were
further centrifuged for 15,000 g for 15 min and protein pellets
collected. Protein pellets were re-dissolved in lysis buffer (4%
sodium dodecyl sulfate, 0.1 M Tris-HCl, pH 8.5) and protein

concentrations assayed via bicinchoninic acid assay (Pierce,
Thermo Scientific, Rockford).

Filter-aided sample preparation combined with sodium
deoxycholate (SDC) was applied for protein digestion
(Wisniewski et al., 2009; Erde et al., 2014). Briefly, 50 µg
proteins was mixed with 200 µL of 8 M urea and transferred
onto a filter device, followed by centrifugation at 15,000 g at
20◦C for 15 min. The concentrate was washed with 8 M urea
and centrifuged at 15,000 g for 15 min. After treatment with
0.1 M dithiothreitol and 0.05 M iodoacetamide, the concentrate
was washed with 200 µL of 8 M urea and centrifuged twice at
15,000 g for 15 min. The concentrate was diluted with 100 µL of
50 mM ABC and centrifuged (this step was repeated twice) and
subjected to trypsin digestion (enzyme to protein ratio 1:100,
50 mM ABC, 0.4% SDC) in a wet chamber at 37◦C for 12 h. The
digests were collected by centrifugation at 15,000 g for 15 min.
Next, the filter device was rinsed with 50 µL of 0.5 M NaCl
and centrifuged again. The resulting solutions were combined
and acidified with 10% trifluoroacetic acid. Peptide solution
was centrifuged at 14,000 g for 15 min and the supernatant
collected into a new tube. Peptides were desalted using C18
tips (Pierce, Thermo Scientific, Rockford) according to the
manufacturer’s instructions.

DIA Library Construction
To generate a spectral library for analyzing DIA data from
urine samples, peptides from all samples were collected into
a single pool. The peptide pool was fractionated into 12
fractions using the Ultimate 3,000 UPLC system (Dionex, Idstein,
Germany) coupled with an XBridge Peptide BEHC18 column
(4.6 mm × 250 mm). Peptides were separated on a 75 min
LC gradient at a flow rate of 0.5 mL/min. Mobile phase A
comprised 2% acetonitrile (ACN) in water, pH 10.0, and mobile
phase B contained 98% ACN, pH 10.0. The LC gradient was
set as follows: 0–8 min, 100% A; 8–48 min, 100% A to 40%
B; 48–53 min, 40% B to 100% B; 53–63 min, 100% B; 63–
65 min, 100% B to 100% A; 65–75 min, 100% A. Peptides

FIGURE 1 | Workflow of MS analysis from urinary proteomics based on machine learning for distinguishing between benign and malignant ovarian tumors.
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were eluted from 8 to 68 min. In total, 30 peptide fractions
were collected, combined into 12 fractions and desalted as
described above.

DDA data acquisition was conducted in a nano-LC &
Q-Exactive system as reported previously (Ni et al., 2017).
Desalted peptides were separated using an easy-nano LC system
(Thermo Fisher Scientific, United States). The LC was connected
to a 2 cm pre-column with an internal diameter of 75 µm
filled with 5 µm C18 resin (Thermo Fisher Scientific). The
pre-column was connected to a 25 cm analytical column
with an internal diameter of 75 µm filled with 2 µm C18
resin (Thermo Fisher Scientific). The mobile component was
composed of two phases: solution A (2% ACN/0.1% formic
acid in water) and solution B (2% water/0.1% formic acid
in ACN). Peptides were separated at a rate of 300 nL/min
via stepwise-gradient elution: 0 min in 3% solution B, 10%
solution B for 1 min, 25% solution B for 85 min, 30%
solution B for 15 min, and 45% solution B for 2 min, followed
by a column wash with 95% solution B for 17 min. MS
spectra were acquired with Q-Exactive in a DDA mode, with
automatic switching between MS and MS/MS scans using the
Top 20 method. MS spectra were obtained at a resolution
of 35,000 with an AGC target value of 3e6 or maximum
injection time of 20 ms. Peptide fragmentation was performed
via higher-energy collision dissociation with energy set at a
normalized collision energy of 27. MS/MS spectra were acquired
at a resolution of 17,500, with an AGC target value of 1e6
or maximum injection time of 60 ms, and the isolation
window set at 2.0 m/z.

