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Abstract

Transcriptional enhancers integrate the contributions of multiple classes of transcription factors (TFs) to orchestrate the myriad
spatio-temporal gene expression programs that occur during development. A molecular understanding of enhancers with
similar activities requires the identification of both their unique and their shared sequence features. To address this problem,
we combined phylogenetic profiling with a DNA–based enhancer sequence classifier that analyzes the TF binding sites (TFBSs)
governing the transcription of a co-expressed gene set. We first assembled a small number of enhancers that are active in
Drosophila melanogaster muscle founder cells (FCs) and other mesodermal cell types. Using phylogenetic profiling, we
increased the number of enhancers by incorporating orthologous but divergent sequences from other Drosophila species.
Functional assays revealed that the diverged enhancer orthologs were active in largely similar patterns as their D. melanogaster
counterparts, although there was extensive evolutionary shuffling of known TFBSs. We then built and trained a classifier using
this enhancer set and identified additional related enhancers based on the presence or absence of known and putative TFBSs.
Predicted FC enhancers were over-represented in proximity to known FC genes; and many of the TFBSs learned by the
classifier were found to be critical for enhancer activity, including POU homeodomain, Myb, Ets, Forkhead, and T-box motifs.
Empirical testing also revealed that the T-box TF encoded by org-1 is a previously uncharacterized regulator of muscle cell
identity. Finally, we found extensive diversity in the composition of TFBSs within known FC enhancers, suggesting that motif
combinatorics plays an essential role in the cellular specificity exhibited by such enhancers. In summary, machine learning
combined with evolutionary sequence analysis is useful for recognizing novel TFBSs and for facilitating the identification of
cognate TFs that coordinate cell type–specific developmental gene expression patterns.
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Introduction

Complex spatio-temporal gene expression programs guide the

progressive determination of pluripotent cells allowing cell fates to

become sequentially restricted during embryonic development.

These transitions in cell fate are encoded in the genome by cis

regulatory DNA sequences such as transcriptional enhancers.

Enhancers respond to the combinatorial input of tissue-specific,

cell-specific, ubiquitously-expressed and signal-activated transcrip-

tion factors (TFs) that collectively control gene expression in the

appropriate spatial and temporal patterns [1,2].

In recent years, we and others have shown that computational

approaches can be used to predict enhancers of a given type with

reasonable accuracy when prior knowledge exists of the TFs and

their binding sites that contribute to the activity of this enhancer

class [3–5]. However, this approach is limited when the identities

and the binding site sequences of co-regulatory TFs are not

known. To circumvent this problem, several groups have identified

enhancers based on the presence of shared sequence features

without the necessity of knowing the co-regulating TFs or their

binding motifs [6–12]. These enhancer modeling approaches

generally take advantage of two data sources: (1) the non-coding

sequences surrounding the members of a gene set of interest, or a

set of previously validated enhancers associated with such genes;

and (2) previously described sequence motifs from transcription

factor binding site (TFBS) libraries and/or de novo motif discovery.

In this way, previously described or candidate motifs and/or word

profiles can be used to ascertain a training set of enhancers, with

the resulting model being used in a genome-wide scan to predict

similar enhancers. The enhancer model is validated by testing the

activity of these predictions in transgenic reporter assays [7,13]. A

particular transcriptional regulatory model can also be validated

by assaying the functionality of the motifs that are found to be

relevant for making predictions, and subsequently by identifying

the DNA binding proteins that target these sequences.

The majority of the studies showing the utility of enhancer

modeling have focused on regulatory sequences involved in

segmentation of the Drosophila blastoderm embryo [11,13–15].
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Furthermore, we have recently demonstrated that enhancer

modeling can be used to reveal the enhancers and constituent

sequence motifs involved in human heart development [7].

Surprisingly, recently predicted blastoderm segmentation enhanc-

ers were often active in other tissues and developmental stages

[13], whereas the validation rate for predicted human heart

enhancers was much higher [7]. These differences in success rates

could reflect methodology or might reflect the composition of the

training set of sequences. In support of the latter possibility, there

are sequence features unique to the blastoderm segmentation

enhancers which might limit their amenability to this approach

[16].

The development of the Drosophila larval somatic, visceral and

heart muscles from mesodermal progenitors requires the coordi-

nated input of multiple different regulators, including the intrinsic

TFs Twist (Twi), Tinman (Tin) and Mef2 [17,18], and the

intercellular signaling pathways mediated by the epidermal growth

factor, fibroblast growth factor, Wnt, hedgehog and bone

morphogenetic proteins (BMPs) [18–20]. These tissue-specific

and downstream signal-activated TFs are highly conserved in

sequence and function from Drosophila to vertebrates [21].

Although these factors function in various combinations to confer

general and subtype properties on differentiating mesodermal

cells, they also have pleiotropic effects in development such that

additional factors are required to specify individual cellular

identities. For example, the Drosophila larval somatic muscles are

multinucleated myotubes each having unique properties that

include their size, shape, orientation, epidermal attachments and

innervation [18,19]. The formation of each myotube is initiated by

a single muscle founder cell (FC) whose fate prefigures that of the

corresponding muscle and is controlled by the combinatorial

activities of muscle FC identity TFs [18,19]. FCs fuse with a more

homogeneous population of neighboring muscle cells termed

fusion-competent myoblasts (FCMs) to form muscle precursors

[18,19]. The complexity of FC genetic programs [22] necessitates

that a large number of identity TFs be involved in their

specification, yet only a small number of such factors are known

[20], few direct targets of these factors have been characterized,

and little information is available about the combinatorial control

of FC enhancers by TFs of different classes.

Here we applied evolutionary and machine learning approaches

to model Drosophila mesodermal enhancers having FC activities in

order to uncover the motifs that orchestrate gene expression at the

level of individual cells, to generate testable hypotheses about the

nature of the corresponding FC identity TFs, and to gain insights

into the combinations of TFs that contribute to individual FC

enhancer specificities. The coordinated input of tissue-specific and

signal-activated TFs, combined with the discrete identities of

individual FCs, suggests that the regulatory network specifying

distinct FC genetic programs is likely to share some common

features while differing substantially with respect to others.

Furthermore, a series of studies by Erives and colleagues has

shown that a family of non-homologous enhancers is characterized

by a discrete regulatory signature [23–25] in spite of the inherent

complexity of isolated enhancers [26,27]. Taken together, this

information suggests that the FC regulatory network should be

amenable to an enhancer modeling approach.

To address this problem, we first compiled a small set of

enhancers with activity in FCs. To overcome issues associated with

small sample sizes, and to increase the diversity of sequences with

similar functions, we extended this set by adding orthologs derived

from other Drosophila species. In vivo testing revealed that these

orthologous sequences are functional FC enhancers in spite of

having extensive reorganization of their DNA sequences. We show

that increasing the training set through the addition of orthologous

sequences improves the performance of our enhancer prediction

model. By training on this extended set of enhancers, we were able

to computationally predict functionally relevant TFBSs and

enhancers for the FC gene set. When the resulting classifier was

run genome-wide to search for new D. melanogaster FC enhancers,

we identified 5,500 high-scoring predictions at a false-positive rate

(FPR) of 5%. Moreover, these predicted enhancers were

significantly enriched in the noncoding regions associated with

known FC genes. While many of the TFBSs learned by the

classifier are known to regulate the transcription of muscle FC

genes, our classifier predicted additional motifs which have not

previously been identified as contributing to FC enhancer

activities. Site-directed mutagenesis of five newly discovered motifs

in previously characterized FC enhancers demonstrated the

critical role played by these TFBSs in supporting full enhancer

activity. These validated motifs also suggest plausible candidate

TFs acting in the myogenic regulatory network. In one such

case—that of the T-box protein encoded by optomotor-blind-related-

gene-1 (org-1)—we were able to use loss- and gain-of-function

genetic perturbations to establish that this TF functions as a

regulator of muscle identity. Furthermore, an analysis of the TFBS

compositions of all known FC enhancers revealed an unanticipat-

ed complexity in the combinations of TFs that contribute to the

unique specificities of individual regulatory elements, a finding that

provides a molecular explanation for the well-known diversity of

muscle cell identities and their associated gene expression

programs.

Results

Here we utilized phylogenetic profiling and machine learning to

decipher the motifs and enhancers that underlie the gene

expression patterns of individual muscle FCs, which required an

Author Summary

The development of multicellular organisms requires the
formation of a diversity of cell types. Each cell has a unique
genetic program that is orchestrated by regulatory
sequences called enhancers, comprising multiple short
DNA sequences that bind distinct transcription factors.
Understanding developmental regulatory networks re-
quires knowledge of the sequence features of functionally
related enhancers. We developed an integrated evolution-
ary and computational approach for deciphering enhancer
regulatory codes and applied this method to discover new
components of the transcriptional network controlling
muscle development in the fruit fly, Drosophila melanoga-
ster. Our method involves assembling known muscle
enhancers, expanding this set with evolutionarily con-
served sequences, computationally classifying these en-
hancers based on their shared sequence features, and
scanning the entire Drosophila genome to predict
additional related enhancers. Using this approach, we
created a map of 5,500 putative muscle enhancers,
identified candidate transcription factors to which they
bind, observed a strong correlation between mapped
enhancers and muscle gene expression, and uncovered
extensive heterogeneity among combinations of transcrip-
tion factor binding sites in validated muscle enhancers, a
feature that may contribute to the individual cellular
specificities of these regulatory elements. Our strategy can
readily be generalized to study transcriptional networks in
other organisms and developmental contexts.

Machine Learning Transcriptional Regulators
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array of computational and experimental tools. This study is

composed of 4 main components: (1) compiling a training set of

FC enhancers from multiple sources including the literature,

testing of additional computational predictions from a previous

study [5], increasing the size of the dataset through phylogenetic

profiling, including the empirical validation of a subset of those

predictions; (2) machine learning on the FC enhancer training set;

(3) experimental validation of classifier predictions using transgenic

reporter assays and whole embryo in situ hybridization with gene-

specific probes; and (4) functional examination of sequence

features associated with the computational classification to define

novel motifs and TFs regulating myogenesis. An overview of the

approach utilized in this study is presented in Figure 1. In addition,

we used the information derived from the abovementioned studies

to examine the distribution of TFBSs across the entire set of

known FC enhancers to ascertain the extent to which TF

combinatorics contributes to the diversity of FC enhancer

activities.

