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Simple Summary: The study presents relevant research in the fields of environmental microbiology,
waste manage-ment and toxicology. Industrial pollutants released into the environment, and climate
change are causing significant deterioration of water quality. Oxidoreductases, synthesized during
secondary metabolism by white-rot fungi have been applied in many industries, and are particularly
frequently used for soil and water environment bioremediation and xenobiotic biodegradation.
Immobilization methods are applied to improve the stability and recyclability of the biocatalyst
compared to the free enzyme. Immobilization, mainly enzyme immobilization, reduces the number of
processing steps due to the easy separation of the biocatalyst itself from its reaction mixture, retention
of catalytic activity, and the resulting high degree of reusability and reduction of application costs.
Therefore, the aim of this study was to analyze the possibility of bioremoval of the anticancer drug
mitoxan-trone (MTX) by immobilized crude versatile peroxidase (cVP/Ba) synthesized by B. adusta
CCBAS 930. Since biological methods should be characterized not only by efficient biodegradation
of xe-nobiotics, but also by a reduction of their toxicity, phyto-, bio-, and genotoxicity, assays were
applied to assess the detoxification of mitoxantrone by immobilized cVP/Ba.

Abstract: The aim of this study was to evaluate the biodecolorization and detoxification of the
anticancer drug mitoxantron (MTX) by immobilized crude versatile peroxidase of Bjerkandera adusta
CCBAS 930 (icVP/Ba). The concentrated crude VP was obtained from B. adusta CCBAS 930 culture
on medium with MTX (µg/mL) addition, immobilized with 4% sodium alginate. MTX removal
degree (decolorization), levels of phenolic compounds and free radicals were determined during
MTX biotransformation. Moreover, the phytotoxicity (Lepidium sativum L.), biotoxicity (multi-species
microbial assay, MARA), and genotoxicity (SOS Chromotest) of MTX were evaluated before and after
the biological treatment. The use of icVP/Ba (95 U/mL) significantly shortened the bioremoval of
10 µg/mL MTX (95.57% after 72 h). MTX removal by icVP/Ba was correlated with an 85% and 90%
decrease in the levels of phenolic compounds and free radicals, respectively. In addition, the use of
icVP/Ba contributed to a decrease in the phyto-, bio-, and genotoxicity of MTX. This is the first study
to describe the possibility of removing MTX using immobilized crude fungal peroxidase.

Keywords: cytostatic drug; versatile peroxidases; immobilization; genotoxicity; biotoxicity;
phytotoxicity

1. Introduction

Cytostatic drugs are a heterogeneous group of pharmaceuticals used to treat cancer
and other diseases through inhibition of cell division, and thus tumor development. One
of the main groups of cytostatics are anthracyclic antibiotics (daunomycin, doxorubicin, mi-
toxantrone), which have been used in cancer therapy for almost 50 years [1]. Mitoxantrone
(MTX) is a synthetic antineoplastic drug, structurally analogous to such anthracyclines as
doxorubicin. MTX has been used in the treatment of various cancers, including leukemia,
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non-Hodgkin lymphoma, and breast cancer [2]. Anticancer drug residues have been found
in hospitals, domestic and industrial wastewaters, as well as surface waters [3]. Like other
pharmaceuticals, both initial MTX and its metabolites are excreted and discharged to the
sewage system via urban or hospital effluents. MTX is excreted in 6–11% by urine and in
25% by feces, and the rest is removed in a metabolized form. There are no studies that report
the stability of mitoxantrone in water, but according to known findings, the half-life of MTX
is up to 9 days [4]. Even low concentrations of pharmaceuticals can be potentially risky for
the environment, as they are designed to cause biological effects at low doses [5]. Moreover,
pharmaceuticals are likely bioaccumulated by organisms; due to the possibility of increas-
ing their concentration in subsequent links of the trophic chain through biomagnification,
even small concentrations of pharmaceuticals in surface waters pose a threat to human and
animal health [6]. They are resistant to conventional wastewater treatment technologies
and create a potential risk to the environment and human health. Many cytostatic drugs
are cytotoxic, teratogenic, genotoxic, and carcinogenic even at low concentrations [7–9].
Currently, mitoxantrone is removed from the environment using electrochemical meth-
ods [10], adsorption and photocatalytic degradation [11], or green synthesis [12]. Enzymatic
treatment is a particularly attractive technology for removing pharmaceuticals resistant to
conventional treatments [13]. There is a lack of information in the literature regarding the
biological treatment of mitoxantrone. To the best of my knowledge, this is the first study
that describes the possibility of removing mitoxantrone using a biological method, i.e.,
immobilized peroxidase. With the development of molecular biology and biotechnology
tools, and thus a better understanding of the structure and catalytic properties of enzymes
produced by microorganisms, the possibilities of using environmentally friendly biological
methods for removing xenobiotics are increasing [14,15].