In total, we acquired 12 DDA files on a Q-Exactive in
DDA mode. All DDA files were analyzed using the Proteome
Discoverer (Version 1.4.1.14, Thermo Fisher Scientific) with
Sequest HT search engine against a forward-decoy approach. The
protein database composed of the Homo sapiens fasta database
was downloaded from UniProtKB on 20 Jan 2020 containing
20,394 reviewed protein sequences. In total, the library contained
11,788 peptides and 2,824 protein groups.

DIA-MS Analysis
The Nano-LC system and gradient for peptide separation
were identical as described above (“DIA library construction”).
Peptides eluted from the LC system were ionized at a
potential + 2.0 kV into Q-Exactive mass spectrometer. A full
MS scan was acquired (350–1250 m/z range) at a resolution
of 35,000 (at m/z 200) in Orbitrap using an AGC target value
of 3e6 and maximum injection time of 20 ms. Following the
full MS scan, 33 MS/MS scans were acquired, each with a
17,500 resolution (at m/z 200), AGC target value of 1e6 and
normalized collision energy of 27%, with the default charge
state set to 2 and maximum injection time set to auto.
The cycle of 33 MS/MS scans (center of isolation window)
with a wide isolation window was as follows (m/z): 410,
430, 450, 470, 490, 510, 530, 550, 570, 590, 610, 630, 650,
670, 690, 710, 730, 750, 770, 790, 810, 830, 850, 870, 890,
910, 930, 950, 970, 990, 1,025, 1,075, and 1,125. DIA files
were analyzed using DIA-NN software (v.1.6.0) with default
parameters (Demichev et al., 2020).

Quality Control of Mass Spectrometry
and Methodology
For evaluation of the reproducibility of the MS platform, tryptic
peptides of HeLa cell lysates were used as a quality control.
A urine sample aliquot from each batch was processed as quality
control of methodology reproducibility. Pearson correlation
coefficient was calculated to evaluate the reproducibility
of the platform and methodology with R v.3.6.1 using
corrplot package.

Statistical Analysis and Machine
Learning
Proteins with > 30% missing ratios in C1 or C2 cohort were
removed from the data matrix. Missing values of a particular
protein were imputed with the minimum value of the protein
in all samples. Log2 fold changes (log2 FC) in mean values
of the comparison groups were calculated. Two-sided unpaired
Welch’s t-test was performed for the comparison groups and
adjusted p-values (also named q-value) calculated using a
Benjamini & Hochberg correction. Significantly altered proteins
were selected using the criteria of adjusted p-value < 0.01
and absolute log2 FC > 1. “Mean decrease in accuracy
(MDA)” refers to a score reported by the “Random Forest”
R package, which is used to evaluate the contribution
of each feature to forest’s prediction accuracy. From the
training cohort, we selected important protein features with
MDA score > 5 using the random forest algorithm. In
random forest analysis, 1,000 trees were generated using
R package randomForest (version 4.6–14). Ten-fold cross
validation was carried out with createFolds function in caret
package and repeated 100 times. Five important features
were selected for establishing the classifier, which was further
validated in both test and validation data sets. Receiver
operating characteristic (ROC) curves were calculated and
plotted using pROC package (version 1.15.3). The Rtsne
package was applied to plot t-SNE. The top Gene Ontology
processes were enriched using a Metascape web-based platform
(Zhou et al., 2019).