Building a Training Set of Enhancers That Are Active in
Muscle FCs

Previous studies have characterized enhancers for individual FC

genes that integrate many of the TFs downstream of the Wnt,

Ras/MAPK and BMP signaling pathways, as well as input from

the instrinsic TFs Twi and Tin [28–31]. However, relatively sparse

information is available from these examples to understand the full

complexity of the myogenic regulatory network. To begin

unraveling the detailed architecture of this network, we previously

used expression profiling of various mutants which perturb FC

gene expression in a predictable manner to identify hundreds of

candidate genes with FC expression patterns [22]. In situ

hybridization of these candidates led to the validation of 180 FC

genes (Table S1). To understand how these FC genes are

coordinately regulated, we evaluated potential regulatory codes

which were based on combinations of TFBSs found within two

previously characterized FC enhancers [28,29]. These studies

revealed that three TFs—Twi, Tin, and Pointed (Pnt), an Ets-

Figure 1. Schematic of enhancer classification beginning with a small training set. A small set of known enhancers active in similar cells is
increased by incorporating orthologous sequences. De novo and known motifs are mapped onto this training set and a set of control sequences.
Feature vectors are used to build an enhancer model based upon the learned motif weighting. This model can be used to scan the genome for
similar enhancers as the training set. These predictions can be tested using transgenic reporter assays or analysis of the expression of the associated
gene. The motif weighting can likewise be used to identify novel classes of transcriptional regulators. The role of the motifs can be tested in cis and
the identification of co-regulating TFs can be subsequently tested in trans.
doi:10.1371/journal.pgen.1002531.g001
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domain TF acting downstream of Ras/MAPK signaling—

combine to regulate a subset of FC genes (termed C1) that are

particularly Ras- and Pnt-responsive [5]. Furthermore, we

originally showed that 3 out of 4 genomic regions associated with

C1 FC genes that contain clusters of binding sites for Pnt, Twi and

Tin are functional FC enhancers when tested in transgenic

reporter assays [5]. To extend that study, we have now tested 16

more predicted enhancers associated with C1 FC genes and found

that 8 of these are bona fide FC regulatory elements (Figure S1

and Table S1). In contrast, only 2 out of 18 similarly selected

candidate regions associated with non-C1 FC genes were validated

as FC enhancers, although 4 of these predicted elements were

active in other mesodermal tissues (Table S1). Similar to our

previous work [5], these enhancers are active in differing subsets of

the 30 individual FCs per hemisegment, with the only requirement

being activity in one or more FCs. In total, these findings suggest

that the transcriptional code governing C1 FC gene expression is

missing one or more critical regulatory components, including cell

type-specific factors.

Interestingly, the activities of 14 of these 16 FC enhancers are

not restricted to FCs but also include other mesodermal and non-

mesodermal cell types (Table S1). It is generally believed that an

individual enhancer controls a particular spatio-temporal aspect of

a gene’s total expression pattern, with each enhancer composed of

distinct clusters of binding sites for different combinations of TFs

[2]. However, we have recently shown that the enhancer for the

Drosophila Nidogen (Ndg) gene is active at different developmental

stages and in multiple cell types (including FCs) due to the binding

of multiple cell-specific TFs of the same family ([5] and X. Zhu, S.

M. Ahmad, A. Aboukhalil, B. W. Busser, Y. Kim, T. R. Tansey,

A. Haimovich, N. Jeffries, M. L. Bulyk, and A. M. Michelson,

unpublished data). In this context, it is important to note that in

several cases where attempts have been made to separate FC from

other sites of mesodermal activity, it has not been possible to

identify independent enhancers for the different cell types [5,28].

Furthermore, a survey of Drosophila enhancers shows that the

majority are active in multiple cell types ([32] and see Table S2). A

similar survey of vertebrate enhancers shows that this diversity of

enhancer activities is not a reflection of the relatively compact

Drosophila genome ([33,34] and data not shown). Thus, the

regulation of some genes occurs through multiple enhancers, with

each individual enhancer directing a specific spatio-temporal

aspect of a particular gene’s expression. In contrast, other genes

are regulated by a single enhancer which directs the entirety (or a

large fraction) of the spatio-temporal expression pattern of the

gene through the combinatorial activities of TFs that themselves

have cell type restricted expression. The latter model appears to

predominate for Drosophila FC enhancers. Despite the potential

challenges of machine learning on a set of regulatory sequences

having broad expression activities, our goal was to use existing

information about FC gene regulation to identify both additional

enhancers and novel TFBSs that convey individual FC specificity

(Figure 1).

Sequences Orthologous to Known FC Enhancers Have
Similar Regulatory Functions

Combining the aforementioned studies and previously pub-

lished work, the training set contained a total of 16 FC enhancers

[5,28,29,35,36]. Machine learning approaches require large and

representative datasets to learn robust decision rules. Small

training sets often lead to over-fitting of such decision rules and,

consequently, do not satisfactorily generalize data that vary slightly

in their statistical structure. In addition, limited datasets are likely

to only partially represent the distribution of all instances of their

class. Thus, to accurately learn the TFBSs that are responsible for

FC gene regulation, and to reliably predict additional related

enhancers, we investigated options to expand the set of training

sequences. This goal was accomplished by a phylogenetic profiling

approach which integrates orthologous sequences from the

genomes of the 11 other fully sequenced Drosophila species,

mosquito, honeybee and red flour beetle by searching for regions

displaying at least 50% but less than 80% sequence identity

between any two species [37]. These empirically determined

sequence identity thresholds were chosen to avoid overly-

conserved regions that would introduce redundancy and cause

overfitting, as well as overly-divergent regions that would unlikely

constitute functional FC enhancers [38,39]. Therefore, these

identity cutoffs should ensure the representation of functional

TFBSs in the training set that correspond to the regulatory

function of interest, and thus provide sufficient information for

training an accurate classifier [26,40]. This approach is also

consistent with the flexible information display or billboard model

of transcriptional enhancers, as proposed by Arnosti and Kulkarni

[41]. Using these parameters, we identified 24 orthologous FC

enhancer sequences from 6 of the 14 orthologous species based on

compliance with our sequence identity constraints, bringing the

total size of the training set to 40 elements (Table S1).

To confirm the validity of the phylogenetic profiling approach,

we assessed the performance of different classifiers trained on

subsets of 62 Drosophila melanogaster enhancers having activities in

various mesodermal cell types that was retrieved from the REDfly

database [32] and 72 of their orthologs (see Materials and

Methods for details). The large size of this dataset, and the

functional similarity of its members to the activities of the elements

that are the focus of this study, allowed an accurate evaluation of

the impact of phylogenetic profiling on the prediction performance

across training sets of gradually increasing sizes (including 10, 15,

20, …, and 60 randomly chosen mesodermal enhancers). As

expected, increasing the size of the training set improves the

classification performance until approaching its maximum and

thereby rising to an asymptote (Figure S2A). The improvement in

the classification performance, measured by the area under the

curve (AUC) of receiver operating characteristic (ROC), stabilizes

for classifiers trained on approximately 40 elements, suggesting

this to be the minimum necessary number of enhancers to train a

reliable classifier. We also found that the addition of orthologous

sequences to the training set significantly improves the perfor-

mance of the 91% of the classifiers independently of the size of the

training set (all P-values,0.05, Figure S2A) and reduces the error

in the estimation of the true accuracy of all classifiers (Figure S2B).

Furthermore, phylogenetic profiling improves the concordance

between predicted outcomes, and thus, classifiers including

enhancer orthologs systematically recognize a larger proportion

of enhancers as compared with the classifiers trained only on

Drosophila melanogaster enhancers (Figure S2C and S2D). Therefore,

supplementary orthologs not only increase the prediction accura-

cy, but generate more stable classifiers, with more reproducible

predictions. In addition, increasing the size of the training set by

including presumably functional orthologous sequences that span

different evolutionary distances increases our statistical power. For

example, we identified over-represented binding sites of 14 TFs in

the expanded set that included the orthologs and none in the

original FC enhancer set (as compared with background sequence,

correcting for multiple testing; Figure 2A). Among over-repre-

sented TFBSs are motifs for FoxO1, Ets and the MyoD family of

TFs, which are known to play a role in muscle differentiation [42].

Overall, these results are consistent with what would be expected

Machine Learning Transcriptional Regulators
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for an increase in the size of the training set [43–45], and support

the use of phylogenetic profiling for expanding the training set.

To verify that the orthologous sequences function as FC

enhancers, we randomly chose 5 examples to test for transcrip-

tional activity in D. melanogaster embryos using transgenic reporter

assays. Each enhancer construct was introduced into the same attP

site in the D. melanogaster genome using a custom vector containing

a green fluorescent protein (GFP) reporter and an attB site allowing

phiC31 integrase-mediated integration ([46,47] and B. W. Busser,

L. Shokri, S. A. Jaeger, S. S. Gisselbrecht, A. Singhania, M. F.

Berger, B. Zhou, M. L. Bulyk and A. M. Michelson, unpublished

data). All of the tested sequences drove similar, although not

always identical, expression patterns as their orthologous D.

melanogaster enhancers (Figure 3).

Figure 2. The enhancer classifier performs with high specificity and sensitivity. (A) Over-representation of TFBSs in the training set
including only D. melanogaster enhancers and in the set extended using phylogenetic profiling, as compared with background sequence. P-values
were adjusted for multiple testing using the method of Benjamini and Hochberg (BH) [120]. (B) Average ROC curve for the 10-fold cross-validation.
Our method achieves an area under the ROC curve of 0.89 (shaded in gray). FPR: false-positive rate; TPR: true-positive rate. (C) Distribution of FC
enhancer scores for the genome-wide scan. Scores assigned by the classifier for each evaluated sequence are shown in red. We used a FPR of 5% to
define a cut-off for putative enhancers (dotted blue line; see Materials and Methods for details). (D) Fold-enrichment in 180 validated FC genes in the
neighborhood of putative FC enhancers, as determined for different FPRs. Intergenic putative FC enhancers were associated with the closest gene,
whereas intronic sequences were associated with their host gene. P-values were computed using the binomial test.
doi:10.1371/journal.pgen.1002531.g002
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Of note, in several cases, we observed differences in the

organization of TFBSs within D. melanogaster FC enhancers and

their orthologs, which did not appear to affect their transcriptional

activities. For example, the D. melanogaster lbl FC enhancer contains

multiple binding sites for each of Pnt, Twi and Tin [5], whereas

there are several Pnt, only one Twi and no Tin binding sites in the

candidate D. ananassae lbl enhancer (Figure S3A). Nevertheless,

both the D. melanogaster and D. ananassae enhancers direct reporter

expression in the same two adult muscle precursors and single

embryonic muscle FC in which endogenous lbl is expressed

(Figure 3A). In this case, the cellular specificity achieved by the

orthologous enhancer might be accounted for by the perfect

conservation of a single binding site that is preferred by the Slouch

(Slou) homeodomain TF, which we have recently shown to be

critical in repressing activity of the D. melanogaster lbl enhancer in

two Slou-expressing FCs (B. W. Busser, L. Shokri, S. A. Jaeger, S.

S. Gisselbrecht, A. Singhania, M. F. Berger, B. Zhou, M. L. Bulyk

and A. M. Michelson, unpublished data).

In other examples, the expression patterns driven by ortholo-

gous enhancers were similar but did not precisely replicate those of

their D. melanogaster counterparts. For example, the ap muscle

enhancer is active in a subset of endogenous ap-expressing muscles

and was previously shown to depend on the input of Hox TFs

[35]. Interestingly, only 3 out of the 5 known functional Hox

binding sites are conserved between the D. melanogaster and the D.

mojavensis orthologous sequences (Figure S3B). To compare

activities of the orthologous enhancers, we generated a D.

melanogaster transgenic line containing a D. mojavensis ap-GFP

reporter construct and crossed it to a D. melanogaster ap-lacZ

reporter strain. This experiment revealed that the candidate D.