Oxidoreductases, including peroxidases, synthesized during secondary metabolism
by white-rot fungi, have been used in many industries, including pharmacy, medicine, food
processing, and cosmetology [16]. There is growing interest in the application of crude and
purified extracellular ligninolytic enzymes for pharmaceutical removal [13,17,18]. They
are particularly frequently applied in bioremediation of the soil and water environment
and xenobiotic biodegradation. Due to their low substrate specificity, fungal peroxidases
can biodegrade various aromatic compounds, such as anthraquinone dyes, pesticides,
pharmaceuticals, melanoidins or endocrine disruptor compounds [9,17–22]. In addition to
the well-known Mn-dependent peroxidase (MnP) and lignin-degrading peroxidases (LiP),
versatile peroxidase (VP) seems to be a very promising oxidoreductase for use in xenobiotic
biodegradation, as it combines the substrate specificity of both fungal peroxidases, i.e.,
MnP and LiP [23]. Our previous studies characterized a versatile peroxidase decolorizing
anthraquinone derivatives produced by the B. adusta strain CCBAS 930 (VP/Ba) [24,25].
Recent studies have shown that purification is necessary to characterize and fully under-
stand the mechanism of action of an enzyme; however, crude or partially purified enzymes
are used for practical applications [26–28]. This is mainly due to the time required to
obtain a highly effective enzyme and the possible cost reduction of the application of the
proposed method [29]. Crude or partially purified ligninolytic enzymes can be used as
low-cost alternatives in environmental applications [30]. Moreover, crude enzymes are
often more stable than purified enzymes due to the presence of a mixture of components
that confer protection against excessive oxidation and denaturation [31]. Immobilization
methods are applied to improve the stability and recyclability of cells or biocatalysts com-
pared to free cells or enzymes. Immobilization by entrapping the cells or enzymes with a
permeable polymer network allows the supply of substrates and removal of reaction prod-
ucts [19,32,33]. Enzymes immobilized via entrapment exhibit improved stability due to the
intensified control of their microenvironment, and are active in a wide range of tempera-
tures and pH. Enzyme immobilization reduces the number of processing steps due to the
facile separation of the biocatalyst itself from its reaction mixture, the retention of catalytic
activity, and the resulting significant reusability and reduction of application costs [16].
Moreover, immobilization of the enzyme using a biodegradable polymer makes the process
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environmentally safe [34]. Enzyme immobilization allows for the lower consumption of
energy, water and reagents. Moreover, the possibility to use the immobilized enzyme in
several cycles with the same efficiency, as well as longer shelf-life of immobilized enzymes
significantly increase the efficiency of the process. From an economic point of view, the
use of immobilized enzyme is cost-effective under continuous conditions. On the other
hand, operational stability of the enzymes is one of the main problems in continuous pro-
cesses [35]. Recent studies underlined the role of immobilized peroxidases–H2O2-mediated
systems as versatile biocatalysts for the biodegradation and biotransformation of a wide
spectrum of hazardous environmental pollutants [36].

Therefore, the aim of the present study was to evaluate the effective bioremoval of the
anticancer drug MTX by immobilized crude versatile peroxidase (icVP/Ba) synthesized
by B. adusta CCBAS 930. Since biological methods should be characterized not only by
efficient biodegradation of xenobiotics, but also the reduction of their toxicity, the content
of phenolic compounds and free radicals was determined along with phyto-, bio-, and
genotoxicity assays to assess MTX detoxification with icVP/Ba.

2. Materials and Methods
2.1. Chemicals

Mitoxantrone hydrochlorine (≥90%), 2,6-dimethoxyphenol (99%) (2,6-DMP), nitrote-
trazolium blue (99%) (NBT), protocatechuic acid (97%), sodium alginate, calcium chloride
(93%), 30% hydrogen peroxide and malonic acid (99%) were purchased from Sigma-Aldrich
(St. Louis, MO, USA). All other chemicals and reagents were of analytical grade.