RESULTS

Study Design and Quality Control
DIA-MS analysis was performed on urine samples from
132 patients. The samples comprised: (i) a discovery set
C1 and (ii) an independent validation set C2 (Figure 1).
The C1 dataset included urine samples from 40 benign and
50 malignant cases while the C2 dataset contained urine
samples from 19 benign and 23 malignant cases. Samples
were randomly distributed into 8 batches with the aid of
120 min DIA-MS, with quality control samples included
in each batch. HeLa cell lysates and repeat-tested urine
specimens were used as quality control samples to evaluate
the reproducibility of the MS platform and methodology,
respectively. The average Pearson Correlation Coefficient of
protein quantitative data among HeLa cell lysates was 0.959
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FIGURE 2 | Data quality evaluation. (A) Pearson correlation of 8 HeLa cell lysate samples in all batches for evaluation of the reproducibility of mass spectrometry.
(B) Pearson correlation of 8 repeat-tested urine samples in all batches for evaluation of the reproducibility of methodology. (C) Violin plot of protein identification
numbers in benign and malignant groups. (D) Violin plot of precursor identification numbers in benign and malignant groups. (E) Box plot of protein abundance in
each sample. *B, benign group; M, malignant group.

(range: 0.95–0.97, Figure 2A) while that among repeat-
tested urine samples was 0.955 (range: 0.92–0.98, Figure 2B),
supporting the consistent stability of both the MS platform
and methodology. Median values of protein identification
in the benign and malignant groups were 1,078 and 1,087
(Figure 2C) and median values of precursor identification
were 5,663 and 5,514 (Figure 2D), respectively. The protein
abundance profile of each sample in both groups was plotted,

as shown in Figure 2E. The data quality of the two groups was
consistently good.

Proteomic Profiling of Benign and
Malignant Groups
The C1 dataset was used for proteomic profiling. Detailed patient
descriptions in the dataset are presented in Table 1. In total, 90
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FIGURE 3 | Analysis of differentially expressed proteins in C1 dataset. (A) Differentially expressed proteins in benign and malignant groups with q-value < 0.01 and
absolute log2 fold change > 1. (B) Average protein identification numbers in each sample, benign and malignant groups of C1 dataset. (C) Volcano plot of
down-regulation and up-regulation in malignant group. (D) Pathway analysis of the differentially expressed proteins using Metascape web-based platform. *B, benign
group; M, malignant group.

samples, including 50 malignant and 40 benign samples, passed
quality control in terms of protein identification (more than
500 proteins per sample). We identified and quantified 2,199
proteins and an average of 1,073 proteins was identified in each
sample (Figure 3B). Overall, 1,063 proteins in the malignant
group and 1,084 proteins in the benign group were identified,
which were not significantly different in terms of number of
proteins between the two groups (P = 0.4986, Figure 3B). We
detected 69 differentially expressed proteins between the two
groups (q-value < 0.01, absolute log2 FC > 1). Application of
heatmap and volcano plot to differentially expressed proteins
showed that 21 proteins were downregulated and 48 upregulated
in the malignant group (Figures 3A,C). Pathway analysis of
the 69 differentially expressed proteins revealed members of six
major pathways, specifically, leukocyte activation involved in
immune response, acute inflammatory response, cell-substrate
adhesion, platelet degranulation, humoral immune response, and
cell-cell adhesion (Figure 3D). These findings are consistent
with the pattern of tumor progression. Clearly, compared with
benign disease, malignant disease progression is commonly

accompanied by alterations in the adhesion and migration
abilities of tumor cells and a strong immune response (Gavalas
et al., 2011; Boylan et al., 2016).

