
Causal Effect of Age at Menarche on
the Risk for Depression: Results From
a Two-Sample Multivariable
Mendelian Randomization Study
Raphael Hirtz1,2*, Christine Hars1, Roaa Naaresh2, Björn-Hergen Laabs3, Jochen Antel2,
Corinna Grasemann4, Anke Hinney2, Johannes Hebebrand2 and Triinu Peters2

1Division of Pediatric Endocrinology and Diabetology, Department of Pediatrics II, University Hospital Essen, University of
Duisburg-Essen, Essen, Germany, 2Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy,
University Hospital Essen, University of Duisburg-Essen, Essen, Germany, 3Institute of Medical Biometry and Statistics, University
Medical Center Schleswig-Holstein—Campus Lübeck, University of Lübeck, Lübeck, Germany, 4Department of Pediatrics,
Division of Rare Diseases and CeSER, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany

A fair number of epidemiological studies suggest that age at menarche (AAM) is associated
with depression, but the reported effect sizes are small, and there is evidence of residual
confounding. Moreover, previous Mendelian randomization (MR) studies to avoid
inferential problems inherent to epidemiological studies have provided mixed findings.
To clarify the causal relationship between age at menarche and broadly defined depression
risk, we used 360 genome-wide significantly AAM-related single-nucleotide
polymorphisms (SNPs) as instrumental variable and data from the latest GWAS for the
broadly defined depression risk on 807,553 individuals (246,363 cases and 561,190
controls). Multiple methods to account for heterogeneity of the instrumental variable
(penalized weighted median, MR Lasso, and contamination mixture method),
systematic and idiosyncratic pleiotropy (MR RAPS), and horizontal pleiotropy (MR
PRESSO and multivariable MR using three methods) were used. Body mass index,
education attainment, and total white blood count were considered pleiotropic
phenotypes in the multivariable MR analysis. In the univariable [inverse-variance
weighted (IVW): OR = 0.96, 95% confidence interval = 0.94–0.98, p = 0.0003] and
multivariable MR analysis (IVW: OR = 0.96, 95% confidence interval = 0.94–0.99, p =
0.007), there was a significant causal effect of AAM on depression risk. Thus, the present
study supports conclusions from previous epidemiological studies implicating AAM in
depression without the pitfalls of residual confounding and reverse causation. Considering
the adverse consequences of an earlier AAM on mental health, this finding should foster
efforts to address risk factors that promote an earlier AAM.
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1 INTRODUCTION

There is a steep increase in depressive symptoms and major
depressive disorder (MDD) during adolescence. Moreover, a
gender gap in the prevalence of MDD emerges only by
puberty, affecting twice as many girls as boys. This finding
persists throughout much of adult life (Thapar et al., 2012).
These observations highlight the importance of puberty on
mental health, especially in pubescent girls. To better
understand puberty-related mental health trajectories in girls,
age at menarche (AAM) has been extensively studied.

Earlier menarche relates not only to a higher risk for
externalizing problems, among others, early or risky sexual
behavior (Ullsperger and Nikolas, 2017), substance use
(Ullsperger and Nikolas, 2017), and peer victimization (Smith-
Woolley et al., 2017) but also to internalizing problems, including
anxiety (Platt et al., 2017; Smith-Woolley et al., 2017), eating
disorders (Smith-Woolley et al., 2017; Ullsperger and Nikolas,
2017), and depressive symptoms (Ullsperger and Nikolas, 2017).
However, effect sizes regarding internalizing outcomes are small
(d ≈ 0.2) (Ullsperger and Nikolas, 2017), and there are also
contradictory findings from well-designed studies (Carter et al.,
2011; Gaysina et al., 2015; Winer et al., 2016), which might
indicate a variable degree of confounding. Consistent with this, a
more recent study by Vaughan et al. (2015), that examined the
impact of AAM on depressive symptoms in adolescence by a
multilevel familial design, concluded that the effects of AAM
might be driven by unmeasured or residual confounding. Thus,
AAM may instead act sensitizing rather than causally in an
environment of endogenous and exogenous pubertal stressors
to favor the development of depression (Skoog and Stattin, 2014).

However, the approach chosen by Vaughan et al. (2015) relied on
several key assumptions, some of which were not tested or may not
hold in the studied context. Moreover, observational studies are not
only prone to residual confounding but also reverse causation
(Haycock et al., 2016; Besser et al., 2021). In contrast, Mendelian
randomization (MR) uses genetic markers to draw causal
conclusions on the association between an exposure (e.g., AAM)
and an outcome (e.g., depression) of interest by exploiting the fact
that genotypes are not generally associated with confounders in the
population and randomly assigned at conception, analogous to
randomization in clinical trials. Moreover, since the individual
genotype is determined upon conception and cannot be modified
by the outcome of interest, MR is robust to reverse causation.
Usually, single-nucleotide polymorphisms (SNPs) derived from
large-scale genome-wide association studies (GWASs) are used as
instrumental variables (IVs). While in the one-sample MR setting,
the individual participant data are used to assess the causal effect of
the exposure on the outcome of interest, two-sampleMR studies rely
on the summary statistics from independent GWAS. The latter
approach allows for greater sample sizes and, thereby, statistical
power and comes with the advantage of less bias in the presence of
weak genetic instruments (Haycock et al., 2016; Davies et al., 2018).
However, for valid causal conclusions, MR relies on several
assumptions. A potential threat to the validity of MR findings is
horizontal pleiotropy, which refers to an effect of the IV on the
outcome (depression) by a mechanism other than via the exposure