Figure 3. Orthologous sequences are functional enhancers. GFP (green) expression in transgenic stage 11 D. melanogaster embryos
containing the indicated GFP reporter constructs driven by the D. ananassae lbl (A), D. mojavensis ap (B), D. persimilis Ndg (C), D. ananassae Ndg (D),
and D. persimilis eve (E) enhancers. Co-expression of GFP driven by the D. ananassae lbl enhancer with endogenous Lbl protein (magenta, A9) and D.
persimilis eve enhancer with endogenous Eve protein (magenta, E9). b-Gal driven by the D. melanogaster versions of the Ndg (C9, D9) and ap (B9)
enhancer co-expresses in some but not all mesodermal cells with GFP driven by the orthologous sequences.
doi:10.1371/journal.pgen.1002531.g003

Machine Learning Transcriptional Regulators
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mojavensis ap enhancer is indeed active in muscle FCs, but only in a

subset of the cells that express the reporter driven by the D.

melanogaster enhancer (Figure 3B).

We also observed interesting patterns of TFBS reshuffling

between the orthologs of some FC enhancers. For example, a

643 bp sequence in the first intron of the D. melanogaster Nidogen

(Ndg) gene activates reporter expression in a subset of muscle FCs,

pericardial and cardial cells of the heart, and cells of the central

nervous system (Figure 3C, 3D and data not shown), and was

originally identified based on the presence of binding sites for Pnt,

Twi and Tin [5]. GFP reporter constructs of Ndg enhancer

candidates from D. persimilis and D. ananassae were tested in

transgenic D. melanogaster embryos. To compare the activities of the

ortholgous enhancers, we crossed D. persimilis Ndg-GFP or D.

ananassae Ndg-GFP reporter constructs to a D. melanogaster Ndg-lacZ

reporter strain (Figure 3C and 3D). The orthologous enhancers co-

activate their respective reporters in D. melanogaster Ndg-expressing

FCs, albeit a minority, with extensive additional activity evident in

other mesodermal cells. The finding of distinct expression patterns

for all tested Ndg enhancer sequences is noteworthy as there is

significant conservation of Pnt, Twi and Tin binding sites between

D. melanogaster and D. ananassae but not D. persimilis versions of the

Ndg enhancer (Figure S3C). This finding suggests that different

ordering and spacing of TF binding sequences (both conserved

and non-conserved) can be employed by an enhancer to activate

gene expression in FCs and other mesodermal cells [41], although

precise cellular specificity is dependent on a fixed arrangement of

binding sites. We note, however, that such inferences are based

entirely on sequence comparisons, and that a more detailed

understanding of the significance of the apparent evolutionary

shuffling of TFBSs would require extensive in vivo functional

testing.

Finally, we observed variable ordering and distances between

individual TFBSs among the orthologs of FC enhancers, as

exemplified by even skipped (eve). This gene is expressed in two

pericardial cells of the heart and a single dorsal somatic muscle FC

[48]. Eve expression is positively regulated by the Wingless (Wg),

Decapentapalegic (Dpp) and receptor tyrosine kinase (RTK)/Ras

signaling pathways, and the gene is active in domains of the

mesoderm in which Twi and Tin are critical [28,49]. An enhancer

that integrates these convergent inputs was isolated and shown to

contain clusters of binding sites for T cell factor (Tcf), Mothers

against dpp (Mad), and Pointed (Pnt), TFs acting downstream of

Wg, Dpp and RTK/Ras signals, respectively, as well as binding

sites for Twi and Tin [28]. Here we show that the orthologous D.

persimilis sequence is expressed in an identical pattern (Figure 3E).

Interestingly, the D. persimilis eve muscle and heart enhancer

contains clusters of Tcf, Mad, Pnt, Twi and Tin binding sites, but

the precise positions of these sites are generally not well conserved

(Figure S3D). The orthologous D. virilis eve enhancer has a similar

structure in which all 5 of these TF binding site classes are present

[29].

In total, 5 out of 5 tested orthologous sequences drove

expression in a pattern that is similar (eve and lbl), though often

not identical (Ndg), to the D. melanogaster enhancer. The imprecise

activities of some of the orthologous enhancers may reflect the

partial level of sequence identity that could affect as yet

unidentified binding sites, may result from the extensive shuffling

of known binding sites for co-regulatory TFs, or might simply be a

reflection of differential gene expression in the orthologous flies

[26,27,40,50]. Importantly, the general preservation of enhancer

activity in the absence of extensive sequence conservation—a

point which is further confirmed by the apparent shuffling of

binding sites for known co-regulatory TF binding sites—suggests

that these elements share other common sequence features. Thus,

increasing the training set with orthologous sequences should

minimize potential over-fitting caused by training on an otherwise

small set of validated enhancers.

Machine Learning of the FC Enhancer Code Results in an
Accurate FC Enhancer Classifier

The FC training set consisted of 16 D. melanogaster FC enhancers

plus 24 orthologous sequences. However, as previously noted, the

activity of these enhancers is not restricted to FCs, with only 2 out

of 16 tested enhancers displaying such localized activity (Table S1).

Therefore, any computational model for FC enhancer classifica-

tion will likely predict enhancers having broad mesodermal

expression patterns that include but are not restricted to FCs. As

a control set, we randomly sampled 1000 non-coding D.

melanogaster sequences with length, GC- and repeat-content

distributions similar to those of the FC training set. To

discriminate between FC enhancers and other non-coding

sequences, we modified a machine learning approach that was

previously developed for the prediction of mammalian heart

enhancers, with many of those results validated in vivo [7]. This

method captures sequence patterns specific to a set of similarly

acting non-coding sequences, relying on known TFBSs, as well as

de novo motif discovery, to account for unascertained TF binding

specificities. Known TFBSs were obtained from the literature and

available databases (see Materials and Methods). De novo motif

discovery was performed using PRIORITY [51], a Gibbs

sampling approach that searches for over-represented motifs in a

set of sequences.

With the aim of discovering TFs with critical roles in FC co-

regulation, we assumed no prior knowledge of active TFs. Each

sequence in the training and control set was represented by the

number of occurrences per base pair of each of the 945 considered

motifs. A linear Support Vector Machine (SVM) was trained to

distinguish between FC enhancers and control sequences based on

TFBS occurrences. The ability of the classifier to accurately

predict regulatory activity was assessed by a 10-fold cross-

validation procedure. The performance of the classifier was

evaluated using the AUC, a value ranging from 0.5 (random

classification) to 1.0 (perfect classification). The obtained AUC

value of 0.89 indicates reliable detection of FC enhancers by the

developed classifier (see Materials and Methods and Figure 2B).

We next applied the classifier for de novo discovery of FC

enhancers in the D. melanogaster genome. We used a sliding

window approach to score ,140,000 overlapping non-coding

1000 base pair-long sequences spanning the complete genome.

Keeping a low false-positive prediction rate (FPR) of 5%,

approximately 5,500 sequences were annotated as putative FC

enhancers (Table S3). Similar to what we observed for the training

set, the individual conservation profile of the D. melanogaster

putative FC enhancers generally reflects the phylogenetic distances

of the species involved in the analysis, with most orthologs in the

50–80% sequence identity range in D. yakuba, D. erecta, D.

ananassae, D. pseudoobscura and D. persimillis. However, putative FC

enhancer sequences tend to be more deeply conserved than

background genomic sequence (P-value,0.05, computed using

the Binomial test, corrected for multiple testing using Bonferroni’s

method), and thus, probably functional (see Text S1). Although it

was not surprising that the scores of the FC enhancers in the

training set were positively-skewed (Figure 2C), it was reassuring to

find that putative FC enhancers are strongly associated with genes

that are expressed in FCs. For example, we found that at a FPR of

5%, 222 enhancer predictions are associated with 77 genes

expressed in FCs, a number that is 1.5-fold higher than would be
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expected by chance (P-value = 5.8610210; Figure 2D). The latter

result suggests that the sequence features learned by the classifier

have specificity for FC enhancer function.

Functional Assessment of Enhancers Predicted by the
Classifier

To test the functions of the classifier-predicted enhancers, we

first asked if the presence of a high-scoring putative FC enhancer

could be used to predict expression in FCs [52]. To more readily

associate an enhancer with its putative target gene, we examined

the expression patterns of genes with a high-scoring intronic

enhancer, which was assumed to control the gene in which it is

located. In total, 5 genes out of 20 tested (25%) were actually

expressed in FCs (Table S3). This is 8-times higher than would be

predicted by chance (P,0.002), given that only 3% of Drosophila

genes have been estimated to be expressed in FCs [22]. As an

example, defective proventriculus (dve) was identified and validated as a

novel FC gene using this approach (Figure 4A). In summary, since

the presence of putative FC enhancers is strongly associated with

FC gene expression, it is likely that a large fraction of FC enhancer

predictions represent authentic FC regulatory sequences, including

FC-specific enhancers and possibly silencers and insulators [2].

To directly assess the in vivo functions of these candidate

enhancers, we used site-specific transgenic reporter assays to test

12 enhancer predictions associated with known FC genes. We

assayed the activities of genomic regions with varying scores in the

classifier ranking (Table S3). Whereas 9 out of the 12 candidates

were found to have enhancer activity, 4 of these were functional in

the mesoderm, with 2 directing reporter expression in muscle FCs

(Figure 4). Forty-four percent (4/9) of enhancers driving

expression in mesoderm represents a validation rate comparable

with p300 based ChIP-Seq discovery of tissue-specific enhancers

[53], while 2/9 FC enhancers in the set was below expected.

These findings presumably reflect the limitations of the training set

which, as previously noted, contain only 2 enhancers with

specificity restricted only to FCs. Other factors contributing to

this outcome are considered in the Discussion.

One informative example of a newly identified FC enhancer is

that associated with slou (Figure 4B). This enhancer is found

upstream of the gene in a region previously shown to recapitulate

the complete FC expression of slou [54], but it is active in only a

Figure 4. Candidate enhancers predicted by the classifier are active in FCs. In situ hybridization of dve in wild-type (WT) embryos and
embryos over-expressing Ras (Twi.Ras) in the mesoderm (A). Note the increased activity of dve in Twi.Ras embryos, indicative of a FC gene [22].
GFP driven by the classifier-predicted enhancers associated with the upstream sequences of slou (arrows in B) and slp1 (arrows in C). Slou protein
(magenta) co-expresses with GFP (green) in slou-GFP embryos (B). Duf (magenta), which marks all FCs, co-expresses with slp1-GFP (green) (C). GFP (D)
driven by the classifier-predicted intronic sequence associated with the dve gene co-expresses with Mef2 (D9) in myotubes at stage 15 in dve-GFP
embryos.
doi:10.1371/journal.pgen.1002531.g004
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subset of all slou-expressing cells (in particular, those which

correspond to the lateral oblique 1 (LO1) and ventral transverse 1

(VT1) muscles). This result suggests that additional regulatory

elements must account for the complete expression pattern of this

FC gene [55], unlike the situation for the majority of FC

enhancers. The predicted enhancer associated with slp1 is also

located upstream of the gene and directs reporter activity both to

FCs (Figure 4C) and to mesodermal and ectodermal stripes which

are known to express slp1 [56]. Of note, the intronic enhancer for

dve, a gene which was tested for expression in FCs based on the

presence of this predicted FC enhancer (Figure 4A), was not active

during the FC stage of myogenesis but did direct reporter

expression slightly later when myotubes develop (Figure 4D). It

remains possible that the activity of this element occurs at the FC

stage but is insufficiently strong to be detected by the present assay.

