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Background. Functional imaging has recently been used to investigate detailed somatosensory organization in human cortex.
Such studies frequently assume that human cortical areas are only identifiable insofar as they resemble those measured
invasively in monkeys. This is true despite the electrophysiological basis of the latter recordings, which are typically
extracellular recordings of action potentials from a restricted sample of cells. Methodology/Principal Findings. Using high-
resolution functional magnetic resonance imaging in human subjects, we found a widely distributed cortical response in both
primary somatosensory and motor cortex upon pneumatic stimulation of the hairless surface of the thumb, index and ring
fingers. Though not organized in a discrete somatotopic fashion, the population activity in response to thumb and index finger
stimulation indicated a disproportionate response to fingertip stimulation, and one that was modulated by stimulation
direction. Furthermore, the activation was structured with a line of symmetry through the central sulcus reflecting inputs both
to primary somatosensory cortex and, precentrally, to primary motor cortex. Conclusions/Significance. In considering
functional activation that is not somatotopically or anatomically restricted as in monkey electrophysiology studies, our
methodology reveals finger-related activation that is not organized in a simple somatotopic manner but is nevertheless as
structured as it is widespread. Our findings suggest a striking functional mirroring in cortical areas conventionally ascribed
either an input or an output somatotopic function.
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INTRODUCTION
Receptors in the skin provide cutaneous information to the

primary somatosensory (SI) cortex. Following detailed electro-

physiological studies of cortical somatosensory responses in

monkeys, investigations of somatosensory organization in human

cortex have either relied on superficial recordings from epileptic

patients [1], or more recently from fMRI (functional magnetic

resonance imaging) [2–5]. Previous human somatotopy studies

using fMRI have been limited not only by scanning resolution

[2,4] but by an underlying premise that fMRI reveals discrete

activation ‘‘hotspots’’ in response to cutaneous stimulation [3,5],

like those measured electrophysiologically as the firing output of

cells. Here we sought cortical somatosensory responses using high-

resolution (4T) fMRI and an interpretation of the measured

activity as reflecting more the metabolic demands of dendritic

input to cells [6].

Our experimental paradigm adapted the phase analysis method

used previously to identify retinotopic maps in visual cortex [7]. A

reference time course consisting of periods of stimulation

interspersed with non-stimulation intervals was created by a

‘‘sliding window’’ [8,9] of stimulation that cycled repeatedly over

the digit surface (Fig. 1). Any location on the digit surface

experienced alternating windows of stochastic stimulation and

silence. Neighboring locations were stimulated in like fashion, but

with a stimulation time course that was staggered in time. This

design was not strictly a block design, except with respect to

individual locations on the digit surface. Any correlated cortical

activity should have been driven by an on/off stimulation time

course, but one whose particular phase lag would indicate its

sensitivity to a certain location on the digit surface. The relatively

slow progression of the stimulation window over the digit, and the

random nature of the jet activations within any stimulation

window, mitigated any ‘‘cutaneous rabbit’’ illusions of movement

[10]. As a within-digit control, we varied the general direction of

stimulation, from the base of the finger to the fingertip, or from the

tip to the base.

We passively stimulated the hairless surface of the thumb (D1),

index (D2) and ring finger (D4) of human subjects using puffs of air

delivered through a custom-built apparatus. While stimulating the

digits we measured the cortical blood-oxygenation level dependent

(BOLD) response using fMRI. We assigned each functional voxel

a particular location on the digit surface based on its phase lag of

maximal correlation to the stimulation time course.

METHODS

Subjects
We scanned seven healthy right-handed human subjects (four males;

average age 26 years), at the Robarts Research Institute (London,

ON) using a 4T magnetic resonance imager (Varian, Palo Alto, CA;

Siemens, Erlangen, Germany). Incorrect slice plane positioning

excluded the experiments of one subject, and a significant motion

artifact excluded the D4 experiments of subject 1.