(AAM). Previously, BMI has been identified as a potential pathway
to horizontal pleiotropy when using AAM as exposure as a large
number of SNPs associated with AAM are also negatively related to
BMI (Day et al., 2017). When also considering that a higher BMI is
associated with a higher risk for depression (Casanova et al., 2021),
BMI is a potential source of horizontal pleiotropy. Moreover,
recently, Magnus et al. (2020) have shown in their one-sample
MR phenome-wide association study with 17,893 health-related
traits in the UK Biobank that many phenotype categories, such
as sociodemographic characteristics, substance use and addictions,
mental health and traumatic events, measures of cognition and
aging, blood parameters, and others, might also be relevant in this
regard. Thus, MR studies addressing the causal relationship between
AAM and MDD also have to be judged by the degree to which
horizontal pleiotropy is considered. For example, a one-sample MR
study of 12.233 Chinese women aged 50 years and older could not
find evidence of a significant contribution of AAM to depressive
symptoms in older women (AuYeung et al., 2018). However, despite
no apparent evidence of a weak instrument bias, their analysis
included only five AAM-related SNPs and did not account for
BMI. In contrast to the null finding of this study, Sequeira et al.
(2017) demonstrated an effect of AAM on depression in 3.579
longitudinally studied girls at the age of 14, but not thereafter. This
study not only included 120 AAM-related SNPs but also accounted
for BMI. However, as recently discussed, this analysis was likely to be
affected by low power (Chan et al., 2019). This conclusion is
supported by the results from a recent large-scale, one-sample
MR study of 181,318 women from the UK Biobank that could
relate AAM to a broad, categorical depression phenotype in adult
women (40–69 years) (Magnus et al., 2020). Notably, apart from a
(much) larger sample size, the study was based on amore recent and
extended set of 360 AAM-related SNPs but did not consider other
potential causes of horizontal pleiotropy in addition to BMI.
Regarding two-sample MR, a single, more recent study found no
evidence of a causal relationship between AAM and depression
(Howard et al., 2019), but the study included only 60 genetic variants
for methodological reasons.

Considering this somewhat inconsistent picture, the present
study was intended to clarify the directional relationship between
AAM and risk for depression by 1) a two-sample Mendelian
randomization approach with the so-far largest sample size and
2) considering BMI and other potential causes of horizontal
pleiotropy on this relationship by a multivariable MR
(MVMR) analysis. Establishing this causal link would not only
support paying particular attention to the development of mental
health in early maturing girls but also justify addressing risk
factors that promote experiencing menarche at an earlier age.

2 METHODS AND MATERIALS

2.1 Univariate Mendelian Randomization
Analysis
To perform an MR study, three main assumptions must be met
(Lawlor et al., 2008; König and Greco, 2018): 1) the genetic
instrument must have a strong association with the exposure, 2)
the genetic instrument is independent of potential confounding
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factors in the relationship between the exposure and outcome,
and 3) the outcome is associated with the genetic instrument only
through the effect of the exposure (Haycock et al., 2016; König
and Greco, 2018).

Only the first assumption can be tested directly by assessing
the F-statistic (Haycock et al., 2016). An F < 10 suggests potential
weak instrument bias (Sanderson et al., 2020). Independent
genome-wide significant SNPs (p < 5 × 10–8) were used as IV
for AAM to avoid such a bias. The second assumption is unlikely
to be violated in the MR context as genetic variants are fixed at
conception and cannot be influenced by the confounding factors
of the risk factor–outcome association (Del Greco et al., 2015). To
assess the third assumption, we used different approaches. First,
we used Cochran’s Q-statistic to test for IV heterogeneity, which
may have several causes, of which horizontal pleiotropy is most
likely. Cochran’s Q-statistic assesses whether causal estimates of
SNPs are comparable (Bowden et al., 2015). In the univariate MR
case, a significant finding (p < 0.05) indicates heterogeneity.
Second, to specifically address horizontal pleiotropy, we
calculated MR–Egger regression and performed MR-PRESSO
analysis. If Egger’s intercept is not significantly different from
zero, horizontal pleiotropy is unlikely (Burgess and Thompson,
2017). MR PRESSO uses a global bias test to evaluate whether the
removal of potentially pleiotropic instruments results in a
significant difference in the overall causal estimate and
provides a corrected causal estimate after the removal of
pleiotropic instruments. Comparing both the approaches,
simulation studies have shown that MR PRESSO is more
sensitive to horizontal pleiotropy than Egger’s intercept
(Verbanck et al., 2018).