2.2. Bjerkandera Adusta Strain CCBAS 930 and VP Peroxidase Production Profile

The anamorphic B. adusta strain CCBAS 930 was isolated as B. adusta R59 from black
earth soil (Pheozems, FAO). The identification sequences of the rRNA gene fragments: ITS1,
5,8S rRNA and ITS2 of B. adusta CCBAS 930 are available in GenBank (AY 319191). The
culture was deposited in the Culture Collection of Basidiomycetes Prague, Czech Republic
as B. adusta CCBAS 930 [37]. The experiments were conducted under stationary conditions
(20 days, 26 ◦C) in 100 mL of liquid mineral medium [24] supplemented with 0.25% glucose
and MTX (10 µg/mL). The inoculum was 2 mL (5.0 × 107 cfu) of homogenized 10-day
idiophasic mycelium of B. adusta CCBAS 930 grown on glucose-potato medium (PDA) [24].
VP peroxidase activity were determined periodically (day 3, 7, 10, 14, 18 and 20) with
20 mM 2,6-dimethoxyphenol (2,6-DMP) in the presence/absence of Mn2+ and 0.2 mM
H2O2 at different pH (3.0 and 4.5) [24].

2.3. MTX Biodecolorization by Crude Immobilized VP Peroxidase Produced by B. adusta
CCBAS 930 (icVP/Ba)
2.3.1. Induction and Partial Purification of VP Peroxidase by B. adusta CCBAS 930

In order to obtain VP, the mycelium of the cultured fungus B. adusta CCBAS 930
(maximum VP production) was separated on day 14 from the culture fluid by filtration
through sterile 0.22-µm syringe filters. In the next step (200 mL of culture fluid), protein
precipitation from the solution was performed by salting-out to 80% saturation with
ammonium sulfate (NH4)2SO4. The solution was then centrifuged at 7000 rpm/min for
20 min at 4 ◦C to separate the precipitated protein. The protein pellets were dissolved
in 5 mL of 50 mM malonate buffer pH-4.5 and concentrated on the membrane (Amicon
Ultra-15 System, Millipore 30 kDa) by centrifugation at 4000 rpm/min for 20 min at 4 ◦C.
In order to evaluate the efficiency of the concentration process, protein content [38] and VP
activity were determined in the presence of 20 mM 2,6-DMP [24]. Process efficiency was
assessed by comparing the protein content and VP activity before and after concentration.
Concentrated crude VP peroxidase was used for immobilization.
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2.3.2. Immobilization of VP Peroxidase

Concentrated crude VP (cVP) was immobilized using 4% sodium alginate [19]. Briefly,
in sterile conditions, 1 mL of cVP/Ba with an activity of 95 U/mL was added to 9 mL of
4% sodium alginate and mixed (30 ◦C, 130 rpm/min). After 20 min, alginate with VP was
transferred into 50 mL of 0.2 M CaCl2 using a sterile syringe. Subsequently, the immobilized
crude VP peroxidase (icVP/Ba) was incubated at 4 ◦C for 2 h.

2.3.3. MTX Bioremoval by icVP/Ba

Immobilized crude VP peroxidase was mixed with 50 mL of MTX solution (10 µg/mL)
in 50 mM Na-malonate buffer (pH = 4.5) with 0.2 mM H2O2 and 0.1 mM MnSO4 in
50 mM Na-malonate buffer (pH = 4.5) and agitated at 130 rpm/min and 30 ◦C for 72 h.
Decolorization was assessed by periodic measurements of absorbance (A630 nm) of the
supernatants [39]. Moreover, measurements in the visible spectrum range from 300 to
700 nm were performed during MTX treatment with icVP/Ba.

2.4. Phenolic Compound (PhC) and Free Radical (SOR) Contents

PhC content was assessed at A740 nm according to Singleton and Rossi (1965) [40],
with a slight modification [41]. SOR content was estimated at A560 nm with nitrotetra-
zolium blue (NBT) as a substrate [42]. As control, 50 mM Na-malonate buffer (pH = 4.5)
with MTX at a concentration of 10 µg/mL was used.

2.5. Evaluation of Phyto-, Bio- and Genotoxicity

Phyto-, bio- and genotoxicity assays were applied to determine acute toxicity and its
long-term effects on cultures untreated and treated with MTX. The Phytotestkit (Tigret,
Poland) was used to determine the direct effects on germination and growth of young
Lepidium sativum L. roots in comparison to controls (distilled water) in the reference soil. The
phytotoxicity assay was performed according to the producer’s protocol with assessment
of root growth inhibition (RGI) and germination index (GI) [43]. The data on RGI and GI of
MTX before treatment were derived from the study by Rybczyńska-Tkaczyk (2021) [39].

The Multi-species microbial assay (MARA), based on the activity of 11 living microor-
ganisms and their ability to reduce colorless 2,3,5-triphenyltetrazoline hydrochloride to
red formazan, was performed to determine biotoxicity after MTX biotransformation by
icVP/Ba [39]. The data on biotoxicity of the MTX before treatment were derived from
the study of Rybczyńska-Tkaczyk (2021) [39]. The results were processed using an image
analysis program to facilitate the calculation of the MTC (microbial toxic concentration)
value (% vol.) for each strain.