Scanning parameters
We used a custom 14-cm quadrature surface coil centered on the left

frontoparietal region to acquire functional and anatomical images,

and a custom transmit-receive cylindrical birdcage coil to acquire a

full-brain anatomical volume in a separate scanning session. A T2*-

Academic Editor: Chris Miall, University of Birmingham, United Kingdom

Received May 16, 2007; Accepted December 14, 2007; Published January 30,
2008

Copyright: � 2008 Overduin, Servos. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Funding: Part of this work was supported by grants from the Natural Sciences
and Engineering Research Council of Canada (S.A.O. and P.S.), and from the
Canadian Institutes of Health Research, the Canada Research Chairs program, and
the Ontario Premier’s Research Excellence Award program (P.S.).

Competing Interests: The authors have declared that no competing interests
exist.

* To whom correspondence should be addressed. E-mail: pservos@wlu.ca

PLoS ONE | www.plosone.org 1 January 2008 | Issue 1 | e1505



weighted gradient echo-echo planar imaging (EPI) pulse sequence

was used in functional image acquisition (TR = 750 ms, 4 shots,

TE = 15 ms, FA = 40u, FOV = 19.2619.2 cm). Nine contiguous

pseudocoronal 5-mm thick functional slice planes (1.561.5 mm

resolution in-plane) were sampled, and 72 such volumes were

collected over each 216-s experiment. A T1-weighted volume was

acquired in the same session, consisting of 64 contiguous

pseudocoronal 1-mm thick anatomical slice planes (0.7560.75 mm

resolution in-plane; TR = 12 ms, TI = 500 ms, TE = 6 ms, FA =

11u, FOV = 19.2619.2 cm) approximating the orientation of each

subject’s central sulcus. The full-brain T1-weighted volume included

256 contiguous axial 0.94-mm thick slice planes (TR = 12 ms,

TI = 500 ms, TE = 6 ms, FA = 11u, FOV = 24.0624.0 cm).

Stimulation equipment
We used a custom Plexiglas frame to deliver pulses of air via an

array of shallow 0.5-cm wide depressions designed to conduct

reflected air away from the hand surface. Connected to 16 of these

depressions were flexible tubes leading to a series of manifold-

mounted air valves. The pattern of these 16 connections was

chosen for each subject to optimize the distribution of the active

jets under the digits. In particular, the jet locations were spaced

regularly about 1.5 cm apart in a straight line under D1 (4 jets),

D2 (6) and D4 (6). The tubing length and aperture was consistent

across channels. The air valves were computer-controlled and

received air from a compressor at a steady-state pressure of 240–

275 kPa. Subjects’ eyes were closed; a bite bar stabilized the head.

Experimental paradigm
In six experiments on each subject we separately stimulated three

digits (D1, D2, and D4) and two directions of stimulation (tip-to-

base and base-to-tip). Each subject participated in all experiments

in a pseudorandom sequence such that no two successive

experiments would involve the same digit. Each experiment was

defined as six successive 36-s stimulation cycles. Within each

stimulation cycle a ‘‘window’’ of stimulation (equal to half of the

available jets) rotated through all the jets spanning a digit. During

each 18-s half-cycle the potentiated jets were activated in a

pseudorandom sequence, in bursts of between five and ten 40-ms

air puffs each separated by 60 ms. Each such burst was confined to

a single jet, but could be followed by another burst at the same

location or at another jet potentiated within the window. These

bursts were separated by random inter-burst intervals of 1–2 s.

The resulting puff and burst stimulation frequencies were within

the range of superficial cutaneous receptors [11].

Anatomical analysis
Our anatomical regions of interest included areas 4, 3a, 3b, and 1.

These were defined for each subject based on visual inspection of

full-brain cortical anatomy. Areas 4 (along the anterior wall of the

central sulcus and onto the precentral gyrus) and 3b (on the posterior

wall of the central sulcus) lay facing each other across the fundus of

the central sulcus (area 3a), and converged medially at the

paracentral lobule. Area 1 lay on the crown of the postcentral gyrus

and extended posteriorly to the rostral lip of the postcentral sulcus.