Alternatively, a separate enhancer may be directing the early FC

activity of dve, consistent with the additional candidate enhancers

associated with this gene (Table S3). In this case, the classifier

appears to be detecting features shared by early- and late-acting

muscle enhancers without discriminating FC-specific elements,

which is not surprising given that many TFs are expressed and

active in the same cell types at different stages of development

[20,54]. Thus, while the classifier has some predictive value for FC

enhancers, the regulatory network specifying these cells is

sufficiently diverse and complex that the available training set is

insufficient to provide a higher success rate for identifying new FC

enhancers. To begin unraveling the complexities of this network,

we need to define a more extensive collection of myogenic

transcription factors and the DNA sequences to which they bind.

To this end, we turned to an examination and validation of the

novel sequence motifs detected by the classifier.

Identification of Novel Sequence Motifs within FC
Enhancers

To begin constructing a more comprehensive myogenic

network, we examined the sequence features associated with the

computational classification of FC enhancers. These features

included position weight matrices of known TF binding specific-

ities found within the TRANSFAC database, as well as motifs not

represented in this database that can be identified by the

PRIORITY algorithm [51]. In the case of linear SVMs, features

irrelevant to the classification receive zero weight, whereas those

associated with the signal and control set receive positive and

negative weights, respectively (see Materials and Methods). Since a

finite number of TFs is expected to regulate FC gene expression,

only some of all possible motifs will be relevant to the classification.

Indeed, out of the original 945 features, 200 contributed to

approximately 50% of the weights in the decision function of the

classifier, suggesting their importance in the prediction of FC

enhancers. Sixty-percent of these 200 motifs were associated with

positive weights and correspond to almost 60 distinct TFs (Figure

S4 and Table S4). Most of these TFs belong to only a few families

having similar binding profiles, which we are unable to

individualize (Figure 5).

This diverse compilation of motifs suggests that the motif

signature of FC enhancers is complex. However, this interpreta-

tion should be considered with caution, since training on a set of

enhancers with diverse expression (Table S1) is likely to lead to the

identification of multiple enhancer signatures. In any case, we

were encouraged by the fact that known myogenic regulatory

motifs, including Ets, Mef2 and MyoD (due to similarities in

binding preferences, E-boxes may represent motifs for Twi, MyoD

or other TFs having basic-helix-loop-helix DNA binding domains),

are among those with the highest discriminatory power. Other

identified motifs, including those for Stat [57] and homeodomain

proteins [35,58,59], appear to play critical roles in myogenesis. In

addition to known TFBSs, de novo motifs make a key contribution

to the classification and presumably account for binding sites of

TFs missing from TFBS libraries, or constitute more accurate

representations for the binding specificities of incompletely

characterized TFs (Figure S5). In particular, we found that the

most relevant de novo motif represents the binding specificity of Tin

[60], consistent with the well-established mesodermal regulatory

functions of this TF [61].

Predicted Motifs Regulate Enhancer Function in FCs
To determine if the newly identified motifs are functionally

relevant to FC gene expression, we employed site-directed

mutagenesis of such putative binding site sequences in otherwise

wild-type FC enhancers. We initially concentrated on the potential

role of Ets, Myb, POU homeodomain (POUHD) and Fkh binding

motifs (see Figure 5, Figure 6A, and Figure S7B). Each of these

motifs is over-represented in both individual FC enhancers and

their orthologous sequences when compared to controls (Figure

S6). Sequence matches to Myb and POUHD motifs in the wild-

type Ndg enhancer and a version in which the sites are mutated are

shown in Figure 6B (also see Table S4). To compare activities of

the different constructs, we crossed Drosophila strains containing

wild-type or mutant enhancer transgenes driving different

reporters (either GFP or lacZ) to each other.

Mutagenesis of all motifs affected activity of the reporter as

compared to wild-type versions of the enhancer (Figure 6C). For

example, elimination of POUHD binding sites (Figure 6D) from

an otherwise wild-type version of the Ndg enhancer reduced or

eliminated enhancer activity in subsets of cells which express wild-

type Ndg-lacZ (Figure 6D), whereas mutagenesis of Myb motifs

caused an extensive de-repression of the reporter into additional

somatic mesodermal cells (compare Figure 6E and 6E9). In

addition, we found that the activity of Ets binding sites is critical

for the full activity of the Ndg enhancer (Figure S7A), as had

previously been demonstrated for another FC regulatory element

[28]. Finally, mutagenesis of the Fkh binding sites in the apterous

(ap) FC enhancer lead to a complete loss of reporter expression in

those FCs in which the wild-type enhancer is active (compare

Figure S7C and S7D). Collectively, the present experiments

validating the functions of specific TFBSs in known FC enhancers

document the critical role played by classifier-defined motifs in

regulating specific gene expression patterns.

Identifying a Novel Myogenic Transcription Factor from
Motifs Over-Represented in FC Enhancers

The preceding analyses indicate that the regulatory motifs

learned by the classifier are critical for the normal functions of FC

enhancers. Next, we used classifier results not only to discover a

new cis-acting motif but also to identity the corresponding TF that

binds to this sequence and to functionally characterize it as a

previously unrecognized myogenic regulator.

One of the top-scoring classifying features of the enhancer

training set was a motif that binds to T-box TFs (Figure 5,

Figure 7A, Figure S4, and Figure S6). This finding could either

reflect the existence of a novel myogenic regulator or, since the

training set of FC enhancers also contain many elements with

heart activity (Table S1), it could simply indicate the functions of

known cardiogenic T-box TFs [62–64]. To distinguish between

these possibilities, we first defined the expression pattern of every

Drosophila T-box TF (Table S5), which confirmed that Dorsocross 3

(Doc3) and optomotor-blind-related-gene-1 (org-1) are the only T-box

TFs expressed in muscle FCs [22,62]. In particular, org-1 is co-
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expressed with Slou in the FCs corresponding to muscles LO1 and

VT1, and with Lbl in the FC for the segment border muscle (SBM)

(Figure S8).

The previous co-expression studies raise the possibility that org-1

may directly regulate slou and lbl. To test this hypothesis, we

identified potential T-box binding sites in the lbl and slou FC

enhancers (Table S4). The previously described lbl muscle

enhancer is active in the SBM and in two adult muscle precursor

cells [5], while the slou FC enhancer identified in the present work

is active in the two FCs which become muscles LO1 and VT1

(Figure 4B). Of note, the slou FC enhancer was predicted by the

classifier due to the presence of a combination of motifs, including

those that bind to T-box TFs. Targeted mutagenesis of the T-box

sites in otherwise wild-type lbl (Figure 7D and 7E) and slou

(Figure 7H and 7I) enhancers revealed that these sites are essential

for full enhancer activity (compare to the wild-type versions in

Figure 7B, 7C and 7F, 7G respectively). These results suggest that

Org-1 is a direct activator of slou and lbl expression in these three

FCs. If this is the case, then org-1 loss- and gain-of-function should

lead to decreased and increased expression, respectively, of the

putative target genes [65]. In agreement with this expectation,

RNAi-mediated knockdown of org-1 causes loss of lbl-GFP

(Figure 7K) and slou-GFP (Figure 7M) activity, whereas panme-

sodermal overexpression of org-1 is associated with ectopic

activation of both the endogenous lbl gene and the lbl enhancer-

driven reporter (Figure 7O), as well as duplication of the SBM in

late-stage embryos (Figure 7Q). These results suggest that Org-1 is

a direct regulator of lbl and that it also contributes to the

development of the lbl-expressing muscle. Consistent with the

latter prediction, RNAi-mediated knockdown of org-1 in embryos

expressing tau-GFP under control of a myosin heavy chain

enhancer revealed a loss of both the SBM and muscle LO1

(Figure 7S). In summary, our computational enhancer classifica-

tion not only led to the discovery of a T-box regulatory motif, but

also facilitated the identification of org-1 as encoding a TF critical

for FC enhancer activity and for determining muscle FC identity.

TFBS Composition of FC Enhancers
Having identified and experimentally validated the functions of

4 novel TFBSs that we found to be over-represented in FC

enhancers—POUHD, Myb, Fkh and T-box—we were next

Figure 5. DNA binding domains of the TFs most relevant to FC enhancer classification. Only DNA binding domains for the fifty most
relevant TFs have been included. TFs were ranked according to the SVM weights of their respective motifs, which represent their discriminating
power. Only the highest scoring motif for each TF was considered (median ranks computed across 10 random partitions of the training data varied
between 12 and 117). De novo motifs were explicitly excluded from this analysis. TF domains and sequences have been clustered using average
linkage and Euclidean distance. The dendogram on top of the heatmap represents the relationships among the sequences in the training data, built
on the presence/absence of TFBSs recognized by a specific class of TF DNA binding domain. The dendogram on the left of the heatmap shows the
relationships among the different TF DNA binding domains.
doi:10.1371/journal.pgen.1002531.g005
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interested in determining the distribution of all known regulatory

motifs in enhancers of this class. We reasoned that such a survey

might reveal whether TF combinatorics contribute to FC

enhancer specificity. Thus, we analyzed all 18 D. melanogaster FC

enhancers (16 from the original training set plus 2 more enhancer

predictions whose activities were validated in the current study) for

the presence of a total of 11 types of TFBSs that are known to

contribute to FC activity. For this purpose, we added 7 motifs from

prior studies of FC enhancers to the 4 new motifs discovered here.

We had previously constructed and validated a regulatory

model of FC enhancer activity which reflected the coordinated

input of Tcf, Mad, Pnt, Twi and Tin [28,29]. Subsequently,

combining the clustering of FC genes based on genetic

perturbation responses with a systematic in silico evaluation of

candidate transcriptional regulatory models, we demonstrated that

Pnt, Twi and Tin alone target a subset of highly Ras-responsive

FC genes [5]. In addition to these 5 motifs, we included 2 other

previously characterized myogenic regulatory sequences that are

bound by Mef2 [66] and homeodomain (HD) TFs ([35,67] and B.

W. Busser, L. Shokri, S. A. Jaeger, S. S. Gisselbrecht, A.

Singhania, M. F. Berger, B. Zhou, M. L. Bulyk and A. M.

Michelson, unpublished data).

Using position weight matrices (PWMs) for 3 signal-activated

TFs (Tcf, Mad and Pnt), the ubiquitously expressed Myb, 4 tissue-

restricted TFs (Twi, Tin, Mef2 and HD, where HD in this case

represents Hox factors that are widely expressed throughout the

somatic mesoderm [59]), plus 4 cell type-specific TF classes

(POUHD, Fkh, T-box and HD, where in this case HD refers to

muscle identity TFs such as Slou, Ap, and Muscle Segment

Homeobox that are expressed in various subsets of FCs

[54,68,69]), we scanned and scored all 18 FC enhancers for at

least one occurrence of each of these 11 binding site motifs

(Figure 8, Figure S9 and Table S6). Interestingly, this analysis

revealed that each FC enhancer has a unique combination of

predicted binding sites for all 11 of these TF classes. On the other

hand, the FC enhancers exhibited various overlapping TFBS

combinations when subsets of the 11 motifs were considered

(Figure S9 and Table S6). Of note, the only motif that is present in

all 18 FC enhancers binds the MAPK-activated TF Pnt, a result

that is consistent with prior evidence demonstrating that the

receptor tyrosine kinase/Ras pathway is the major inductive signal

for establishing all FC fates [49,70].