Genotoxicity analysis was performed using the SOS ChromoTest (distribution Ti-
gret, Poland) using genetically engineered bacteria, Escherichia coli PQ37, to detect DNA-
damaging agents. In this assay, β galactosidase (β-gal) activity is indicative of the degree
of SOS induction and bacterial genotoxicity, i.e., the induction factor (IF). In addition,
bacterial alkaline phosphatase (AP) activity was used to determine bacterial cytotoxicity,
i.e., the reduction factor (RF). The ratio of β-gal/AP activity was defined as the corrected
induction factor (CIF = IF/RF), and it was used to indicate the degree of SOS induction
for the tested samples [39]. Briefly, overnight bacterial cultures were grown in fresh LB
medium (20 g tryptone/L, 10 g yeast extract/L, 20 g sodium chloride/L, pH 7.4) to an
optical density of 600 nm = 0.5 and subsequently mixed (v/v) with the tested samples
and incubated for 1.5 h at 37 ◦C); distilled water was used as a negative control. Positive
control included 4-nitroquinoline-1-oxide (4NQO) as a mutagen and 2-aminoanthracene
(2AA) as a pro-mutagen with the S9 fraction (metabolic activation). The β-gal (A620 nm)
and AP (A405 nm) activities were determined in a 96-well plate reader (EPOCH, Biokom).
Significant genotoxic activity was defined as a corrected induction factor (CIF) equal to or
greater than 1.2 [39].
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2.6. Statistical Analysis

Data are presented as the means ± standard deviation (SD) of three independent
experiments. Data were analyzed using one-way analysis of variance (ANOVA) followed by
Tukey’s multiple comparison assay. Statistical analysis of microbial growth and percentage
growth inhibition of microorganisms were carried out using the MARA software in each
well relative to the respective control as well as MTC values.

3. Results
3.1. VP Production and Partial Purification

The VP peroxidase production profile in the presence of MTX (10 µL/mL) showed the
highest activity (3.45–15 U/mg) on day 14 of cultivation of the fungus B. adusta CCBAS 930
(Figure 1). On day 14 of cultivation, the post-culture fluid was separated from the mycelium
and used to purify VP. The highest protein content was recorded after ultrafiltration of
the post-culture fluid (38.57 µg/mL). The protein content in the concentrated post-culture
fluid increased by 52% compared to the initial variant (18.66 µg/mL). The activity of VP
peroxidase was found both in the original and partially purified supernatants. Before
culture fluid concentration, the highest VP activity was found in the buffer with pH = 4.5
and Mn2+ ions (137.72 U/mg). After partial purification, the highest VP peroxidase activity
was recorded in the buffer with pH = 4.5 and Mn2+ ions (2502.10 U/mg). The concentrated
post-culture fluid was characterized by over 18-fold higher specific VP activity compared
to the initial post-culture fluid (Table A1).
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Figure 1. Production profile of versatile peroxidase (VP) in stationary cultures of B. adusta CCBAS
930 with 10 µg/mL of mitoxantrone (MTX) in the presence of 2,6-dimethoxyphenol (2,6-DMP) as
a substrate.

3.2. Bioremoval of Mitoxantrone by icVP/Ba

To evaluate the decolorization efficiency of icVP/Ba, the degree of MTX solution
decolorization was measured after 24, 48 and 72 h. A significant rate of MTX removal was
observed in the experimental setup with icVP/Ba. Efficient MTX decolorization was noted
after 24 h (23%), and after 48 h, a significant increase in the degree of decolorization was
observed (75%). The highest degree of MTX removal (95.57%) was recorded after 72 h
(Figure 2A). We did not observe any colorization of Ca-alginate beads (blue) upon contact
with MTX (Figure 2B,C).
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Figure 2. UV-visible spectra (A) of initial MTX solution (10 µL/mL) before (B) and after 72-h treatment
by icVP/Ba produced by B. adusta CCBAS 930 (C).