It is unlikely that all IVs meet the instrumental variable
assumptions. Therefore, several MR methods have been
developed, which differ in their robustness to various
violations of assumptions. Considering that no method alone
provides an infallible test of causality, the use of different methods
to assess whether a causal effect determined by MR is robust has
been recommended (Burgess et al., 2017a; Burgess et al., 2019).
Accordingly, we applied the following MR methods: 1) the
inverse-variance weighted (IVW) method assumes that all
ratio estimates provide independent evidence of the causal
effect and that all genetic variants are valid instruments. No
intercept term is included in the regression model (Burgess and
Thompson, 2017); 2) MR–Egger considers an intercept term
interpreted as the average pleiotropic effect of the genetic
variants included in the analyses. If the pleiotropic effects are
distributed independently of the genetic associations with the risk
factor (InSIDE assumption: INstrument Strength Independent of
Direct Effect), the MR–Egger estimate is a consistent estimate of
the causal effect as both sample size and the number of genetic
variants increase (Burgess and Thompson, 2017; Hartwig et al.,
2017); 3) Mode-based estimation (MBE; simple mode, weighted
mode) consistently estimates the true causal effect under the
assumption that across all instruments, the most frequent value of
bias due to pleiotropy is 0 [ZEro-modal pleiotropy assumption
(ZEMPA)] (Hartwig et al., 2017). Simple MBE is less accurate
than weighted MBE, but simple MBE is less prone to bias due to
violations of the InSIDE assumption; 4) median-based estimators

are consistent even when up to 50% of the instruments are
invalid. The weighted median estimator has similar efficiency
to the IVW method, but the simple median estimator is less
efficient than either the IVW or the weighted median method
(Bowden et al., 2016). The penalized weighted median estimator
is robust in the case of IV heterogeneity (Rees et al., 2019); 5) The
robust-adjusted profile score (MR RAPS) provides an overall
estimator that is robust to systematic and idiosyncratic pleiotropy
(some genetic instruments have a large effect on the outcome)
(Zhao et al., 2020); 6) MR PRESSO (see above) (Verbanck et al.,
2018).

In the case of IV heterogeneity, as indicated by Cochran’s Q
statistic, two methods robust to heterogeneity were used in
addition to the penalized weighted median method (Rees
et al., 2019): 7) the contamination mixture method has a
good overall performance (the lowest mean squared error),
with up to 40% invalid instruments compared to other robust
methods. The contamination mixture method identifies distinct
subgroups of genetic variants with mutually similar causal
estimates (Burgess et al., 2020); 8) MR-Lasso extends the
IVW model to include an intercept term for each genetic
variant. These intercept terms represent associations between
genetic variants and the outcome that bypasses the risk factor.
The causal effect is estimated by weighted linear regression, with
the intercept terms subjected to lasso penalization. Lasso
penalization shrinks the intercept of the valid instruments to
zero (Rees et al., 2019).

Forest and scatter plots were used to visualize the combined
results of single and multi-SNP analyses. The scatter plots show
single SNP effects on the exposure against single SNP effects on
the outcome with corresponding standard deviations and
estimated regression lines of the multi-SNP analyses. We
created funnel plots to examine the relationship between study
accuracy and effect size (Haycock et al., 2016). Asymmetry in the
funnel plot indicates a violation of MR assumptions (Katikireddi
et al., 2018). To assess whether a single SNP had a
disproportionately large effect on the regression coefficients,
we performed a leave-one-out analysis in the IVW regression
framework (Burgess and Thompson, 2017).

Power analysis to estimate the probability of finding a true
effect was implemented using sample size, the proportion of cases
in the study, and the proportion of variance explained (SNP
heritability) (Brion et al., 2013).

2.2 Multivariable Mendelian Randomization
Analysis—Assessing the Effect of BMI and
Other Causes of Pleiotropy
An association of BMI with AAM and depression has been
established by previous research (Day et al., 2017; Magnus
et al., 2020). To identify other potential causes of horizontal
pleiotropy, we submitted all the SNPs associated with AAM (n =
343) to the PhenoScanner database (Staley et al., 2016; Kamat
et al., 2019) to establish significant phenotypical associations with
these SNPs (p < 1 × 10–5) in Europeans. Thereby, and by an
additional review of the literature including GWASs on the
relationship between identified phenotypes and MDD, we also
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included educational attainment (EdAtt) and white blood cell
count (WBC) for MVMR analyses as covariates.

To estimate the effects of these pleiotropic phenotypes in the
association between AAM and depression, we performed MVMR
using three different methods (Burgess and Thompson, 2015): 1)
the inverse-variance method uses a multivariable weighted linear
regression; 2) multivariable MR-Lasso extends the multivariable
IVW model to include an intercept term for each genetic variant;
and 3) the multivariable median method is similar to the
univariable weighted median method, except that it relies on
quantile regression (Burgess and Thompson, 2015).

To test the IV strength, we calculated the conditional
F-statistics FTS. Furthermore, we calculated the Q-statistic to
test for heterogeneity. In contrast to the univariate case, a
p-value < 0.05 indicates that excessive heterogeneity in the
MVMR model can be rejected and that the selected SNPs can
predict the exposure phenotypes (Sanderson et al., 2020). We
could not consider correlations between exposure phenotypes
because individual-level genetic data were not available to us.

2.3 Sensitivity Analyses
We excluded SNPs that were strongly associated with potentially
pleiotropic phenotypes from the univariable MR analysis
addressing the relationship between AAM and depression risk.
For this purpose, we calculated an F-statistic using the formula F
= (beta/se)2 for each SNP defining the IV for AAM separately for
BMI, EdAtt, and WBC. In line with previous studies (Swerdlow
et al., 2016; Burgess et al., 2017b), we excluded SNPs with F > 10
from the analysis, assuming that these SNPs are also strong
instruments for potentially pleiotropic phenotypes.