A number of caveats must be considered in interpreting the

above analysis of motif distributions within FC enhancers. First,

Figure 6. The wild-type activities of FC enhancers require input from classifier-defined Myb and POUHD TF binding motifs. (A)
TRANSFAC position weight matrices for Myb (V$MYB_Q6) and POUHD (V$POU1F1_Q6) enriched motifs identified by the classifier. (B) Binding site
sequences in the Ndg enhancer for Myb and POUHD and versions in which those sites are selectively mutated. Motifs were defined by searching for
matches to the vertebrate homologues in the UniPROBE database [99]. The identification of these binding sites and the designs of the mutant
versions are described in Table S4. (C) GFP (green) and b-Gal (magenta) are co-expressed when driven by the wild-type (WT) Ndg enhancer (NdgWT-
GFP and NdgWT-lacZ, respectively). (D) GFP (green) expression driven by a version of the Ndg enhancer in which POUHD sites are selectively
inactivated (NdgPOUHD-GFP) is significantly reduced compared to b-Gal (magenta) driven by NdgWT-lacZ. (E) b-Gal driven by a version of the Ndg
enhancer in which Myb binding sites are selectively inactivated (NdgMyb-lacZ) is de-repressed into additional somatic mesodermal cells compared to
GFP driven by a WT version of the Ndg enhancer (NdgWT-GFP).
doi:10.1371/journal.pgen.1002531.g006
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except for the small number of cases where individual motifs have

been functionally validated [28,29,35,67], each motif occurrence

corresponds to a computational prediction without a verified

assignable function. Second, the probability of finding a motif

match is increased in longer genomic sequences, whereas the

minimally active region has not been determined for most

enhancers in this set. One notable exception is the enhancer

directing FC expression of eve, where a minimally active

regulatory element has been defined. In the case of eve, an

approximately 300 bp sequence contains multiple instances of 6

different TFBSs (Figure 8 and Table S6), all 6 of which have been

functionally validated as contributing to FC activity [28,29].

Third, PWMs, which are critically dependent on particular

thresholds to limit false positives and negatives, were used to

identify motifs within each enhancer. Fourth, the various PWMs

have different relative information contents (Table S6), a

parameter which affects the likelihood that a match will be

found in any given sequence. Fifth, since many of these enhancers

are active in cell types other than FCs, not all motifs that are

present will necessarily contribute to FC activity. Notwithstand-

ing these potential limitations, the present results suggest that the

specificity of enhancer activities observed at the level of individual

muscle FCs is reflected in the diversity of the TFBS compositions

of these regulatory elements.

Figure 7. The T-box TF org-1 is a regulator of the lbl and slou FC enhancers. (A) TRANSFAC position weight matrix for Tbx5 (V$Tbx5_Q5), a
vertebrate homolog of the Drosophila T-box TF org-1 and a top-scoring feature derived by the FC enhancer classifier. (B, C) In stage 11 embryos
containing the lblWT-lacZ transgene, b-Gal (green) co-expresses with endogenous Lb (red) in three cells (arrow) but is absent from Slou-expressing FCs
(blue, arrowhead). (D, E) Mutagenesis of T-box motifs in the lbl FC enhancer (lblTbox-lacZ) results in an attenuation of b-Gal (green) reporter activity in
the three Lbl-expressing cells (red, arrow). Wild-type and mutant T-box binding sites in the lbl FC enhancer are described in Table S4. (F, G) GFP
(green) co-expresses with endogenous Slou (red) in two cells (arrowhead) but not in the three Lbl- expressing cells (blue, arrow) in stage 11 embryos
containig the slouWT-gfp transgene. (H, I) Mutagenesis of T-box motifs in the slou FC enhancer (slouTbox-lacZ) results in a marked attenuation of b-Gal
(green, arrow) expression in two Slou-expressing cells (red, arrowhead). The asterisks denote de-repression of the lacZ reporter in cells of unknown
identity. Wild-type and mutant T-box binding sites in the slou FC enhancer are described in Table S4. (J) GFP (green) fluorescence expression in living
stage 14 lbl-GFP embryos is visible in the SBM (arrowhead), in two adult muscle precursors and in several cells of the central nervous system (asterisks)
injected with control lacZ dsRNA. (K) Loss of GFP fluorescence from cells corresponding to the wild-type positions of the SBM and two adult muscle
precursors but not in cells of the central nervous system (asterisks) in living stage 14 lbl-GFP embryos injected with org-1 dsRNA. (L) GFP (green)
fluorescence expression in living stage 14 slou-GFP embryos is visible in muscles LO1 (arrow) and VT1 (arrowhead) injected with control lacZ dsRNA.
(M) Loss of GFP fluorescence from cells corresponding to the wild-type positions of LO1 and VT1 in living stage 14 slou-GFP embryos injected with
org-1 dsRNA. (N) Co-expression in the segment border muscle (SBM; arrowhead) of endogenous Lbl (red) and b-Gal in stage 14 lblWT-lacZ embryos
containing the lblWT-lacZ transgene. (O) Panmesodermal expression of org-1 (Twi.org-1) in stage 14 lblWT-lacZ embryos induces ectopic activation of
both endogenous Lb (red) and the b-Ggal reporter reporter (green). (P) Stage 16 wild-type (WT) embryo stained with antibodies directed against
myosin heavy chain (MHC; green), Lb (red) and Slou (blue) showing expression of Lb in the single SBM (arrowhead) in each hemisegment. (Q)
Panmesodermal expression of org-1 (Twi.org-1) induces duplication of the SBM in some but not all hemisegments (arrowheads). (R) GFP (green)
fluorescence expression in living stage 16 MHC-tauGFP embryos is visible in the SBM (arrowhead) and muscle LO1 (arrow) injected with control lacZ
dsRNA. (S) Loss of GFP fluorescence from cells corresponding to the wild-type positions of the SBM muscle LO1 in living stage 16 MHC-tauGFP
embryos injected with org-1 dsRNA.
doi:10.1371/journal.pgen.1002531.g007
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Discussion

Prediction of Enhancers
There are three main approaches for the prediction of tissue-

specific regulatory elements that are based on high-throughput

sequencing coupled with chromatin immunoprecipitation (ChIP-

Seq), DNA sequence pattern analysis, or hybrid methods that

combine both of these strategies. ChIP-Seq for p300 using mouse

embryonic tissue has proven to be an accurate means for

identifying enhancers and their associated activities, with in vivo

validation rates varying from 62% to 88% [53,71]. Computational

analysis of whole-genome histone modification profiles using

hidden Markov models [72,73] and machine learning techniques

[74] has also been highly successful at linking chromatin signatures

with regulatory elements. Finally, computational models that

identify tissue-specific enhancers relying on sequence motifs and

linear regression and support vector machines have been similarly

effective, with in vivo validation rates of de novo predictions ranging

from 62% for heart enhancers [75] to 91% for brain enhancers

[Taher et al., unpublished data]. Although experimental tech-

niques are often preferred for identifying enhancers on a genome-

wide scale, ChIP-Seq has several limitations. For example, ChIP-

Seq experiments are typically carried out in only one species and

for individual cell types, and are currently not sufficiently precise

for low-quality genome sequences. Thus, de novo prediction of

regulatory elements based on ChIP-Seq data critically depends on

the availability of relevant data for the species, cell type and

genomic regions of interest. Currently, computational analysis of

Figure 8. TFBS combinatorics within FC enhancers. (A) Distribution of Tcf, Mad, Pnt, Twi, Tin, POUHD, Tbx, Myb, Fkh, HD and Mef2 TFBSs in FC
enhancers. Binding sites for Tcf, Mad, Pnt, Twi and Tin were previously published [5]. Motif matches for motifs most relevant to the classification for a
given DNA binding domain class: POUHD (V$OCT_01, V$POU1F1_Q6, V$OCT4_02), Tbx (V$TBX5_01, I$BYN_Q6), Myb (V$MYB_Q6), Fkh (V$FOXO3_01,
V$FOXO1_Q5, V$FREAC2_01), HD (I$ABDA_Q6, V$CDX5_Q5, V$IFP_03, V$PAX4_02), and Mef2 (V$AMEF2_Q6, V$HMEF2_Q6). These sites were mapped
using MAST under default parameters [118]. (B) A generic FC enhancer receives differential input from signal-activated, ubiquitous, tissue-restricted
and cell type-specific TFs. HD binding motifs are represented as both tissue-restricted and cell type-specific classes since these motifs receive input
from both Hox TFs, which are widely expressed in the mesoderm [35,59,67], and muscle identity HD TFs—such as Slou, Msh and Ap—which are cell
type-specific [54,68,69]. For this diagram, HD binding sites were not subdivided into the distinct binding profiles that have been identified for each
individual HD TF ([83,126] and B. W. Busser, L. Shokri, S. A. Jaeger, S. S. Gisselbrecht, A. Singhania, M. F. Berger, B. Zhou, M. L. Bulyk and A. M.
Michelson, unpublished data).
doi:10.1371/journal.pgen.1002531.g008
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DNA sequence patterns shared by a set of regulatory elements

with the same or similar biological activity remains a highly

effective method for the de novo discovery of tissue-specific

enhancers, and the simultaneous elucidation of cell type-specific

regulatory codes. The method presented in this study further

extends the usefulness of computational sequence analysis by

exploring phylogenetic information that can be used to improve

the classification accuracy, a strategy that promises to be

advantageous in the large number of cases where comparative

genomics data are available.

Computational approaches for predicting cis-regulatory mod-

ules are commonly based on machine learning of arrangements of

TFBSs in enhancers that have common functions

[7,10,11,13,15,76]. These methods rely heavily on a training set

of related enhancers to detect over-represented TFBS combina-

tions. Unfortunately, in the vast majority of cases—including the

present study of Drosophila muscle FC enhancers—the size of the

training set is limited by the lack of experimentally validated tissue-

and cell type-specific enhancers, which results in overfitting of

computational models and poor accuracy of predictions. To

overcome this problem, and to provide a generalizable approach

for increasing the size of the training set, we developed a

phylogenetic profiling strategy based on a search for diverged

orthologous counterparts of available enhancers from distantly

related species. Twenty-four Drosophila orthologs were identified

using this approach, which more than doubled the size of the

training set. We assessed the ability to accurately distinguish FC

enhancers in a cross-validation framework using the extended

training set, and determined that the classifier accuracy is 89% as

assessed by the AUC approach. We then applied this classifier to

scan the entire genome of D. melanogaster for novel FC enhancers,

retrieving 5,500 high-scoring predictions at a FPR of 5%. These

predictions were significantly associated with genes expressed in

FCs, demonstrating that the model was able to capture essential

features of FC gene co-regulation. A similar machine learning

approach could be applied to a diverse array of datasets, including

experimentally-verified regulatory elements from co-expressed

targets at either a germ layer, organ, tissue or cellular level from

invertebrate and vertebrate databases [32,33,77,78]. Alternatively,

a similar approach could be coupled to a training set of predicted

regulatory elements derived from genome-wide analyses of

chromatin marks or DNAse hypersensitive sites in active

enhancers associated with a co-expressed gene set [79,80].