3.3. PhC and SOR Contents

During the biotransformation of MTX by icVP/Ba, a gradual decrease in the content
of PhC and SOR was recorded. After 24 h, an 85% decrease in the content of PhC was
observed, and it remained constant until the end of the experiment. The lowest content of
these compounds was recorded after 72 h of treatment (1.04 µg/mL). With respect to SOR,
we observed a decrease in its concentration during MTX biotransformation by icVP/Ba
with the highest reduction after 48–72 h (more than 90%) (Figure 3).
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significant differences at α = 0.05.
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3.4. Detection of Phyto-, Bio-, and Genotoxicity before and after MTX Treatment with icVP/Ba

Significant differences (p < 0.05) were found in the inhibition of L. sativum seed germina-
tion after MTX treatments with icVP/Ba, i.e., GI = 86.50 ± 7.20 (Figure 4A). With regards to
root growth inhibition (RGI), a significantly increased root growth of L. sativum was observed
after the application of cVP/Ba-treated MTX (Figure 4B). The degree of MTX biotoxicity and
genotoxicity after treatment with icVP/Ba was estimated using the multi-species MARA
assay and SOS ChromoTest based on modified Escherichia coli PQ37. A wide range of MARA
species sensitivity was recorded before and after MTX treatment with icVP/Ba, with the
MTC min. values for the most sensitive species, Microbacterium sp., amounting to 3.3%
and 19.0%, respectively. After treating 10 µg/mL MTX solution with icVP/Ba, the average
MTC values increased from 49.48% to 85.18% (only low selective toxicity) (Figure 5). MTX
genotoxicity before and after icVP/Ba treatment was dose-dependent and decreased with
increasing sample dilutions. The highest MTX genotoxicity before treatment was found
for 2.5 and 1.25 µg/mL concentrations, with the CIF factor of 3.05 and 2.20, respectively
(Table A2). Thus, the results indicated that MTX before treatment with icVP/Ba was geno-
toxic at lower concentrations (2.5 and 1.25 µg/mL), and cytotoxic at higher concentrations
(5 and 10 µg/mL). After icVP/Ba treatment, the CIF factor was <1.2, and the genotoxicity of
the samples was on average 30% lower. We did not observe any genotoxicity (pro-mutagenic
activity) with metabolic activation (with the S9 fraction; data not shown).
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Figure 5. Microbial toxic concentration value (MTC %) for each strain (1) Microbacterium sp., (2) Bre-
vundimonas diminuta, (3) Citrobacter freudii, (4) Comamonas testosteroni, (5) Enterococcus casseliflavus,
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riatia rudidaea, and (11) Pichia anomala before MTX (10 µg/mL) [39] and after 72-h treatment with
icVP/Ba; different lowercase letters indicate significant differences at α = 0.05.
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4. Discussion

Many irrigated areas around the world are experiencing water shortages due to climate
change, and surface and groundwater pollution. Water scarcity creates serious economic
and social concerns. In view of decreasing clean water resources and increasing pollution of
the aquatic and soil environment, sustainable solutions are sought for the effective removal
of xenobiotics. The reuse of wastewater in agriculture is gaining increasing acceptance.
It is an agronomic option that is increasingly explored and applied in regions with water
scarcity, growing urban populations, and rising demand for irrigation water. Work is still
underway to improve the efficiency of biological methods for recycling municipal and
industrial wastewater, which will facilitate its reuse, e.g., for agricultural irrigation [44,45].
In order for industrial or municipal wastewater to be used for agricultural irrigation, it
must meet appropriate sanitary requirements and must not contain toxic substances [45,46].

The use of a microorganism or its enzymes for the biodegradation of xenobiotics is less
time consuming, produces fewer or no toxic secondary products and is a good economic
solution compared to other conventional technologies [13]. However, the use of enzymes for
biodegradation has more advantages than the use of microorganisms [34,47–49]. Enzymes
are less likely to be inhibited by chemicals that may be toxic to living organisms, and
their cost could eventually be lower than that of other methods if commercially available
enzymes are produced in bulk quantities. Moreover, enzymes work in a wide range
of aromatic compounds and require low retention times in relation to other treatment
methods [47]. However, peroxidases are inactivated by high levels of H2O2, free radicals, as
well as oligomeric and polymeric products formed during the reaction. Therefore, suitable
techniques have been introduced, such as immobilization, to reduce the extent of peroxidase
inactivation in the presence of inhibitors, including excessive H2O2 levels, as well as to
improve stability, reusability, and catalytic capacity of peroxidases [34,47–49]. Immobilized
fungal peroxidases, compared to free enzymes, have a high application potential for
removing hazardous contaminants. On the other hand, even well-characterized enzymes
still have large untapped potential for biodegradation applications. Current research
on immobilized fungal enzymes is restricted to the treatment of well and long known
pollutants, such as phenols, industrial dyes, lignin, pharmaceutics or pesticides. In order
to fully exploit the possibilities of immobilized peroxidases, they should also be used to
remove new hazardous pollutants, such as 2-amino-4-nitrotoluene, 2,4-diaminotoluene
and tertiary butyl alcohol [49].