Functional analysis
Prior to our correlation analysis, we preprocessed the functional

images in BrainVoyager (Brain Innovation, 2000) within the

frequency domain by removing linear trends in vascular activity

and highpass filtering at 0.014 Hz (cf. [12]). Functional data were

not spatially averaged. The 18-s on/off half-cycles defined a

reference time course that we blurred and shifted by a 5-s

hemodynamic response function. The reference time course was

then shifted by iterative 3-s increments, and correlated with the

functional data at each delay. Functional voxels were color-coded

according to the phase lag giving maximal correlation (Fig. 1B).

Note that we used twelve phase values, each corresponding to a

particular 3-s shift of the 36-s stimulation cycle. This number of

phase values exceeded the number of stimulation locations on the

digits (four or six). We chose to use twelve phase values in order to

retain the 3-s temporal resolution of the BOLD signal, and

because it was the lowest common denominator of four and six

and thus allowed us to use the same phase analysis parameters and

color scale for all digits. After coregistering a subject’s functional

and anatomical slice planes, phase-coded functional data were

assigned to one of the regions of interest (ROIs). Voxels above a

correlation threshold (r$0.3) were tested for uniformity of phase

using Rayleigh’s statistic [13].

Cortical flattening
In order to quantify our qualitative impression that functional

activity in the precentral gyrus tended to mirror that of the

postcentral gyrus, we flattened the pericentral cortical area into a

2D manifold using the Isomap algorithm [14, 15; see also 16], a

nonlinear dimensionality reduction algorithm. Isomap is a variant

of classical multidimensional scaling (MDS [17]), and like MDS, it

computes a non-sparse distance matrix for all points in the

workspace to find a lower-dimensional representation of the data.

Unlike MDS, the distances are not Euclidean but are the sums of

the geodesic distances, which accumulate in transition from the

center of one local neighborhood to the next. Isomap thus allows a

highly-folded surface to be flattened even when voxels on either

side of a sulcus may be nearly adjacent in Euclidean space. Isomap

also does not assume that the extracted surface is an intrinsically

linear 2D sheet, but instead generalizes to a larger class of

nonlinear manifolds [14], which likely include the cortical surface

or patches thereof [16]. For our purposes we defined the

neighborhood of a voxel as its 10 nearest neighboring voxels.

This neighborhood parameter e was the minimal size that

explained 99% of the variance in geodesic distance estimates,

averaged across subjects [15]. Although distances along the 2D

manifold are in arbitrary units and cannot be directly equated with

Euclidean distances, for plotting purposes we have labeled the

approximate rostrocaudal and lateromedial orientations after

Figure 1. Sliding window paradigm. (A) Pneumatic stimulation was
delivered to D1, D2, or D4, via a restricted set of jets within a sliding
window of stimulation. (B) Voxels correlated to the reference waveform
were assigned one of 12 colors, according to the phase delay giving the
maximal correlation. Because the number of jet positions was only four
(D1) or six (D2/D4), the color values included interpolated phase lags.
(C) The colors corresponded to locations on the digit surface, although
the mapping from phase delay to location differed depending on
stimulation direction.
doi:10.1371/journal.pone.0001505.g001
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rotating the manifolds so that the fundus (here, a line joining the

medial and lateral termini of area 3a) was vertical, primary motor

cortex (MI) was shown on its left and SI on its right. By visual

observation of the extracted manifolds we confirmed that the

relative positions of the cortical areas were preserved.