Feature Selection and Classifier
Development
To effectively identify potential biomarkers and conduct rigorous
validation, the profiling dataset was randomly divided into
training and test datasets (Figure 1). The training dataset (40
malignant and 30 benign samples) was used to screen potential
features and construct classifiers for malignant diagnosis using
random forest machine learning combined with 10-fold cross
validation. The test dataset (10 malignant and 10 benign
samples) was employed to validate the diagnostic effect of the
classifier. We limited the number of selected features to facilitate
practical evaluation using targeted proteomics or antibodies
in the clinic. Using this approach, a classifier was established
to distinguish between benign and malignant tumors, which
contained five important variables (WFDC2, PTMA, PVRL4,
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FIGURE 4 | Separation of benign and malignant patients by machine learning of proteomic features. (A) Top 5 proteins prioritized by random forest analysis ranked
by the mean decrease in accuracy > 5. (B) Receiver operating characteristic (ROC) analysis of the classifier and each feature in the training dataset. (C) Expression
levels of the five proteins; p-value was calculated in t-test medtod. *B, benign group; M, malignant group.

FIBA, and PVRL2) with mean decrease in accuracy > 5
(Figure 4A). Expression levels of the five proteins across all
90 samples are presented in Figure 4C. Relative to the benign
tumor group, these five proteins were significantly upregulated
in the malignant tumor group (P < 0.05). Next, we calculated the
area under curve (AUC) of the classifier in the training dataset.
Furthermore, AUC values of the five features in the classifier
were individually calculated. ROC plots showed that the classifier
achieved an AUC value of 0.98 (Figure 4B and Figure 5A).
Among the five features, AUC values ranged from 0.74 to 0.85,
with the highest AUC of 0.85 obtained for PTMA (Figure 4B).

Performance of the Classifier, Serum
CA125 and HE4
After training and construction, the performance of the classifier
was initially validated in the test dataset (n = 20 patients)
comprising urine samples of 10 benign and 10 malignant
cases. As shown in Figure 5C, ROC plot of the samples
using the 5-protein classifier revealed AUC of 0.970. To
ascertain accurate classification of the different sample types, we
applied the t-SNE algorithm for visualization of performance.

The t-SNE plot showed effective discrimination of malignant
from benign samples in the test dataset (Figure 5D). The
algorithm was additionally applied to visualize the performance
of the classifier in the training dataset. Our results showed
similar separation with some overlapping results (Figure 5B).
To further validate this classifier in an independent patient
cohort, 42 urine samples (C2 cohort) from 19 benign and 23
malignant cases were examined. To ensure rigorous validation,
diagnoses were blinded during data acquisition and analyses.
Each sample was analyzed using the identical DIA-MS workflow
to the C1 cohort. Analysis of the resulting 42 DIA files
led to the identification of an average of 1,107 proteins in
each sample. AUC of 0.952 was achieved in a ROC plot of
this dataset using the classifier (Figure 5E). The t-SNE plot
clearly demonstrated effective differentiation between benign
and malignant groups of ovarian tumors with our novel
classifier (Figure 5F).

As commonly used clinical biomarkers for auxiliary diagnosis
of OC, CA125, and H4 have attracted significant attention. Serum
CA125 and HE4 levels of all patients (n = 132) were examined
in this study. As shown in Figures 6A,B, CA125 and HE4 levels
were significantly different between patients with malignant and
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FIGURE 5 | Performance of the classifier in diagnosing malignant from benign in different datasets. (A,C,E) ROC analysis of the classifier in training, test and
validation datasets. (B,D,F) t-SNE analysis of the classifier in training, test and validation datasets. *B, benign group; M, malignant group.

benign disease, with median values of 975.00 vs. 25.00 (CA125,
P < 0.01) and 386.95 vs. 51.96 (HE4, P < 0.01), respectively.
Next, we evaluated the performance of the two biomarkers
according to cut-off values of 35 U/mL (CA125) and 140 U/mL
(HE4) used in the clinic. AUC of serum CA125 was 0.947 with
sensitivity of 0.973 and specificity of 0.576 in all patients. AUC
of serum HE4 was 0.979 with sensitivity of 0.849 and specificity
of 0.949. Classifier performance, also evaluated in all patients,
achieved AUC of 0.966 with sensitivity of 0.876 and specificity
of 0.915 (Figure 6C).