Increasing a Small Training Set with Orthologous
Sequences

Evolutionary constraint of functional sequences is routinely

employed as an effective filter to improve the prediction of

regulatory elements [13]. Furthermore, cross-species comparisons

have been successfully exploited to obtain evidence for functional

TFBSs. For example, Rouault et al. [76] used twelve Drosophila

species to identify over-represented motifs in the regulatory

elements of genes expressed in neural progenitor cells, with

sequence orthologs used to enrich the training set and to give

prominence to conserved motifs. However, our method extends

this approach by including suitably diverged orthologous enhanc-

ers from other Drosophila species in the dataset used to train the

classifier. Our purpose in designing this strategy was two-fold.

First, we wanted to enrich for relevant sequence motifs in the

training data, allowing for a level of variation that would improve

the generalization of the model. Second, we wanted to provide a

potentially wider variety of TFBS arrangements that characterize

the architecture of authentic FC enhancers. In essence, the

addition of orthologous sequences boosts the statistical power of

the significance tests, revealing patterns of TFBSs that otherwise

could have been neglected.

Of note, when 5 of these orthologous sequences were tested in

transgenic reporter assays in D. melanogaster, the overall expression

pattern generated was similar to the D. melanogaster counterpart

despite extensive evolutionary shuffling of known TFBSs. Similar

binding site reorganization has been documented for the

enhancers that regulate both the segmentation and mesodermal

patterns of eve expression [40]. Numerous other studies have

shown that the order and spacing of TFBSs is critical for enhancer

function [23–27,50]. These results suggest that regulatory elements

can direct similar expression patterns provided that the overall

composition and order of collaborating TFs is maintained [40].

Our finding that enhancer function is preserved in the orthologous

sequences examined here establishes the validity of the sequence

conservation thresholds chosen for the present studies, and

suggests that the incorporation of orthologous sequences to

increase a training set without over-fitting the data will be a

generally applicable approach.

In Vivo Functions of Predicted Enhancers
To assess the accuracy of our method, we selected 12 predicted

FC enhancers and tested their in vivo functions. Seventy-five

percent of the putative enhancers were experimentally validated as

having transcriptional activity, demonstrating the effectiveness of

our approach to identify regulatory sequences. However, of the

sequences showing regulatory functions, only 4 of 9 were active in

the mesoderm—including 2 in FCs—and 3 of 9 had nervous

system activity. These data suggest that our model has been able to

reliably recognize general properties of tissue-specific enhancers

without specifically distinguishing an overall muscle FC code, even

though numerous individual FC-specific motifs were identified (see

below). The former finding is similar to the results of Sinha and

colleagues [13] who found that the majority of their classifier

predictions were active enhancers, but only a minority were

expressed in the predicted pattern. A number of confounding

factors can explain this outcome.

First, most members of the enhancer training set are active in

both FCs and other cell types, including additional mesodermal

cells such as the cardiac and visceral mesoderm, as well as some

cells of the nervous system. For example, the enhancer responsible

for the FC activity of the hunchback gene is also active in the

longitudinal visceral mesoderm, and enhancers directing the FC

expression of the vestigial, big brain and king-tubby genes are also

active in the peripheral nervous system (Table S3). These results

suggest that the regulatory networks specifying the somatic and

visceral mesoderm share common features, which is consistent

with both the available genetic and genomic evidence for the

diverse developmental functions of key mesodermal transcription

factors [81,82]. Second, different members of a given TF family

bind to similar motifs but have distinct tissue-specific expression

patterns and developmental activities. Thus, combinations of

motifs involved in the specification of muscle FCs and the nervous

system may overlap. For example, this situation occurs with E-box

and NK-homeodomain motifs [5,58,76,83,84]. Third, some TFs

are expressed and functional in the derivatives of more than one

germ layer [54,85]. Fourth, the sequence features characteristic of

cell type-specific enhancers, such as those active in muscle FCs, are

expected to be under-represented in available training sets owing

to the diversity of combinatorial TF models required to specify

such a heterogeneous cell type [18,20]. Identification of many

examples of a particular cell-specific signature is a major challenge

since each of the approximately 30 FCs in each Drosophila

hemisegement expresses a unique combination of cell-specific
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muscle identity TFs and downstream target genes [18,19]. Thus,

30 distinct cell states exist, each governed by a different but

partially overlapping set of regulatory TFs. In contrast to the

difficulties involved in dissecting regulatory codes at single cell

resolution, shared features that direct activity to the general level

of tissues and organs have been more readily identified using a

machine learning approach, as was found here for enhancers

having mesodermal, although not necessarily FC, activity. This

likely reflects the dominant role that some TFs play in the

regulatory network specifying the identities of numerous tissues

[86–91]. Fifth, since there appears to be a regulatory signature for

enhancers [16,92], it is likely that these aspects of enhancer

structure will be more significantly over-represented than those

features that specify individual FC activity patterns. Sixth, the use

of phylogenetic profiling might have expanded the biological

function of the training dataset by introducing additional enhancer

functions acquired by the orthologs of the original D. melanogaster

sequences during their evolution. While we have been able to show

that the phylogenetic profiling approach improves the accuracy of

the classifier, one drawback of its use might be that the final

classifier recognizes a broader biological domain than the function

of the original training set of sequences derived from the reference

species. Finally, classifier predictions may represent cis-regulatory

elements other than enhancers, for example, silencers and

insulators [2], which would not be detected by our transgenic

reporter assays.

In summary, a number of confounding factors influenced our

ability to identify an enhancer signature that is specific for

individual muscle FCs. However, despite these challenges, our

successful identification of novel TF binding motifs responsible for

the cell type-specific activity of FC enhancers encourages us that

this is a tractable problem that can be solved by an iterative

approach to the computational analysis of this and other complex

developmental systems. Thus, future studies must focus on

obtaining a larger training set of sequences in which enhancers

are categorized based on their activities at single cell resolution,

combined with the appropriate weighting of newly validated

motifs that contribute to the expression pattern of interest. In this

manner, each experimental round would improve the accuracy of

the classifier.

Sequence Motifs Associated with FC Enhancers Are
Functional and Can Be Used to Identify Novel Trans-
Acting Factors

The motifs ranked by our classifier as having the highest

discriminatory power are part of a large regulatory network that is

known to be critical for mesoderm specification and myogenesis.

These motifs include binding sites for JAK/STAT [57], Ets [93],

bHLH [94,95], Wingless/Tcf [49,96,97], Mef2 [66], homeodo-

main ([19,20] and B. W. Busser, L. Shokri, S. A. Jaeger, S. S.

Gisselbrecht, A. Singhania, M. F. Berger, B. Zhou, M. L. Bulyk

and A. M. Michelson, unpublished data) and forkhead (X. Zhu, S.

M. Ahmad, A. Aboukhalil, B. W. Busser, Y. Kim, T. R. Tansey,

A. Haimovich, N. Jeffries, M. L. Bulyk, and A. M. Michelson,

unpublished data) proteins. Furthermore, we previously suggested

that Ets is part of a transcriptional code regulating the C1 subset of

FC genes [5], which we validated here using site-directed

mutational analysis of the Ndg enhancer, a previously character-

ized regulatory element associated with a C1 FC gene.

To extend the components of the myogenic regulatory network

beyond these known TFs and motifs, we examined the function of

the classifier-defined sequence motifs recognized by POU

homeodomain and Myb proteins, transcription factors having no

previously known role in Drosophila myogenesis. Mutagenesis of

POUHD motifs attenuated the activity of the Ndg enhancer in

many mesodermal cells. However, a zygotic loss-of-function

mutation in acj6, the only POUHD that we found to be expressed

in the mesoderm, had no effect on Ndg gene expression (data not

shown). Given the strong maternal contribution to this gene [98],

we used RNAi to knock down both maternal and zygotic acj6

transcripts, but this manipulation had no effect on Ndg-GFP

reporter activity (data not shown). These findings leave unresolved

the identity of the TF that binds to the motif in question. The

future characterization of this TF, including exploring the

possibility that it is not a POUHD protein, will require searching

functional motifs against larger TF databases [99] or with STAMP

[60], combined with analysis of the embryonic expression and

function of any new candidates that emerge.

Inactivating mutations of the Myb binding sites in the Ndg

enhancer led to extensive de-repression of the reporter in other

mesodermal cells. Myb is a ubiquitously-expressed DNA binding

protein which plays a critical role in controlling regulatory

decisions during proliferation and differentiation of progenitor

cells [100]. Identifying a putative role for Myb in myogenesis

documents the power of this approach, since functional studies

tend to focus on genes with restricted expression patterns.

However, a definitive assessment requires examining the effect

of loss-of-function mutations in Myb. In any event, as myogenesis

in Drosophila occurs through a series of asymmetric and symmetric

cell divisions [101], a role for Myb in regulating FC gene

expression is entirely consistent with a transcriptional regulator

acting at the interface between replication and transcription

[102,103]. Alternatively, Myb may cooperate with other TFs to

activate cell or tissue-specific gene expression [104].

Interestingly, T-box motifs scored well in the classification, yet

no role for T-box TFs has previously been described in Drosophila

somatic muscle development, despite widespread functions of this

TF class in mesoderm specification and myogenesis in vertebrates

[105,106], as well as cardiogenesis in Drosophila and vertebrates

[62,63,107]. Here we show using both cis and trans tests of TF

function, along with gene co-expression, that Org-1 is a muscle

identity TF. In particular, the cis effects of Org-1 were documented

in the FC enhancers associated with two known muscle identity

TFs, Slou and Lbl, and org-1 expression localizes to the SBM and

VT1, muscles in which the lb genes and slou, respectively, are the

only previously described determinants of muscle identity

[54,108]. Slou function is critical for the proper development of

muscles LO1 and VT1 and is further required to repress the lb

genes in these cells, suggesting a co-regulatory relationship

between slou and lb [54]. It is likely that org-1 acts upstream of

slou and lb in this regulatory hierarchy since org-1 expression

precedes slou and lb, and the ectopic expression of org-1 causes

increased expression of slou and lb (Figure 7 and data not shown).

In addition, the essential role of org-1 in this regulatory network is

revealed by the effects of org-1 overexpression and RNAi

knockdown on development of lb- and slou-expressing muscles.

Interestingly, the mouse orthologs of org-1 and lb genes, Tbx1 and

Lbx1, respectively, have been suggested to regulate myogenic

differentiation in the limb [109–111]. Given the high degree of

sequence similarity, and the close correspondence of expression

patterns and functions in Drosophila and mouse, the collaborative

roles of these two TFs in myogenesis appear to have been

conserved through evolution.

Motif Combinatorics in FC Enhancers
Computational prediction of regulatory elements requires a

thorough understanding of the TFs and motifs that orchestrate

gene co-expression patterns. In prior studies, we established that 5-
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way and 3-way ‘‘AND’’ combinations of 3 signal-activated (Tcf,

Mad and Pnt) plus 2 tissue-restricted (Twi and Tin) TFs constitute

distinct regulatory models for different FC enhancers [5,28,29].