Symmetry analysis
Our analysis involved the following steps. 1) We plotted the

functional data (above the r$0.3 threshold) over the flattened map of

the pericentral cortex, and binned the data into grid cells (arbitrarily

set at 20 units2) tiling this surface. Within each grid cell, we took the

average phase delay value of all functional voxels within the bin; if

none, the grid cell was considered not ‘‘active’’. 2) We computed the

degree of phase similarity in each pair of active MI (area 4) and SI

(3b/1) grid cells that lay an equal distance along the fundus and an

equal distance either rostral or caudal to the fundus. Given our

uncertainty in assigning area 3a voxels to pre- or postcentral cortex,

and in the relationship of this area to MI and SI (see Discussion), we

have excluded it from this calculation. The similarity values were

normalized such that if two grid cells of a pair had identical phase

delays, their phase similarity was 1; if the activity was in anti-phase

(e.g. 0u and 180u), the similarity was 21; if phase delays were 90u and

180u, the similarity was 0.5; etc. We then computed an average

symmetry score for each experiment, over all pairs of active grid cells

in that experiment. 3) To determine a threshold for ‘‘significant’’

symmetry, we ran 1000 Monte Carlo simulations for each

experiment. In each simulation, we randomly scrambled the grid

cells within the pericentral map before performing step 2. We took

the 95th percentile of the resulting distribution of 1000 simulated

symmetry scores as the threshold for declaring a true symmetry score

obtained from that experiment significant.

RESULTS
Our fMR imaging and subsequent analysis were directed at

primary sensorimotor cortex contralateral to the right hand. Using

the full-brain anatomical volume from each subject we highlighted

the lateromedial extent of several cortical regions, including

Brodmann’s areas 3a, 3b and 1 (SI), and area 4 (MI). We found in

most experiments that the entire ROI was dominated by voxels

having only a few of the possible phase delay values. In particular,

the distributions of voxels that were correlated to the reference

time course in each digit6direction stimulation condition were

significantly nonuniform for both D1 and D2 experiments

(p,0.01, using Rayleigh’s statistic [13] for the circular distribution

of r$0.3 voxels), but only marginally for the D4 experiments

(p = 0.03). Remarkably, this trend of nonuniform phase response

upon D1 and D2 stimulation was true not only in each of SI areas

3b and 1 but also in MI and area 3a in between. In cortex outside

of these areas, the population of correlated voxels in these

experiments was not significantly tuned (p.0.05).

The D1/D2 phase value distributions appeared to peak near the

delay corresponding to stimulation of the digit tips (Fig. 2).

Moreover, while the peaks of the tip-to-base and base-to-tip

distributions were both within the phase delay range correspond-

ing to fingertip stimulation, they were also significantly different

from each other (p,0.01). Recall that each fingertip was

stimulated at two locations (Fig. 1C). When the cyclical stimulation

window proceeded in a tip-to-base fashion—i.e. when it contacted

Figure 2. Phase value distributions were nonuniform and tuned to
fingertip stimulation. Distributions of voxels (r$0.3) are summed
across digits (D1 and D2) and subjects, and are shown cumulatively for
areas 4, 3a, 3b, and 1 along a linearized axis aligned with the digit
surface. In the distributions for both tip-to-base (top; ordinate flipped)
and base-to-tip (bottom) stimulation, there was a strong response
coincident with stimulation across the fingertip jets. The peak of this
response appeared to shift in phase as a function of stimulation
direction.
doi:10.1371/journal.pone.0001505.g002

Figure 3. Activation tuning and symmetry in 2D slices through
pericentral cortex. Three sample pseudocoronal views of sensorimotor
cortex with superimposed functional activation are given for two
experiments, with (A) tip-to-base stimulation of digit 2 of subject 2, and
(B) base-to-tip stimulation of the same digit. In each panel, cortical areas
4. 3a. 3b. and 1 are shown in grayscale according to the legend at right.
The phase delays of active voxels are shown according to the reference
bars at top (see Fig. 1). Black circles and associated Talairach
coordinates give the location of the fundus in these slices, estimated
as the centroid of the area 3a cortex. Approximate directions L (left), R
(right), S (superior) and I (inferior) are given in (A), top. A scale bar is
shown in (B), bottom.
doi:10.1371/journal.pone.0001505.g003
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the most distal fingertip location before more proximal digit

locations—the cortical sensorimotor activation appeared to

correlate predominantly with stimulation at the more distal of

the two fingertip jets (Fig. 2, top). Conversely, when the

stimulation window approached the fingertip in a base-to-tip

direction, the greater part of the sensorimotor activation appeared

to correlate with stimulation at the base of the fingertip (Fig. 2,

bottom). It thus appeared that there was an enhanced population

BOLD response limited to the part of the fingertip initially

contacted in each cycle of stimulation.