2.4 Data Sources for Mendelian
Randomization Analyses and Selection of
the Genetic Instruments
2.4.1 Age at Menarche
We performed MR analyses based on the GWAS by Day et al.
(2017), which comprised 40 studies from the ReproGen
consortium, 23andMe, and the UK Biobank. The data from
329,345 women of European ancestry were included. The
women were asked to report when the first menstruation/
period (menarche) occurred. The regression model included
age at study visit and other study-specific covariates. There
were 389 independent SNPs (p < 5 × 10–8) associated with
AAM. The per-allele effect sizes were expressed in years and
ranged from ~1 week to 5 months. Depending on the study, these
389 independent SNPs explained 7.2–7.4% of the trait variance
(Day et al., 2017). The total chip-captured SNP-based heritability
(h2SNP) for AAM estimated on the UK Biobank data was 32%.

2.4.2 Depression
We used the latest GWAS of 807,553 individuals (246,363 cases
and 561,190 controls) by Howard et al. (2019) as data source for
depression as the outcome variable. The authors meta-analyzed
the data from the three largest genome-wide association studies of
depression. The phenotyping of depression differed in these three
studies: 1) self-reported clinical diagnosis of depression by Hyde

et al. (2016); 2) spectrum of depression phenotypes obtained from
a structured clinical interview or based on broader criteria by
Wray et al. (2018); and 3) self-reported help-seeking for problems
with nerves, anxiety, tension, or depression (broad depression) by
Howard et al. (2018). The overlapping samples were excluded.
Altogether, 102 independent variants were identified. The
proportion of women in the GWASs was found to be 48% by
Hyde et al. (2016) and 54% by Howard et al. (2018). The
proportion of males and females was not reported by Wray
et al. (2018). The regression model on the UK Biobank data
included sex, age, genotyping array, and the first eight principal
components for population structure (Howard et al., 2019). The
regression model on the 23andMe data included the covariate
age, sex, and the top five principal components (Hyde et al.,
2016). The genome-wide SNP-based heritability (h2SNP) was 8.9%
(Howard et al., 2019).

2.4.3 BMI
We used the most recent GWAS on the BMI, where separate
analyses were performed for sexes (Pulit et al., 2019). A total of
806,834 individuals of European ancestry were included in the
analysis, of which 434,794 were females. The SNP-based
heritability (h2SNP) for females was 35.5% for all the SNPs and
30.0% for SNP, with a mean allele frequency below 1% (Pulit
et al., 2019). The covariates included in the regression model for
BMI are not reported by the authors.

2.4.4 Educational Attainment
To our knowledge, the most recent and largest GWAS on EdAtt
was conducted by Lee et al. (2018). This analysis was based on
data from 1,131,881 individuals of European ancestry and
identified 1,271 independent genome-wide significant SNPs.
The SNP-based heritability was 12.2%. EdAtt was measured at
the age of at least 30 by the number of years of schooling
completed. The phenotype was constructed by mapping each
major educational qualification that can be identified from the
survey measure of the cohort to an International Standard
Classification of Education (ISCED) category and imputing
years-of-education equivalent for each ISCED category (Lee
et al., 2018). Across all cohorts, the sample-size-weighted
mean of educational years was 16.8 (SD = 4.2) of schooling.
The following covariates were considered in the regressionmodel:
first ten principal components, standardized controls, including a
third-order polynomial for the year of birth, sex, and their
interactions, and a vector of study-specific controls.

2.4.5 Total White Blood Cell Count
We used the data from the latest GWAS on blood parameters for
which summary statistics were made available (Chen et al., 2020).
We used the results on the WBC of 562,132 participants of
European descent. Information on the proportion of men and
women is not published. The common SNPs explained 19% of the
variance (h2SNP). WBCs were measured at a scale of 10–9 cells/L.
The blood-cell phenotypes were corrected for sex, age, age
squared, the first 10 genetic principal components, and other
cohort-specific covariates (e.g., recruitment center) using the
linear regression analysis. A rank-based inverse normal
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transformation of the residuals from the regression analysis was
applied.

2.5 Statistical Analysis
Analyses were performed using the software “R” (3.5.1 and 4.1.1)
and the R packages “TwoSampleMR” (0.4.26; https://github.com/
MRCIEU/TwoSampleMR) (Hemani et al., 2018), “Mendelian
Randomization” (0.5.1; https://CRAN.R-project.org/package=
MendelianRandomization), “MVMR” (0.3; https://github.com/
WSpiller/MVMR) (Sanderson et al., 2020), and “MR Practicals”
(0.0.1; https://github.com/WSpiller/MRPracticals). MR PRESSO
was conducted with the R package “rondolab/MR-PRESSO” (1.0;
https://github.com/rondolab/MR-PRESSO) (Verbanck et al.,
2018).

We followed the “STROBE-MR: Guidelines for strengthening
the reporting of Mendelian randomization studies for the two-
sample MR” recommendations reporting our results
(Skrivankova et al., 2021).