The properties of enzymes produced by fungi allowing to degrade industrial wastew-
ater, especially oxidoreductase enzymes, due to their known oxidizing potential for high
redox compounds, e.g., industrial dyes, post-industrial lignin, melanoidins, and pesticides,
have been known for a long time [18,19,43,50]. In recent years, an increasing number of
studies have described the possibility of using fungal oxidoreductases to remove phar-
maceuticals, such as antibiotics (sulfamethoxazole, tetracycline), antidepressants (citalo-
pram hydrobromide and fluoxetine hydrochloride), antiepileptics (carbamazepine), anti-
inflammatory drugs (diclofenac and naproxen), estrogen hormones (estrone, 17β-estradiol,
17α-ethinylestradiol), and cytostatic drugs (daunomycine, doxorubicyne, bleomycin, vin-
cristine) [9,51–54] Ligninolytic enzymes obtained from white-rot fungi are non-specific for
organic compounds. They use a free radical mechanism to catalyze the degradation of a
wide range of pollutants. A new area of application of these enzymes is the possibility of
using them for biodegradation of pharmaceuticals [9,13]. However, the main disadvan-
tage of free enzymes is their limited application in large-scale processes. Moreover, free
enzymes are difficult to separate from the medium, which reduces their reusability and
increases costs. To overcome such limitations, immobilization of enzymes is one of the most
effective methods improving their properties [35], applied in enzymatic biodegradation of
pharmaceuticals [16,55]. The use of immobilized enzymes for biodegradation of xenobi-
otics reduces the time and improves efficiency of their removal compared to conventional
microbial cultures. Previous data indicated an effective MTX removal (over 90%) after
21 days of stationary cultures of B. adusta CCBAS 930 (data not shown). Other anthracycline
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antibiotics, i.e., daunomycin and doxorubicin were removed (80–90%) after 3-week cultures
of this fungus [9]. In this study, a significant increase in MTX removal (75%) was observed
after 48 h, with the highest removal rate (95.57%) after 72 h. As suggested in a previous
study, removal of xenobiotics using Ca-alginate-immobilized enzyme may be based on
biodegradation or bioaccumulation/biosorption of compounds onto alginate beads [56]. In
the present study, we did not observe colorization of alginate beads (blue) after contact with
MTX. This observation demonstrated that the mechanism of MTX removal was associated
with immobilized cVP/Ba biodegradation. The UV-Vis scan spectrum (200–800 nm) of
the supernatants indicated that MTX color removal at 630 nm (maximum absorbance)
decreased with time. Moreover, no additional peaks were observed, suggesting efficient
biodegradation of MTX by cVP/Ba.

Recently, VP peroxidase has gained interest as an elimination enhancer, and an increasing
number of studies have described the possibility of using VP for biodegradation of various
xenobiotics, e.g., pharmaceuticals and endocrine disrupting compounds [21,22,51]. Addition-
ally, previous studies indicated that VP immobilization significantly improved biodegradation
of pharmaceuticals. Taboada-Puig et al. (2011) [57] and Touahar et al. (2014) [58] demonstrated
an increase in the effective removal (>80%) of nonsteroidal anti-inflammatory drugs: ac-
etaminophen, naproxen, mefenamic acid, diclofenac, indomethacin, and endocrine-disrupting
chemicals: bisphenol A, nonylphenol, triclosan, 17a-ethinylestradiol, and 17b-estradiol due
to cross-linked enzyme aggregates (CLEAs) based on, e.g., VP peroxidase synthesized by B.
adusta [57,58]. The authors underlined the possibility of using VP for xenobiotic biodegrada-
tion, as it has a comparable or even wider spectrum than laccases (Lac) [57,58].

The parameters and catalysts of enzymatic reaction are equally important. The cat-
alytic cycles of peroxidases consist of two-electron oxidation of the native ferric enzyme to
compound I by H2O2 and two single-electron reductions via intermediate compound II to
its resting state by appropriate reducing substrates [59]. Due to this function, peroxidases
are dependent on H2O2 as an essential co-substrate in their catalytic cycle. Moreover, H2O2
may affect the operative stability of peroxidases. Low levels of H2O2 support stable bio-
catalytic activity of peroxidases resulting in increased conversion of aromatic compounds,
but the required concentration of H2O2 in a peroxidase-H2O2-mediated reaction depends
on substrate chemical structure and its initial concentration [34]. Therefore, H2O2 plays
a key role in the catalytic cycle of peroxidases, and its addition is very important when
peroxidases are directly used in xenobiotic biodegradation [27,28]. Our study indicated
that Na-malonate buffer (50 mM, pH = 4.5) in the presence of 0.2 mM H2O2 created op-
timal conditions for MTX removal by VP derived from B. adusta CCBAS 930. Wen et al.
(2010) [28] indicated that during direct tetracycline biodegradation by Mn-dependent per-
oxidase (MnP) from Phanerochaete chrysosporium BKM-F-1767, low H2O2 levels led to low
catalytic activity of MnP. However, if excess H2O2 is added during tetracycline removal,
the structure of MnP may be disrupted. Moreover, VP is characterized by a higher catalytic
activity in the presence of low concentrations of Mn+2 ions [21,60].