Among all the urine samples, eight were diagnosed as
early stage malignant cases (stage I or II) according to FIGO
(International Federation of Gynecology and Obstetrics) stage.

Out of the eight samples, seven samples were correctly identified
as early stage by the classifier (Figure 6D). The performance of
serum CA125 and HE4 on the eight samples was additionally
evaluated. Overall, six and four of the eight patients were
correctly classified using serum CA125 and HE4, respectively
(data not shown). One patient sample, labeled S_e81, was
incorrectly identified with the classifier (Figure 6D). The serum
CA125 and HE4 levels of this patient were 34.5 U/mL and
89.2 U/mL, respectively, suggesting incorrect classification with
both biomarkers based on the cut-off value used in clinic. Our
collective findings indicate that early stage malignancy is similar
to benign tumor types and may be indistinguishable based on
biomarkers in body fluid.
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FIGURE 6 | Performance of the classifier, serum CA125 and HE4 in all patients. (A,B) The expression of serum CA125 and HE4 in all patients. (C) ROC analysis of
the classifier, serum CA125 and HE4 in all patients. (D) Performance of the classifier in early stage ovarian cancer diagnoses. **p-value < 0.01.

DISCUSSION

OC is a major public health issue owing to its high concealment
and low 5-year survival rates. Development of accurate early
diagnosis techniques and differentiation of malignant from
benign ovarian tumors have long been an important focus
of research. While serum CA125 and HE4 are widely used
for auxiliary diagnosis of OC in the clinic, non-invasive and
accurate diagnostic methods or biomarkers are also important
for surveillance of high-risk patients. The rapid development
of MS techniques, in particular, DIA-MS, has facilitated
identification and quantification of the urinary proteome
(Muntel et al., 2015; Sajic et al., 2015). This study focused
on machine learning to assist in non-invasive diagnosis of
different ovarian tumor types based on DIA-MS analysis of the
urinary proteome.

Over the past decade, the use of protein panels (classifiers) to
improve accuracy of diagnosis has attracted significant research
attention. Protein panels mined from MS data present a key

factor in classifier construction. Machine learning outperforms
conventional statistical methods owing to improved ability to
identify variable, resulting in improved predictive performance
(Roux-Dalvai et al., 2019; Captur et al., 2020; Shen et al., 2020),
and thus broadly utilized to analyze data from numerous areas of
biology, such as transcriptomics, metabolomics and proteomics.
Machine learners include Bayesian classifiers, Decision trees,
Rule-based learners, Support Vector Machines, Artificial Neural
Networks, and Random Forest, all with specific advantages
and disadvantages. In this study, we applied Random Forest
to analyze large-scale proteomics data generated with DIA-MS
owing to its efficiency on large datasets and ability to handle large
numbers of attributes (Swan et al., 2013). Following construction
of the classifier using a training dataset, we performed essential
validation in other datasets to confirm its ability and accuracy.
Based on the workflow of DIA-MS analysis, random forest
machine learning, classifier construction and validation, a five-
protein panel was finally mined and validated from the data
matrix of urinary proteomics. Serum CA125, a widely used
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biomarker for diagnosis of OC, was only identified in a few
samples in our study (data not shown), probably due to presence
of low levels in urine. Thus urine CA125 failed the above
statistical screening and was excluded from subsequent analyses.
This invalidation of well-characterized serum biomarkers of OC,
such as CA125, in urine suggests a distinct diagnostic system
from that in serum (Zhao et al., 2020).