3 RESULTS

3.1 Univariable Mendelian Randomization
In the analysis on the causal effect of AAM on the risk for
depression, 343 SNPs could be included as IV for AAM (for the
harmonized data, see Supplementary Table S4. The F-test
indicated a strong IV (F = 62,655.97). We found a significant
causal effect of AAM on the risk for depression with almost all
methods (except MR–Egger without bootstrapping and simple
mode; Figure 1; Supplementary Table S1). Egger’s intercept was
not significant (intercept = 2.1 × 10–4, SE = 0.001, p = 0.85). In
contrast, MR PRESSO detected evidence of pleiotropy (global test
840.45, p = 1 × 10–4). In addition, the heterogeneity test indicated

a potential problem (based on MR Egger: Q (df = 341) = 835.13,
p = 2.22 × 10–42; based on IVW Q (df = 342) = 835.21, p = 3.49 ×
10−43), but all the methods robust to heterogeneity (penalized
weighted median, MR Lasso, and contamination mixture
method) showed a significant causal effect of AAM on the risk
for depression (Figure 1; Supplementary Table S1). The scatter
plot, funnel plot, and forest plot for the leave-one-out analysis
indicated no violation of MR assumptions or an undue impact of
single SNPs on the results (Supplementary Figures S1–S3).
Power analysis showed that our MR had a power of 80% to
detect an OR below 0.975 or above 1.026 and a power of 100% to
detect an OR below 0.955 or above 1.043 regarding depression per
one-year change in AAM (Supplementary Figure S4).

3.2 Multivariable Mendelian Randomization:
Effect of AAM on Depression Adjusted for
BMI, Educational Attainment, and Total
White Blood Cell Count
By searching the PhenoScanner database for SNPs associated
with AAM (Staley et al., 2016; Kamat et al., 2019), we identified 25
SNPs associated with different measures of intelligence, EdAtt, or
both. Five SNPs (rs11210871, rs11209943, rs15092139,
rs1054442, and rs1131017) were associated with different
measures of intelligence and EdAtt. Five SNPs were associated
only with intelligence but not with EdAtt, and there were 15 SNPs
associated only with EdAtt. However, considering the SNP-based
overlap between intelligence and EdAtt, the larger number of
EdAtt-related SNPs, and the broader conception of EdAtt, also
including aspects of socioeconomic status (Thomson, 2018),
EdAtt was chosen for further MVMR analysis.

Strikingly often (N = 25), AAM-related SNPs were associated
with different fractions of leukocytes (neutrophils, lymphocytes,

FIGURE 1 | Results of the multiple-SNP Mendelian randomization (MR) analyses regarding the effect of age at menarche (AAM) on the risk for depression. OR =
odds ratio, CI = confidence interval, b = unstandardized causal estimate of the change in risk for depression per 1-year change in age of menarche.
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monocytes, basophils, and eosinophils, but also the total WBC).
Based on an additional literature review, we decided that EdAtt
(Magnus et al., 2020; Yuan et al., 2021) and WBC (Magnus et al.,
2020; Sealock et al., 2021) also needed consideration in our
MVMR model, while other phenotypes, such as alcohol intake
and smoking, were considered downstream outcomes of AAM
(Hingson et al., 2006; Barrington-Trimis et al., 2020).

Considering 318 SNPs as IV for AAM and for BMI, EdAtt, and
WBC as potential pleiotropic phenotypes (Supplementary Table
S5) in the multivariable MR (MVMR), we found a significant
causal effect of AAM on the risk for depression independent of
BMI, EdAtt, andWBC (Table 1; Figure 2). The effect estimate for
EdAtt, as covariable in the model on the effect of AAM on
depression risk, was significant with all the three MVMR
methods, whereas the effect estimate for the BMI was not
significant. The effect estimate for WBC was significant only
with the multivariable IVW method. The Q-statistic confirmed

the validity of the IV [Q (df = 313) = 737.45; p = 2.8 × 10–36] as
there was no evidence of significant heterogeneity. The
conditional F-test showed that the IV was sufficiently strong
for AAM (FTS = 20.39) but not for BMI (FTS = 9.23), EdAtt (FTS =
5.36), or WBC (FTS = 6.30).

3.3 Sensitivity Analyses
3.3.1 Excluding SNPs Associated With BMI
BMI was not a strong instrument in the MVMR, but previous
studies have convincingly shown that BMI is, nevertheless, a
potential cause of horizontal pleiotropy in the association
between AAM and the risk for depression. Therefore, we
conducted a sensitivity analysis by excluding all the BMI-
related SNPs with F > 10 from the IV. Thus, the IV could be
built using 263 SNPs (for harmonized data, see Supplementary
Table S6). Egger’s intercept (= 5.8 × 10–4, SE = 0.001) was not
significant (p = 0.644). In contrast, MR-PRESSO detected SNPs

TABLE 1 | Results of the multivariable MR (MVMR) analyses of the causal effect of age at menarche on the risk for depression adjusted for BMI in females, educational
attainment, and total white blood cell count calculated using three different methods.