The results also showed that MTX removal by icVP/Ba was associated with a decrease
in free radical and phenolic contents. The decrease in the content of phenols during the
treatment of anthracyclines by peroxidases indicated biodegradation of these compounds
via oxidation. This is an additional advantage of using immobilized peroxidase instead
of fungal cultures for the biodegradation of xenobiotics. The treatment of xenobiotics
in fungal cultures is accompanied by the production of phenolic compounds and free
radicals, as well as biodegradation products, which increase phyto- and biotoxicity of
supernatants [9,24,61]. In addition to the efficient removal of xenobiotics, their degradation
products must also be safe for the environment. Physical and chemical methods used for
the removal of xenobiotics, e.g., pharmaceuticals, are associated with the risk of formation
of toxic secondary products, which in some cases are more toxic than the initial compound.
Studies on the degradation of anticancer drugs and/or their metabolites (tamoxifen and
etoposide) with free chlorine reported up to 110-fold higher potential aquatic toxicity com-
pared to the parent compound, demonstrating an increase in the final effluent toxicity [62].
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On the other hand, when using traditional fungal cultures (stationary or agitated) during
xenobiotic biodegradation, there is a possibility of biosynthesis of secondary metabolites.
They may contribute to masking the efficiency of the biodegradation process and increase
the toxicity of post-culture fluids due to the presence of fungal metabolites in addition to
the degradation products [61,63].

From a practical point of view, it is possible to introduce pharmaceutical effluents
treated with icVP/Ba into the soil without disturbing the ecological balance of soil mi-
croorganisms. As previously reported by other authors, treated wastewater can be used
for agricultural irrigation, as long as it does not contain toxic substances [44,45]. There-
fore, bio-, phyto-, and genotoxicity tests were performed in the present study to evaluate
the usefulness of Ca-alginate-immobilized cVP/Ba for MTX biodecolorization. Bacteria
and yeasts are suitable organisms for ecotoxicity evaluation due to their small size, rapid
growth rate, short generation time and ease of culturing. They also incorporate toxicants in
their metabolism faster than higher organisms. Different strains show varied sensitivities
to individual chemicals, and this property was utilized in the MARA assay, which com-
bines 11 inhibition tests and provides a toxic fingerprint of the chemicals tested within a
single assay [64]. The microbial strains used in the MARA assay belong to typical environ-
mental strains naturally occurring in the soil and water environment [64]. Some of these
strains, such as Pseudomonas sp., Microbacterium sp., and Comamonas sp. are involved in
the biodegradation of aromatic compounds, e.g., phenols, polychlorinated bis-phenyles
and pesticides [65–68]. Microorganisms can potentially utilize xenobiotic contaminants as
carbon or nitrogen sources to sustain their growth and metabolic activities [68]. Therefore,
the biotoxic effect of xenobiotics against bacterial strains involved in the biodegradation of
these compounds significantly reduces the efficiency of bioremediation of the microflora
of the soil and water environment [68]. As described previously, even low concentrations
of pharmaceuticals cause biotoxic effects [5]. Pharmaceuticals are classified according to
their predicted no-effect concentration (PNEC). PNEC is defined as the pharmaceutical con-
centration at which no pharmacological effect is expected to occur for a specific organism.
Based on the PNEC values, pharmaceuticals are classified into three categories: category
1—compounds with a hazard Quotient (HQ) < 1 or those without eco-toxicological hazards
(less ecotoxic at PNEC values > 1 µg/L); category 2—hazardous compounds with HQ
values between 1 and 1000 or with intermediate ecotoxicity with PNEC values > 100 ng/L
but lower than 1 µg/L; and category 3—highly hazardous compounds with HQs > 1000,
including the most ecotoxic compounds with PNEC values < 1 ng/L [5]. Research carried
out in this study showed that the acute toxicity (based on MARA assay) was significantly
reduced after treating MTX with icVP/Ba. The available ecotoxicological data for MTX are
very limited, but previous works indicated that anthracycline antibiotics and their biotrans-
formation products after treatment with immobilized mycelium of B. adusta CCBAS 930
showed biotoxic activity only against Micobacterium sp. [39].