The digit-related activation in both motor and somatosensory

cortices was not only extensive and biased towards fingertip

representation, but was also markedly symmetric with respect to

the central fundus. Such symmetry was occasionally evident in

individual pseudocoronal slice planes that happened to include

both pre- and postcentral gyri (Fig. 3). This symmetry was not only

the result of activation clumps that spanned the banks of the

central sulcus; such symmetric activation was also evident for

activation on the pre- and postcentral gyral surface some distance

from the sulcus (e.g. Fig. 3, top). However, the convoluted path of

the central sulcus—which can cross into such 2D slices multiple

times—makes it difficult to perceive the topographical distribution

of the functional activity around the sulcus. Nevertheless, these

images do demonstrate the tuning of the functional activity to

fingertip stimulation, as can be seen in comparing the tip-to-base

(Fig. 3A) and base-to-tip experiments (Fig. 3B).

To visualize and quantify the symmetrical layout of the

sensorimotor activation, we mapped the functional data to

transformed, 2D views of the pre- and postcentral gyri (Fig. 4,

top, showing the same two experiments as in Fig. 3). These

flattened representations of the pericentral cortex were found

using the Isomap algorithm (see Methods). We binned the

functional data of MI (area 4) and SI (areas 3b and 1) into square

grid cells rostral or caudal to the fundus (Fig. 4, middle). Then, we

computed the degree of similarity between the averaged phase

values within each pair of active grid cells lying across the fundus

from each other (Fig. 4, bottom). In the experiments shown, the

mean symmetry score across all such pairs of grid cells was 0.38 in

(A) and 0.37 in (B). Each of these values exceeded the 95th

percentile of the distribution of symmetry scores obtained from

1000 Monte Carlo simulations of each experiment (see Methods),

which was 0.16 in both cases.

r

Figure 4. Activation tuning and symmetry in flattened representa-
tions of pericentral cortex. Shown are the same two experiments
represented in Figure 3. In each plot the cortex is shown as a 2D
surface, oriented in approximate rostrocaudal and lateromedial
directions. The top plot shows functional data, representing phase lag
according to the reference bar at top, superimposed over MI (rostral)
and SI (caudal) voxels in gray, as per the legend used in Figures 2 and 3.
(Area 3a, between these regions at the fundus of the central sulcus, is
not shown.) The middle plot shows these same data binned into grid
cells tiling the pericentral cortex. ‘‘Active’’ grid cells are indicated by the
average phase lag across voxels within the bin. Grid cells representing
pericentral cortex but lacking any active functional voxels are shown as
gray (again, as per the Fig. 2 and 3 legends); cells outside MI and SI are
white. The bottom plots depict the degree of similarity between active
grid cells lying across from each other an equal distance from the
fundus, according to the scale bar immediately above. Pairs of active
grid cells with similar phase delays are both colored red; pairs of cells
with activity out of phase are colored blue. These examples show
widespread functional activity on both sides of the fundus, and indicate
that much of this mosaic of activity was mirrored by similar activity on
the opposite side of the fundus.
doi:10.1371/journal.pone.0001505.g004
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Indeed, the average phase symmetry score across all pairs of

active grid cells was in many cases significant, in comparison to the

simulated data sets. In particular, in the tip-to-base and base-to-tip

digit 1 experiments, we found MI/SI symmetry scores in excess of

threshold in 5/6 and 5/6 subjects, respectively. In digit 2

experiments, 5/6 (tip-to-base) and 4/6 (base-to-tip) subjects

demonstrated significant MI/SI symmetry. In digit 4 experiments

(one of them invalidated by motion artifact; see Methods), we

found significant symmetry scores in only 2/6 and 3/5 subjects.

Thus while the BOLD response following stimulation at least of

digits 1 and 2 may have been globally tuned to fingertip phase lags,

at a finer level most of these response maps could also be

characterized as relatively symmetric mosaics of activation on the

two sides of the central sulcus.