Method B SE p-value

Point estimate Lower 95% CI Upper 95% CI

Age at menarche

MVMR IVW −0.037 −0.065 −0.010 0.014 7 × 10–3

MVMR lassoa −0.038 −0.058 −0.017 0.010 3.0 × 10–4

MVMR medianb −0.038 −0.068 −0.009 0.015 0.011

BMI in females
MVMR IVW 0.048 −0.047 0.143 0.048 0.320
MVMR lassoa 0.039 −0.029 0.107 0.035 0.263
MVMR medianb 0.033 −0.066 0.132 0.050 0.544

Educational attainment
MVMR IVW −0.202 −0.385 −0.019 0.093 0.031
MVMR lassoa −0.285 −0.423 −0.146 0.071 5.6 × 10–5

MVMR medianb −0.387 −0.582 −0.183 0.099 9.7 × 10–5

Total white blood cell count
MVMR IVW 0.177 0.022 0.333 0.079 0.026
MVMR lassoa 0.106 −0.033 0.246 0.071 0.135
MVMR medianb 0.077 −0.099 0.252 0.090 0.394

b = unstandardized causal estimate of the change in risk for depression per 1-year change in age of menarch. SE = standard error; CI = confidence interval. Significant findings are printed in
Significant findings (p < 0.05) are printed in bold type..
aNumber of variants: 318, number of valid instruments: 244.
bIterations = 10,000; tuning parameter: 0.1014.

FIGURE 2 | Results of the multivariable MR (MVMR) analyses of the causal effect of age at menarche (AAM) on the risk for depression adjusted for BMI in females,
educational attainment, and total white blood cell count calculated using three different methods. OR = odds ratio, CI = confidence interval, b = unstandardized causal
estimate of the change in risk for depression per 1-year change in age of menarche.
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with pleiotropic effects (global test = 560.14, p = 1 × 10–5).
Consistent with the MR-PRESSO results, heterogeneity
continued to be a potential problem [Cochran’s Q-statistic
based on MR–Egger: Q (df = 261) = 554.70, p = 2.7 × 10–23;
based on IVW: Q (df = 262) = 555.15, p = 3.6 × 10–23]. The scatter
plot, funnel plot, and forest plot for the leave-one-out analysis
showed no violation of the MR assumptions or the excessive
influence of individual SNPs on the results (Supplementary
Figures S5–S7). The robust methods confirmed the causal
effect of AAM on the risk for depression (Figure 3A;
Supplementary Table S2).

3.3.2 Excluding SNPs Associated With BMI,
Educational Attainment, and Total White Blood Cell
Count
Since educational attainment andWBC were also weak instruments
in the MVMR, we conducted an additional univariate MR. Here, we
excluded all the SNPs that were strong instruments for BMI, EdAtt,
and/orWBC (F > 10). Thus, we were able to include 185 SNPs as IV
for AAM (Supplementary Table S7). Egger’s intercept was not
significant (= 3.0 × 10–5, p = 0.984). However, MR PRESSO
identified SNPs with a pleiotropic effect (global test 347.18, p =
1 × 10–5). The heterogeneity tests were significant: based on MR-
Egger—Q (df = 183) = 343.6, p = 6.8 × 10–12 and based on IVW—Q
(df = 184) = 343.6, p = 9.3 × 10−12. Again, all robust methods
suggested a significant causal effect of AAM on the risk for
depression (Figure 3B; Supplementary Tables S3,
Supplementary Figures S8–S10).

Eventually, pleiotropic SNPs identified by MR PRESSO by the
previous step of analysis (rs10933, rs12571664, and rs2546959)
were subjected to the PhenoScanner database to assess which
other phenotypes, apart from BMI (or other body composition
phenotypes), EdAtt, and WBC, might be causes of pleiotropy.
The SNP rs10933 is located in a region associated (p < 1 × 10–5)
with schizophrenia (Ripke, 2014), bipolar disorder (Sklar, 2011),
intelligence, and some hematological traits (Astle et al., 2016).
The region around SNP rs2546959 is associated with the “seen
doctor for nerves, anxiety, tension, or depression”-phenotype
detected by the Neale Lab (UK Biobank; http://www.nealelab.is/
uk-biobank). According to the PhenoScanner database, the
region around rs12571664 only showed associations with
AAM and body size. Thus, there was no compelling evidence
of phenotypes to pursue by further analyses.

4 DISCUSSION

Observational studies suggest a robust contribution of AAM to
depression, but there is also evidence of (residual) confounding.
MR studies allow for causal conclusions, but findings in this
regard have been ambiguous, primarily related to power issues in
the previous MR analyses. In the present two-sample MR study
with sufficient power to detect even small effects, an earlier AAM
proved to be causal for an increased risk for depression,
independent of the pleiotropic phenotypes BMI, EdAtt, and
WBC, even when using multiple methods to account for

FIGURE 3 | Results of the multiple-SNP Mendelian randomization (MR) analysis with robust methods regarding the effect of age at menarche (AAM) on the risk for
depression. (a) SNPs associated with BMI were excluded (IV with n = 263 SNPs), (b) SNPs associated with BMI, educational attainment (EdAtt), and white blood cell
count (WBC) were excluded (IV with n = 185 SNPs). OR = odds ratio, CI = confidence interval, b = unstandardized causal estimate of the change in risk for depression per
1-year change in age of menarche.
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heterogeneity of the IV (penalized weighted median, MR Lasso,
and contamination mixture method), systematic and
idiosyncratic pleiotropy (MR RAPS), and horizontal pleiotropy
(MR PRESSO, exclusion of SNPs showing a relevant association
with the potentially pleiotropic phenotypes, and MVMR).