The present study significantly extend these prior combinatorial

codes for FC gene regulation by identifying four additional classes

of TFBSs that are critical for accurate FC enhancer activity,

namely POUHD, Myb, Fkh and T-box motifs. Moreover, these

findings provided us with an opportunity to examine the complete

spectrum of regulatory motif usage across a collection of regulatory

elements that are active in different muscle FCs, which led to the

identification of 18 unique combinations of 11 TFBSs for the

entire set of 18 known FC enhancers. Thus, unlike other cases that

have been studied, a single enhancer archetype does not appear to

exist for this subpopulation of myoblasts [23–25,50]. This finding

likely reflects the fact that although these elements all display FC

activity, with some overlap at the level of individual cells, no two

FC gene expression patterns directed by this enhancer set are

identical.

The marked heterogeneity of FC enhancer architecture

uncovered here reflects not only distinct combinations of various

TF classes (including signal-activated, ubiquitous and both tissue-

and cell type-specific TFs), but also diversity at other biological

levels, including the unique identities of the thirty muscle FCs and

their differentiated derivatives in each abdominal hemisegment,

and the different gene expression patterns exhibited by those

particular cells. Thus, TFBS combinatorics provide a plausible

molecular explanation for the functional complexity of enhancers

having related but non-identical activites at the resolution of

individual cells in the context of the developing embryo.

Conclusions
We have investigated the transcriptional regulatory network

specifying individual muscle FCs using an integrated genomics

approach that includes identification of orthologous enhancers, de

novo motif discovery, classification of enhancer sequence features,

empirical testing of candidate enhancers, and cis-trans tests of target

gene regulation. We also have established that a small set of

training sequences can be expanded with orthologous sequences

[76]. Moreover, motifs learned by the classifier were empirically

found to be critical for the appropriate spatio-temporal activities of

FC enhancers, and suggested new candidate TFs in the myogenic

regulatory network. Using this approach, we identified one such

candidate TF, Org-1, as a novel muscle identity TF, and further

found that no two enhancers with related activities contain the

same combination of TFBSs. The tools and strategy used here can

be readily applied to other cell types to identify the motifs and

trans-acting factors regulating a set of co-expressed genes. Finally,

we anticipate that an iterative application of this approach, which

could include training on datasets of different epigenetic marks

associated with active enhancers [18,80,112,113] or previous ChIP

studies of known mesodermally-relevant TFs [114], will lead to

further refinements in the determination of cell type-specific

transcriptional codes.

Materials and Methods

Fly Stocks
Drosophila stocks containing the following transgenes and mutant

alleles were used: UAS-org-1 (gift of G. Pflugfelder, Univ.

Wurzburg, Germany), attP40 and nos-phiC31intNLS [115] (gift

of N. Perrimon, Harvard University, USA), lbl-lacZ and Ndg-lacZ

[5], ap-lacZ (gift of J. Botas, Baylor College, USA) [35], acj66 (gift of

J. Carlson, Yale University, USA) [116], and twi-Gal4 [49].

Analysis of Transgenic Reporter Constructs and Embryo
Staining

Enhancer regions were either synthesized in vitro (Integrated

DNA Technologies, Coralville, IA, USA) or PCR-amplified and

sequence-verified and then subcloned into the reporter vector

pWattB-GFP (B. W. Busser, L. Shokri, S. A. Jaeger, S. S.

Gisselbrecht, A. Singhania, M. F. Berger, B. Zhou, M. L. Bulyk

and A. M. Michelson, unpublished data) or pWattB-nlacZ. The

pWattB-nlacZ vector was constructed by cloning the EcoRI-SpeI

fragment from a version of pH-pelican [117] in which nuclear

lacZ replaced cytoplasmic lacZ into the EcoRI-SpeI sites in the

pWattB-GFP vector. All constructs were targeted to attP40 [47]

with phiC31-mediated integration [46], and homozygous viable

insertion lines were obtained. Whole-embryo immunohistochem-

istry, in situ hybridization and fluorescent in situ hybridization with

tyramide signal amplification (Invitrogen, Carlsbad, CA, USA)

followed standard protocols [28]. Embryo collections for twi-Gal4

UAS-org-1 were incubated at 25uC. For fluorescent staining, the

following antibodies were used: mouse anti-Ladybird early (Lbe)

(1:2500, gift of K. Jagla; Lbe and Lbl are co-expressed in the same

mesodermal cells), rabbit anti-Slou (1:200, gift of M. Baylies),

chicken anti-GFP (1:2000, Abcam, Cambridge, MA), mouse anti-

bgal (1:500, Promega, Madison, WI), rabbit anti-Kirre (1:200, gift

of K. Fischbach), rabbit anti-MHC (1:500, gift of D. Kiehart), and

guinea pig anti-Eve (1:200, gift of D. Kosman).

RNA Interference Assay
Embryo RNAi was performed as previously described [22].

Using SnapDragon (http://www.flyrnai.org/cgi-bin/RNAi_find_

primers.pl), two independent gene segments for synthesis of org-1

double-stranded RNA (dsRNA) were selected with lengths of 570

and 473 bp and with less than 20 and 22 bp of identity to any other

predicted gene, respectively. These segments of the org-1 gene were

PCR-amplified from primary embryonic cDNA using the primers,

CGTCCAAAAAGTTCAAGGGA and GCTCGTTCTCATC-

CAAGGAG (570 bp) and GCTCCAACAGAGCCAGAATC

and CCGAACCGTAAAAACTTGGA (473 bp), and transcribed

in vitro using the MEGAscript RNAi kit (Ambion, USA). lbl-GFP,

slou-GFP or MHC-tauGFP embryos were dechorionated and injected

with negative control (lacZ) or org-1 dsRNA at the syncytial

blastoderm stage and allowed to develop to stage 14 or 16 before

examination by fluorescence microscopy for assessment of reporter

GFP expression. A similar protocol was used to assess the function of

acj6 in Ndg-GFP embryos.

FC Enhancer and Control Sequences
The sixteen sequences in the training set of Drosophila melanogaster

FC enhancers range in length from 311 to 2068 bp (average length

1232 bp), in GC-content from 39% to 49% (average GC-content

43%), and in repeat-content from 0% to 7% (average 1.5%). The

twenty-four orthologs have similar characteristics, with an average

length of 1311 bp, GC-content of 43% and repeat content of 5%.

The control set comprised 1000 randomly selected D. melanogaster

noncoding genomic sequences with length, GC- and repeat-

content matching those of the enhancer set.

Identification of TFBSs
Putative TFBSs were identified by searching the sequences with

MAST [118] for motifs in TRANSFAC Release 2009.2 [119], in

addition to binding sequences for Tin, Twi and Pnt from the

literature [5]. MAST was run independently on each individual

sequence with default setup and parameters. In particular, for the

final analysis of the TFBS composition of FC enhancers, we
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examined the sequences for the occurrence of 11 types of

TFBSs: POUHD (V$OCT_01, V$POU1F1_Q6, V$OCT4_02),

Tbx (V$TBX5_01, I$BYN_Q6), Myb (V$MYB_Q6), Fkh

(V$FOXO3_01, V$FOXO1_Q5, V$FREAC2_01), HD (I$AB-

DA_Q6, V$CDX5_Q5, V$IFP_03, V$PAX4_02), and Mef2

(V$AMEF2_Q6, V$HMEF2_Q6) and binding sites for Tcf, Mad,

Ets, Twi, Tin [5]. Since the Position Weight Matrices (PWMs) for

Tcf, Mad, Ets, Twi, and Tin were constructed from only a small

number of sequences and we obtained few significant matches using

MAST, we re-inspected the sequences manually, searching for the

known binding sites of these TFs.

Over-represented TFBSs were determined by comparing the

occurrence of the motifs among query sequences and background

genomic sequence, and applying Fisher’s exact test. We used a P-

value threshold of 0.05. When indicated, we adjusted the P-values

for multiple testing using the procedure suggested by Benjamini

and Hochberg [120].

Classifier Training
Each nucleotide sequence in the FC enhancer and control sets was

represented by the number of putative TFBSs per base pair. Putative

TFBSs were identified by searching the sequences for motifs derived

from three different sources: (1) 892 TF binding specificities

characterized in TRANSFAC, (2) 3 binding sequences for Tin,

Twi, and Pnt from the literature [5], and (3) at most 50 motifs that

PRIORITY [51] found to be over-represented in the training set of

FC enhancers. In order to prevent the over-representation of motifs

in D. melanogaster enhancer sequences with a large number of

orthologs, de novo motifs were identified on a restricted set of 34

sequences, including at most two randomly selected orthologs for

each D. melanogaster FC enhancer. Features relevant for distinguishing

between enhancer sequences and controls were identified using linear

support vector machine (SVM). We used a standard ten-fold cross-

validation procedure to assess the accuracy of the classifier. In each

fold of the cross-validation procedure, the de novo motifs were

extracted using the training data, only, thereby ensuring that the test

data were completely unseen before the predictions were made. The

cross-validation procedure should help to prevent overfitting of the

classifier.

SVM Parameter Selection
We used Support Vector Machines [121] with a linear kernel,

which only requires setting the penalization coefficient C. The

performance of the SVM was evaluated using the area under the

receiver operating characteristic (ROC) curve, which yields values

between 0.5 (for a completely random guess) and 1.0 (for a perfect

classifier). In order to compensate for the data unbalance, FC

enhancer sequences and controls were assigned different misclas-

sification costs (SVM soft-margin constants), giving equal overall

weight to each class.

Motif Ranking
Given a training set of instances x1, …, xl[Rn with associated

labels y1, …, yl[ {1,1f g, linear SVM solves the optimization

problem min
w,b,e

1

2
wT wzC

P

i

ei subject to yi wT xizbð Þ§1{ei and

ei§0 [122]. Thus, after obtaining a linear SVM model, the weight

vector w can be used to decide the relevance of each feature [123].

The larger wj

�
�
�
�, the more important role of feature j in the

decision function. We rank features—in our case, motifs—

according to wj

�
�
�
�. For this purpose, we trained a classifier for

100 random partitions of the training data (containing two thirds

of the total training data), computed the ranking for each feature,

and finally ranked the features according to their median ranking.

Genome Scan
We scanned the whole-genome of D. melanogaster (BDGP Release

5 assembly) with a sliding window of length 1000 base pairs and

overlaps of 500 base pairs. The length of the window corresponds

approximately to the average length of the sequences in the

training data set (1280 base pairs). We scored 137,364 sequences

after excluding sequences which overlap annotated coding regions

by at least 50%. The cut-off for the genome scan was defined to

obtain a false positive rate (FPR) of at most 5% by training and

testing 100 classifiers on random partitions of the training data

(containing two thirds of the total training data).

Association between TFs and Sequence Motifs
TF annotation for PWMs was obtained from TRANSFAC and

the Broad Institute MsigDB database [124].

Classifier Performance with Orthologs of D. melanogaster
Mesodermal Enhancers

To understand the effects of a sample size on the classifier

performances, we first extracted a dataset of Drosophila melanogaster 62

enhancers active in mesoderm from the REDfly database [32].