DISCUSSION
Our experimental methodology has previously allowed us to locate

discrete somatotopic maps of the digits in areas 3b and 1 [9]. These

maps were defined as regions of connected voxels displaying a strong

correlation to the pattern of stimulation across the digit surface, and

a reversed pattern of peak correlations when the stimulation

direction was reversed. However, this analysis did not reflect the

larger pattern of functional activation in the region of the central

sulcus. While our delineation here of areas 1, 3b, 3a, and 4 was crude

for lack of precise cytoarchitectonic divisions [18], the population-

level activity suggests in any case that these areas had a relatively

common response to digit stimulation. Notably, the activation in

each area appeared to be weighted towards fingertip stimulation of

the thumb and index finger (Fig. 2), in accordance with the high

sensitivity of the distal finger pad and the relative importance of D1

and D2 in precision grips and other behaviors.

Unlike areas 3b and 1, areas 3a and 4 are conventionally

ascribed roles in motor output [19]. Area 3a is thought to transmit

kinesthetic rather than cutaneous afferents to both motor cortex

[20] and area 1 [21]. But in addition to muscle spindle input to

area 3a, in monkeys cutaneous responses here can emerge with

training [22] and may physically parallel those in SI [20]. The

presence of somatosensory inputs to area 4 has also been neglected

(as has been the motor function of parietal areas, from which a

significant proportion of motor corticospinal fibers are derived, in

humans [23] as in monkeys [24]). Nevertheless, single-unit

recordings from awake monkeys reveal cutaneous inputs to MI

that appear to segregate in modality-specific maps, with

neighboring representations being differentially responsive to

cutaneous and joint receptor input [25]. In humans, despite fMRI

evidence that a vibrotactile stimulus can elicit precentral gyrus

activity [26,12], few researchers have tried to localize cutaneous

functions to the frontal lobe.

We observed not only robust and fingertip-weighted activation on

both sides of the central sulcus following stimulation of digits 1 and 2,

but a symmetrical pattern to this activation. This is the first

observation known to us of activation symmetry across function-

defined modalities. Within-modality mirror symmetry has recently

been reported within tonotopic maps of primary auditory cortex [27]

and object representations within occipito-temporal cortex [28].

This symmetry was evident not only despite the different

functions of SI and MI, but also despite a less orderly somatotopic

organization in precentral relative to postcentral areas. For

instance, in monkeys the area 4 and 3a representations appear

to be more fractured than the SI maps [20,22], perhaps consistent

with the involvement of these areas in coordinated muscle

recruitment. Within humans, a somatosensory homunculus has

not been defined precentrally, although the motor output of MI is

known to be somatotopically organized as shown by electrical

stimulation in epileptic patients [1,29].

We suggest that both non-somatotopic organization in precentral

cortex and the nature of the BOLD signal may underlie previous

investigators’ inability to resolve discrete foci of hemodynamic

activity here upon digit stimulation [9,12]. In contrast to the spiking-

defined somatotopy found with electrophysiological mapping, fMRI

appears to reflect a more distributed, dendritic-level processing of

neural inputs [6]. The symmetry of SI and MI responses we observed

may reflect common sensory input to these areas. Although the

symmetry may also reflect a diffusion of the hyperoxic response [30]

in the vasculature on either side of the Rolandic artery, Young et al.

[18] found that in the human left hemisphere, the resting regional

blood flow within the area 3b classical ‘‘hand’’ area was correlated to

blood flow within both anterior MI and area 3a.

In conclusion, while there may have been hotspots of BOLD

response with some degree of somatotopic organization, the

broader pattern of activity we observed upon cutaneous

stimulation of the digits, in particular of the thumb and index

fingers, was widely and symmetrically distributed on both sides of

the central sulcus. In the case of thumb and index finger

stimulation, the responses were also tuned to fingertip stimulation

and were globally modulated by the direction of stimulation along

the finger surface.
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