4.1 Age at Menarche and
Depression—Increased Lifetime Risk
Considering that no GWASs on depression in different age
classes (e.g., children, adolescents, and adults) are available but
the MR approach assesses the cumulative lifetime effects of an
exposure on an outcome (Lawlor, 2016), two assumptions must
be met for our conclusions to hold. First, the genetic architecture
of depression, and second, the pathway(s) from AAM to
depression should not change throughout the life course.

Regarding the first assumption, a meta-analysis on the
heritability of depression from childhood to young adulthood
found an increase in its heritability during adolescence (Bergen
et al., 2007). This is in line with a more recent twin study
including almost 50,000 twin pairs studied longitudinally from
ages 3 to 63 (Nivard et al., 2015). However, a change in the
heritability of depression does not necessarily imply a different
regulation of its (genetic) underpinnings. Instead, the results from
twin and adoption studies on the relative contribution of genetic
and environmental influences on the heritability of depression
over time suggest that this observation is likely explained within
the framework of active genome-environment correlation,
resulting in more opportunities during adolescence to express
genetically determined dispositions, a decrease in shared
environmental variance, a combination of both, and/or a
reduction of measurement error related to more reliable
information provided by more mature subjects (Silberg et al.,
1999; Bergen et al., 2007; Nivard et al., 2015). Moreover, it has
been suggested that phenotypical continuity regarding depression
is mainly driven by genetic factors (Nivard et al., 2015).
Consistent with this, a genome-wide association meta-analysis
addressing internalizing symptoms suggested not only that
(additive) genetic effects appear to be stable from early
childhood to adolescence by overlapping SNP-based
heritability estimates over age but also a high genetic
correlation between childhood internalizing symptoms and
adult depression (rg > 0.7) (Jami et al., 2022). The latter
finding of a high but not perfect genetic correlation could be
related to observing different (genetic) depression trajectories
during earlier life. Rice et al. (2019) identified two trajectories of
depressive symptoms from childhood to early adulthood, one
commencing in later, one in earlier adolescence. However, only
late-adolescent depression was related to a polygenic MDD risk
score, while early-adolescent depression was linked to a higher
(genetic) ADHD and schizophrenia risk. Thus, part of the
phenotypical variance in depression during childhood and
adolescence seems to be associated with different genetic
pathways, even though the pathway leading to increased
ADHD and schizophrenia is less common (Rice et al. 2019).

Regarding the second assumption, the finding of the one-
sample MR study by Sequeira et al. (2017) showed that AAM only

affects depression at age 14 but not thereafter, which could be
interpreted to indicate that the relationship between AAM and
depression is less stable than implied by our results. This would be
consistent with the observation that the severity of depressive
symptoms returned to early pubertal baseline levels in young
adults in a large longitudinal study of (up to) 14,500 boys and girls
(Natsuaki et al., 2009). However, as previously discussed, the
study by Sequeira et al. (2017) was likely affected by insufficient
power at depression assessments after age 14. Moreover, a
plethora of longitudinal studies suggest that depressive
symptoms peak not until (mid to) late adolescence and do not
return to prepubertal or early pubertal baseline levels, (Harlow
et al., 1999; Mendle et al., 2018; Copeland et al., 2019; Kwong
et al., 2019), and this also applies regarding the effect of early
menarche on depression (Mendle et al., 2018; Copeland et al.,
2019).

4.2 Pathways From Age at Menarche to
Depression
We observed significant heterogeneity in the causal estimates of
our IV. Day et al. (2017) identified 389 independent signals for
AAM, many of which are implicated in a complex and
hierarchical network of genes governing the onset of puberty
(Lomniczi et al., 2013). However, these SNPs also related to
potentially pleiotropic phenotypes in the relationship between
AAM and depression, including BMI, EdAtt, andWBC. BMI and
AAM are closely intertwined (Day et al., 2017), as metabolic cues
originating from adipose tissue essentially control the
reactivation of the reproductive axis during puberty (Vazquez
et al., 2019) and BMI also relates to depression (Bahrami et al.,
2020). Moreover, the PhenoScanner search revealed that EdAtt
and WBC are related to AAM, and both have been implicated in
the etiology of depression (Sealock et al., 2021; Yuan et al., 2021),
rendering these phenotypes likely causes of horizontal pleiotropy
in the relationship between AAM and depression. Nevertheless,
even when accounting for potential horizontal pleiotropy
introduced by these phenotypes, there was a causal effect of
AAM on the risk for depression, consistent across different
approaches.