REDfly contains 176 partially overlapping enhancers active in

mesoderm. To eliminate this redundancy, we clustered together

overlapping sequences, and subsequently selected the shortest

enhancer sequence from each cluster; sequences longer than 2 kb

as well as sequences overlapping our dataset of enhancers active in

muscle founder were excluded from the final dataset. Orthologs were

selected randomly among sequences from 15 insect species [125]

with nucleotide identity ranging from 50 to 80%, so that at most two

orthologs were selected for each Drosophila melanogaster enhancer in

REDfly. As controls, we randomly sampled for each enhancer (and

orthologs) 10 non-coding sequences from the Drosophila melanogaster

genome with similar length, GC- and repeat-content.

Each nucleotide sequence in the enhancer and control sets was

represented by the number of putative TFBSs per base pair.

Putative TFBSs were identified by searching the sequences with

MAST [118] for motifs derived from two sources: (1) 892 TF

binding specificities characterized in TRANSFAC Release 2009.2

[119], and (2) 3 binding sequences for Tin, Twi, and Pnt from the

literature [5]. Features relevant for distinguishing between enhancer

sequences and controls were identified using linear SVM.

Supporting Information

Figure S1 Empirical validation of predicted FC enhancers

conforming to a previously described regulatory model. Fluores-

cent in situ hybridization analysis of stage 11 embryos containing

RhoGEF3-lacZ (A), FBX011-lacZ (B), cib-lacZ (C) or fra-lacZ (D)

transgenes using probes for endogenous RhoGEF3 (A), FBX011 (B),

cib (C), and fra (D) transcripts. Panels A9 to D9 show the

corresponding signals for lacZ transcripts, and panels A0 to D0

show the merged channels. All enhancers were selected from

previously identified candidates [5].

(TIF)

Figure S2 Variation of the classification performance with

increasing sample size. Samples were randomly selected from a

dataset of 62 D. melanogaster enhancers active in various

mesodermal cell types. The sample size was varied from 10 to

60 by an increment of 5. Each sample was used to train a Support

Vector Machine (SVM) classifier. For each sample size, we

compared the performance of the classifier trained exclusively with

D. melanogaster (‘‘dm3 only’’) enhancers with that of a classifier that,

in addition, was trained with up to two orthologs for each D.
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melanogaster enhancer (‘‘dm3 with orthologs’’). All classifiers were

validated on sets comprising only D. melanogaster enhancers.

Control sequences were randomly selected from regions of the

D. melanogaster genome with comparable length, GC- and repeat-

content. The entire process was repeated a total of 1000 times. (A)

Performance of each classifier, measured by its AUC, estimated in

a 10-fold cross-validation. Classifiers trained on D. melanogaster

enhancers and their orthologous sequences with an AUC

significantly greater than that of the corresponding classifier

trained exclusively on D. melanogaster enhancers (P,0.05, Wilcoxon

sign rank test) are marked with a red asterisk. (B) Precision of the

estimated calculated based on the Root Mean Square (RMS)

error. The RMS describes how well the AUC value estimated in

the cross-validation represents the true AUC of the classifier and

thus, how good is our assessment of the underlying model; the true

AUC of each classifier was computed using the enhancers

excluded from the randomly selected sample. (C) Number of

enhancers recognized as such in at least 50% of the instances in

which they were tested. In the cross-validation process each

sequence is used exactly once for validation. Thus, for 100

randomly selected samples and their corresponding cross-valida-

tion processes, we counted the number of times each sequence

scored positively, compared this number with the number of times

each sequence had been included in a random sample, and

repeated the complete procedure 10 times to estimate the variance

of the results. Classifiers trained on D. melanogaster enhancers and

their orthologous sequences consistently recognizing a significantly

higher number of sequences as compared with the respective

classifiers trained only on D. melanogaster enhancers (P,0.05,

Wilcoxon sign rank test) are marked with a red asterisk. (D)

Concordance of prediction outcome between each pair of 1000

classifiers, for each sample size. In this graph, the line segments

represent the 95% confidence intervals surrounding the means.

We compared the sequences positively scoring in the 10 folds of

the cross-validation experiment between each pair of classifiers.

Randomly sampled training and test datasets differ. The likelihood

of observing a large overlap between two samples taken from the

same (finite) population increases with the size of the samples.

Therefore, larger datasets produce larger overlapping outcomes.

However, for the same sample size, the overlap between the

outcomes of classifiers trained on D. melanogaster enhancers and

their orthologous sequences is systematically significantly higher as

compared to that of classifiers trained only on D. melanogaster.

(TIF)

Figure S3 Binding site conservation and evolutionary flux in

orthologous FC enhancers. Sequences of the lbl (A), ap (B), Ndg (C)

and eve (D) enhancers were aligned against the orthologous

enhancers of D. persimilis (D. per), D. ananassae (D. ana), or D.

mojavensis (D. moj). Motif matches to Tcf (black), Mad (blue), Ets

(red), Twi (green) and Tin (purple) for these co-regulating TFs of the

eve MHE are shown. For the Ndg, lbl, and ap enhancers, motif

matches to the co-regulating TFs Ets (red), Twi (green) and Tin

(purple) are shown. Motifs are based on known functional binding

sites (D. mel eve MHE, [28]) or matrices compiled from the literature

for Tcf, Mad, Twi and Tin [5] for the other sequences. K-mer

matches for protein binding microarray data for the mouse ortholog

of Pnt (Ets1) are shown for Ets binding sites. For lbl, a motif match to

a functional Slou-preferred binding site (blue) is shown (B. W.

Busser, L. Shokri, S. A. Jaeger, S. S. Gisselbrecht, A. Singhania, M.

F. Berger, B. Zhou, M. L. Bulyk and A. M. Michelson, unpublished

data). For ap, Antennapedia (Antp)-protected functional binding

sites are shown for D. melanogaster [35]. Similar sites predicted with

protein binding microarray data for Ubx and AbdB are shown for

D. mojavensis ([35] and B. W. Busser, L. Shokri, S. A. Jaeger, S. S.

Gisselbrecht, A. Singhania, M. F. Berger, B. Zhou, M. L. Bulyk and

A. M. Michelson, unpublished data).

(TIF)

Figure S4 TFs most relevant to the FC enhancer classification.

Presence (red)/absence (gray) of the fifty most relevant TF binding

motifs in the set of enhancer sequences used for training. TFs were

ranked according to the SVM weights of their respective motifs,

which represent their discriminating power. We only considered the

highest scoring motif for each TF (median ranks computed across 10

random partitions of the training data varied between 12 and 129).

Control TFs were randomly chosen among TFs for which the

highest scoring motif had a neutral weight (median ranks computed

across 10 random partitions of the training data varied between 437

and 450). TFs and sequences have been clustered using average

linkage and Euclidean distance. The phylogenetic tree represents

the relations among the sequences in the training data, built on the

presence/absence of the motifs for the most relevant TFs. De novo

motifs were explicitly excluded from this analysis.

(TIF)

Figure S5 PRIORITY motifs are representations of known

motifs. Many of the de novo motifs exhibiting the highest power

discriminating FC enhancers from background sequence resemble

motifs of known transcription factors with roles in mesoderm and

FC development. The identity of the transcription factors binding

to the de novo motifs was queried using STAMP [60] and the data

set of binding affinities FlyReg [32].

(TIF)

Figure S6 Motifs identified by the classifier that are overrepre-

sented in FC enhancers and their orthologs. Graphs comparing the

representation of V$ETS_Q4 (A), V$POU1F1_Q6 (B), V$MYB_Q6

(C) V$TBX5_01 (D) and V$FOX03_01 (E) motifs in D. melanogaster

FC enhancers (dm3) and orthologous and control sequences. Position

weight matrices for each of these TFs are also shown.

(TIF)

Figure S7 The wild-type activities of FC enhancers require

input from classifier-defined Ets and Fkh TF binding motifs. (A)

GFP (green) expression driven by a version of the Ndg enhancer in

which Ets sites are selectively inactivated (NdgETS-GFP) is

extinguished compared to b-Gal (magenta) driven by NdgWT-lacZ.

We have previously demonstrated the activity of this enhancer in a

subset of FCs, two pericardial and two cardial cells of the heart,

the gut musculature and two cells of the central nervous system

([5] and X. Zhu, S. M. Ahmad, A. Aboukhalil, B. W. Busser, Y.

Kim, T. R. Tansey, A. Haimovich, N. Jeffries, M. L. Bulyk, and A.

M. Michelson, unpublished data). Of note, the entirety of this

expression pattern is extinguished in the absence of Ets binding

sites, while the reporter is de-repressed into additional cells of the

central nervous system (Figure S7A and data not shown). The

locations of Ets binding sites in the Ndg enhancer are indicated in

Figure 6B and Table S4. (B) TRANSFAC position weight matrix

for the Fkh (V$FOX03_01) enriched motif identified by the

classifier, and locations of Fkh binding sites in the ap muscle FC

enhancer. Although the Ndg enhancer contains several examples of

this motif, mutagenesis studies revealed that Fkh binding sites are

not required for the expression of Ndg in muscle FCs (X. Zhu, S.

M. Ahmad, A. Aboukhalil, B. W. Busser, Y. Kim, T. R. Tansey,

A. Haimovich, N. Jeffries, M. L. Bulyk, and A. M. Michelson,

unpublished data). (C) Activity of the wild-type ap enhancer in

lateral transverse muscles, as revealed by GFP expression driven

by the apWT-GFP transgene. (D) Complete loss of ap enhancer

activity after Fkh binding sites are inactivated (apFkh-GFP).

(TIF)
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Figure S8 Co-expression of org-1 with Slou and Lbl. Expression

of org-1 RNA in stage 11 (A) and stage 13 (B) embryos detected by

in situ hybridization. Co-expression of org-1 RNA (purple) with Lbl

protein (brown) in the Lbl-expressing SBM FC (stage 11; C) and

myotube (stage 13; D). Co-expression of org-1 RNA (purple) with

Slou protein (brown) in the LO1 and VT1 FCs (stage 11; E) and

myotubes (stage 13; F). CVM: circular visceral muscle which

expresses org-1 but neither lbl nor slou.

(TIF)

Figure S9 Motif distribution in FC enhancers. (A) The heatmap

illustrates the occurrence of 11 motifs that have been shown to be

relevant for FC regulation in the 18 sequences that have been

positively assayed for FC enhancer activity. Columns and rows are

clustered using Ward’s method and binary distances. (B)

Maximum fraction of the 18 assayed FC enhancer sequences

sharing N motifs that have been shown to be relevant for FC

regulation, for N in {1, 2, …, 11}.

(TIF)

Table S1 Expression and genomic coordinates of D. melanogaster

and orthologous enhancer regions used for training, and the list of

FC genes considered in this study.

(XLSX)

Table S2 Genomic coordinates and ontology of REDfly D.

melanogaster mesodermal enhancers. The majority of these

enhancers have multiple activities.

(XLSX)

Table S3 Classifier predictions and the activity and genomic

coordinates of the tested enhancer predictions.

(XLSX)

Table S4 Motifs identified by the classifier and the mapping of

TFBSs in the Ndg, lbl, slou and ap FC enhancers.

(XLSX)

Table S5 Summary of in situ hybridization analysis of T-box and

POUHD family members.

(XLSX)

Table S6 Mapping of TFBSs in all FC enhancers.

(XLSX)

Text S1 Conservation Profile of Candidate FC Enhancers

and TFBS Distribution Among Orthologs of Candidate FC

Enhancers.

(DOCX)
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