While a 5-protein panel (WFDC2, PTMA, PVRL4, FIBA,
and PVRL2) was developed for classification of benign and
malignant ovarian tumors for the first time in this study, all
included proteins were previously reported to be associated with
cancer, displaying dysregulated expression in serum, tissue or
cell lines. WFDC2 (WAP four-disulfide core domain protein 2,
also named HE4), a small secretory protein expressed in OC,
is commonly used as a serum diagnostic biomarker (Heliström
et al., 2003). In addition to numerous studies using blood as
the biospecimen, the association between HE4 in urine and OC
has been investigated (Jia et al., 2017). Our results are consistent
with previous reports of higher concentrations of urinary HE4
in patients with malignant OC compared to benign ovarian
tumors (Macuks et al., 2012; Liao et al., 2015). However, the
urinary level of WFDC2 showed limited accuracy as a single
biomarker with AUC of 0.84 in this study. Prothymosin alpha
(PTMA) plays an important role in cell growth, proliferation
and apoptosis (Moreira et al., 2013; Wang et al., 2017). Recent
studies suggest that overexpression of PTMA is associated
with tumorigenesis, tumor progression and prognosis in cancer
(Zhang et al., 2014; Ha et al., 2015). Our experiments showed
higher expression of PTMA in the malignant relative to the
benign ovarian tumor group, supporting the tumor biomarker
potential of PTMA. Accumulating evidence supports the utility
of PTMA as a novel therapeutic target in several diseases,
including cancer and inflammation (Samara et al., 2017; Zhu
et al., 2019). FIBA (fibrinogen alpha), also designated fibrinogen
alpha chain, is one of three polypeptide chains that make
up the blood-borne glycoprotein fibrinogen. Comprehensive
research has shown upregulation of serum FIBA in multiple
cancer types (Duan et al., 2018; Shi et al., 2018). However,
the utility of urinary FIBA as a biomarker of OC has not
been established as yet. Experiments from the current study
showed that the urinary FIBA level was significantly higher in
patients with malignant than benign tumors. Combined with
previous findings, our results support the potential of FIBA
as a tumor biomarker (Duan et al., 2018; Shi et al., 2018).
Recent findings suggest that both PVRL2 and PVRL4 (poliovirus
receptor-related 2 and 4) are induced under cancer-promoting
conditions and affect the functions of immune cells, such as
T-cells and natural killer cells (Bekos et al., 2019; Whelan et al.,
2019). Expression of PVRL4, also known as Nectin-4, on the
surface of OC cells is reported to alter their adherence and
migration ability (Boylan et al., 2016). We observed higher
levels of urinary PVRL2 and PVRL4 in malignant tumor groups,
indicating that overall expression of both molecules is positively
correlated with OC.

Previous studies have shown that urine could enrichment
changes in all parts of body and is a highly sensitive matrix
indicative of pathological changes in the body (Wu and Gao,

2015). Thus, urine presents an early biomarker source with the
potential to reflect small, early pathological changes signifying
the onset of diseases such as cancer (Wu et al., 2020).
Evaluation of the performance of our novel classifier supports
its potential in non-invasive early stage diagnosis. Our future
objective is to collect urine samples of patients with early
stage malignant tumors on a large scale for validation of the
early stage diagnostic capability of the classifier. If possible, a
novel model using a combination of the classifier with serum
CA125 or HE4 could be established to improve early stage
diagnostic accuracy.

Although the classifier was established as an effective
diagnostic marker with an achieved AUC of 0.952 in the
validation dataset, several limitations of this study should be
considered. First, our proteomic analysis does not allow absolute
quantification. If the classifier is to be applied in the clinic or
developed into a kit, more rigorous quantification and extensive
validation analyses are warranted. Additionally, due to the
relatively small sample size, we did not include more clinical
parameters for machine learning analysis that could have further
improved the diagnostic power of the classifier.

CONCLUSION

In conclusion, DIA-MS based urinary proteomics was combined
with machine learning to establish a novel classifier for
discriminating between malignant and benign ovarian tumors
in this study. Our collective results indicate that the newly
established classifier presents a promising tool for non-invasive
diagnosis of OC.
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