Interestingly, previous GWAS on the genetic underpinnings of
AAM did not identify SNPs related to the biologically most
plausible pathway from AAM to depression, that is, gonadal
hormone levels. There is suggestive evidence for an impact of
estradiol on depressive symptoms, not only from animal studies
but also studies in pubescent adolescents (Brooks-Gunn and
Warren, 1989; Ge and Natsuaki, 2009; Schulz et al., 2009).
However, consistent with findings from GWASs, there are also
conflicting results from observational studies (Golub and
Harrington, 1981; Copeland et al., 2019; Morssinkhof et al.,
2020), and a more recent one-sample MR study does not
support a causal effect of estrogen levels on depressive
symptoms (Au Yeung et al., 2016). Moreover, neither is there
evidence of increased androgen levels in femaleMDD patients (de
Wit et al., 2021) nor are testosterone levels in females likely
causally related to depression (Maharjan et al., 2021). Whether
upstream mechanisms of estrogen secretion are important in this
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regard remains to be determined but cannot be excluded. For
example, LH receptors are expressed not only in testicular and
ovarian tissue but also in the hippocampus (Bohm-Levine et al.,
2020), a brain region pivotal to depression (Campbell and
Macqueen, 2004). Moreover, depression is marked by altered
LH secretion (Grambsch et al., 2004). However, altered pulsatile
LH release from the pituitary gland might also be the
consequence of increased cortisol levels in depression (Breen
et al., 2005; Zorn et al., 2017) and, thus, simply an
epiphenomenon of MDD but not its cause.

However, only recently, Magnus et al. (2020) opened up a
perspective on the pathways from AAM to depression by a (one-
sample) Mendelian randomization phenome-wide association
study. Among 17,893 traits, 29 traits were found to be
significantly related to AAM, including younger age at the first
sexual intercourse, younger age of starting oral contraceptives,
younger age at first delivery, and an increased risk of childhood
sexual abuse, all of which are known to increase the risk for
depression. The authors failed to replicate selected findings, for
example, regarding the risk for childhood sexual abuse in an
independent sample, but the direction and effect size were
consistent. Thus, many of the identified traits could be on a
causal pathway originating from (genetically determined) AAM
as downstreammechanisms. Thus, the exact mechanisms by which
AAM affects depression have yet to be conclusively elucidated but
are likely related to the downstream outcomes of AAM.

4.3 Limitations
The analyses in the present study accounted for BMI, but this
relied on the GWAS by Pulit et al. (2019) conducted in adults and,
thus, the assumption of continuity of its genetic architecture over
the life course. A recent meta-analysis of 26 GWASs on childhood
BMI, including the data from 61,111 children, identified 25 loci
(Vogelezang et al., 2020). In line with our assumption, most of
these SNPs (20 of 25) were also related to adult BMI, and there
was a genetic correlation between childhood and adult BMI of rg
= 0.76. Moreover, the GWAS by Pulit et al. (2019) allowed us to
use sex-specific BMI-related findings pertaining only to females.

The genetic instruments for EdAtt, WBS, and depression were not
sex-specific, as no such information is available. However, sex was
included as a covariate in the regressionmodels of theGWASs of EdAtt
and depression. Moreover, regarding depression, a recent study that
evaluated between-sex genetic heterogeneity in MDD using GWAS
summary statistics from 29 cohorts found a genetic correlation close to
one (Trzaskowski et al., 2019), and an even more recent GWASmeta-
analysis suggests that for a broad range of neuropsychiatric traits,
including MDD, the effect of sex is only small and polygenic (Martin
et al., 2021). Thus, the results of our analyses are unlikely to be affected
by missing the gender-specific effect estimates.

We were limited to analyzing a linear relationship between
AAM and depression as the estimation of nonlinear effects
requires individual-level genetic data that were not available to
us. However, a nonlinear relationship cannot be excluded. In a
study by Day et al. (2015), earlier menarche was associated with a
higher risk of all-cause mortality, while later menarche was not
protective but likewise harmful. Interestingly, regarding
depression, there was no evidence of any relationship, either

linear or nonlinear, after correction for multiple testing. However,
this may have been an issue of the (non-genetic) statistical
approach chosen and/or insufficient power. Nonetheless, even
when assuming a curvilinear relationship, this would support the
conclusion that earlier AAM was causally related to increased
depression risk, even though we could not consider nonlinear
effects in the present study.

Two-sample MR assumes independent samples for the
instrument variable and the outcome. Violation of this
assumption may lead to inflated type 1 error and biased effect
estimates. This, however, only applies to continuous but not
binary outcomes, as in the present study (Burgess et al., 2016).

As previously mentioned, the covariance between AAM, BMI,
EdAtt, andWBC could not be considered in themultivariable MR
analysis because individual data were not available. Moreover,
our results apply to the Caucasian population only and likely do
not generalize to patients with precocious puberty, even though
SNPs in genes related to precocious puberty were used as IV as
well (Day et al., 2017).

4.4 Implications
The present study provides evidence for a causal contribution of
an earlier AAM to a higher risk for depression, which has several
implications. First, the results of the present study support
conclusions from previous epidemiological studies implicating
AAM in depression without the pitfalls of residual confounding
and reverse causation. Second, as a consequence, health care
providers should be aware of the timing of menarche in women
and its potential lifelong implications for mental health. Thus,
AAM could be considered a prognostic factor for a clinical risk
score assessing the probability of depression during adolescence,
also in terms of mental illness prevention, to help guide
practitioners identify young women at risk for depression.
Third, considering the adverse consequences of an earlier
AAM on mental health, this should foster efforts to address
risk factors (e.g., BMI, socioeconomic status, paternal absence,
migration status, and birth weight) that promote an earlier AAM
and/or to promote protective factors, including the duration of
schooling and a higher level of educational attainment, to
mitigate a genetically determined pathway to depression.
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