In addition to the ecological balance of soil microorganisms, the proper growth of
plants is also very important. The presence of xenobiotics, e.g., pharmaceuticals in soil
can significantly affect the germination and growth of crops and industrial plants. In
case of a soil used for agricultural crops, its fertility decreases slowly, which has adverse
consequences for agricultural crops both quantitatively, by diminishing production and soil
yield, and qualitatively, as a result of the propagation of pollutants from soil to plants, and
therefore in the food chain [69]. The current study showed that after MTX biodecolorization
with icVP/Ba, its phytotoxicity decreased significantly. Previous studies have reported that
during enzymatic biotransformation of aromatic compounds (melanoidins, daunomycin,
doxorubicin) using oxidoreductases, especially VP peroxidase, the phytotoxicity of these
compounds was significantly decreased. The reduction of phytotoxicity of these aromatic
compounds was observed during treatment with immobilized B. adusta CCBAS 930 cultures
characterized by overproduction of VP peroxidase. Root growth and seed germinations of
L. sativum L. in the presence of supernatants from 7-day immobilized B. adusta CCBAS 930
cultures were significantly increased by 33–40% and 30–85%, respectively [19,39].
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In the detoxification of xenobiotics, in addition to acute toxicity, it is also important
to determine the potential long-term effects, including genotoxicity. Our results indi-
cated that before biodegradation by immobilized cVP/Ba, MTX was not only genotoxic
at lower concentrations (2.5 and 1.25 µg/mL), but also cytotoxic at higher concentrations
(5 and 10 µg/mL). Moreover, we recorded reduced MTX genotoxicity after treatment
with icVP/Ba. Previous studies showed that other anthracycline antibiotics, including
daunomycin and doxorubicin, exhibited strong genotoxic properties as measured by the
SOS Chromotest [39]. Therefore, the present results indicated that Ca-alginate immobi-
lization of cVP/Ba not only increased the efficiency of xenobiotic removal, but also their
detoxification degree. This is consistent with earlier data indicating a possibility of us-
ing immobilized ligninolytic enzymes for pharmaceutical removal and detoxification [70].
T. versicolor laccase immobilized on CPC-silica beads efficiently detoxified sulfathiazole
and sulfamethoxazole [70].

5. Conclusions

Crude VP was immobilized on Ca-alginate beads using the entrapment method to
improve its practical efficiency in MTX removal. Considering the application value, partial
VP purification makes its potential application more efficient and economical. Reduced
phytotoxicity and acute and chronic toxicity assays confirmed MTX biotransformation into
non-toxic compounds, clearly proving the usefulness of Ca-alginate-immobilized cVP/Ba
for removal and detoxification of MTX. The reduction of phyto-, bio-, and genotoxicity
of MTX after treatment with immobilized cVP/Ba is promising from the point of view
of its potential application for the removal of cytostatic drugs from wastewater and its
subsequent reuse, e.g., for agricultural irrigation. Furthermore, the knowledge gained
may lead to the application of icVP/Ba in industrial effluent treatments, especially those
containing cytostatic drugs. Further research is required to select the optimal method
of cVP/Ba immobilization, which would ensure a higher increase in the efficiency of
this process.
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Appendix A

Table A1. Partial purification efficiency of versatile peroxidase (VP) produced by B. adusta CCBAS 930.

Purification Step Total Volume
(mL)

Total Protein
(mg)

Total Actvity
(U)

Specific Activity
(U/mg of Protein) Purification Fold Yield

(%)

Crude enzyme 200 3.732 514.00 a 137.72 1 100

(NH4)2SO4
precipitation 5 4.18 128.80 a 30.81 0.22 25.06

Ultrafiltration (30
kDa cut off) 1 0.038 95.08 a 2502.10 18.17 18.50

a–VP activity in 50 mM Na-malonate buffer pH = 4.5 with Mn2+.
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Table A2. Genotoxicity levels of mitoxantrone (MTX) before and after treatment with immobilized
crude peroxidase produced by B.adusta CCBAS 930 (icVP/Ba).

Samples C V CIF SD

MTX before treatment (initial
solution 10 µg/mL)

10

-

1.39 0.02
5 0.43 0.04

2.50 3.05 0.06
1.25 2.19 0.04
0.62 0.17 0.02
0.31 0.11 0.02
0.15 0.64 0.05

MTX after treatment with
immobilized icVP/Ba

-

100 0.85 0.07
50 0.98 0.05
25 0.93 0.05

12.50 0.76 0.04
6.25 0.15 0.01
3.12 0.09 0.02
1.56 0.10 0.02

C—concentration in µg/mL; V—in %, CIF—corrected induction factor, SD—standard deviation, genotoxic
samples are indicated in bold.
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