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Abstract

Data from the SEER reports reveal that the occurrence rate of a cancer type generally follows a unimodal distribution over
age, peaking at an age that is cancer-type specific and ranges from 30+ through 70+. Previous studies attribute such
bell-shaped distributions to the reduced proliferative potential in senior years but fail to explain why some cancers have
their occurrence peak at 30+ or 40+. We present a computational model to offer a new explanation to such distributions.
The model uses two factors to explain the observed age-dependent cancer occurrence rates: cancer risk of an organ and the
availability level of the growth signals in circulation needed by a cancer type, with the former increasing and the latter
decreasing with age. Regression analyses were conducted of known occurrence rates against such factors for triple negative
breast cancer, testicular cancer and cervical cancer; and all achieved highly tight fitting results, which were also consistent
with clinical, gene-expression and cancer-drug data. These reveal a fundamentally important relationship: while cancer is
driven by endogenous stressors, it requires sufficient levels of exogenous growth signals to happen, hence suggesting the
realistic possibility for treating cancer via cleaning out the growth signals in circulation needed by a cancer.
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Introduction
Cancer has been generally considered as an aging-related illness
as multiple epidemiological studies have suggested that age is
a key risk factor for numerous cancer types [1]. Cancer genetic
research suggests that the risk of cancer occurrence in an organ
is largely determined by the total number of stem-cell divisions
in the organ since birth [2]. Hence, it is natural to expect that the
cancer occurrence rates go up with age for most organs. However,
the vast majority of cancer types have unimodal occurrence-rate
distributions over age, namely the rates go up with age till they

Shuang Qiu is a researcher in the Cancer Systems Biology Center, China-Japan Union Hospital of Jilin University and is a PhD student in the Department
of Epidemiology and Biostatistics, School of Public Health, Jilin University.
Zheng An and Renbo Tan are researchers in the Cancer Systems Biology Center, China-Japan Union Hospital of Jilin University.
Ping-an He is a professor in Zhejiang Sci-Tech University.
Jinging Jing and Hongxia Li are physicians in China Medical University and Jilin University First Hospital, respectively. Shuang Wu is a lecturer in
Changchun Normal University.
Ying Xu is an endowed professor of both the University of Georgia and Jilin University.
The work by Shuang Qiu, Ping-an He, Jingjing Jing, Hongxia Li and Shuang Wu was largely done when they visited Ying Xu’s lab.
Submitted: 17 August 2020; Received (in revised form): 19 October 2020

© The Author(s) 2020. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/
licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
For commercial re-use, please contact journals.permissions@oup.com

peak and then progressively go down with age as documented
in the SEER report [3], except for a few cancer types such as
pancreatic cancer. The question we address here is: what may
dictate the unimodal distributions of the occurrence rates for most
cancer types?

Previous studies have predominantly focused on addressing
a simpler version of this problem: why cancer occurrence rates
are suppressed at old age [4]. The earliest and popular model
for cancer occurrence analyses was developed by Armitage and
Doll based on the assumption that cancer arises from a single
cell transformed through a series of sudden and irreversible
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(genetic) changes [5]. With this assumption, cancer occurrence
was modeled as a risk process due to hazard-exposure over time,
giving rise to the popular multistage cancer incidence model [6]. The
model was further developed by multiple authors to address why
cancers tend to have suppressed rates at old age, by introducing
additional factors such as increased cell senescence and reduced
cell proliferative potential with age. Such models are empirical
in nature, which fit well with population-based data when only
a single cancer type having repressed occurrence only in senior
ages is considered. Their inadequacy becomes clear when multi-
ple cancer types are considered together. For example, data from
the SEER report have revealed that different cancer types can
have rather distinct peak ages, ranging from 30+ for testicular
cancer to 70+ for prostate cancer, rather than limited to a narrow
range of senior age as assumed by such models. In essence, these
models are a single-factor risk model for cancer occurrence, i.e.
the accumulative effect of ‘hazards’over time, patched with a
qualitative factor, namely the reduced proliferative potential, to
deal with the distinct behavior of a cancer at the senior age, but
without much data support.

The unimodal shapes of the cancer occurrence-rate distribu-
tions, each peaking at a distinct age spanning over 40+ years,
strongly suggest that at least a second factor in addition to can-
cer risk, potentially equally important, is at work in determining
the occurrence of a cancer. Knowing that cancer is a develop-
mental process, based on the observation that all TCGA cancer
tissues each have multiple developmental programs upregulated
as well as on published literature, a natural candidate will be
growth signals in circulation, which are used by cancer cells
to enable and support their proliferation. Such well-established
signals are estrogen and progesterone for ER+ and PR+ breast
cancers [7,8], and testosterone for prostate cancer [9]. For other
cancer types, it is less known if exogenous growth signals are
generally used in support of their growth. Knowing the very
high complexity of cell division, it is natural to hypothesize that
this process is modulated by some growth and/or development
signals and associated programs for each cancer, which can
help to coordinate multiple components of the cell-cycle process
and cast their functions via interactions with their cell-surface
receptors in cancer.

Knowing that cancer proliferation does not have known top-
down proliferative signals (a hallmark of cancer [10]) and that
cancer cell-cycle genes are considerably less coordinated com-
pared to those in normal proliferating cells (Figure 1), we hypoth-
esize that cancer cells may utilize multiple growth signals to
drive and coordinate different components of their cell-cycle
program to complete a cell-division process. Guided by this, we
have, for each cancer type, searched for such signals through (1)
identification of considerably upregulated growth-signal recep-
tors on cancer cell surface, which correlate with a maximal num-
ber of cell-cycle genes; and (2) estimation of the age-dependent
availability of the cognate ligand for each such receptor via the
general circulatory system including blood, lymphoid and nerve.
This gives a candidate set of growth signals that may drive the
cell-cycle progression in each cancer type in an age-dependent
manner.

Our second hypothesis is: the age-dependent risk of cancer
occurrence in an organ is proportional to the total number of
stem-cell divisions in the organ since birth, following an estab-
lished study [2], where the relevant data are collected from the
SEER reports [3].

A regression analysis is then conducted of the known age-
dependent occurrence rate of each cancer type against the age-
dependent cancer risk level in the target organ and the estimated
production level of the identified growth signal(s) based on RNA-
seq data in the relevant organs. Highly accurate regression result

was obtained for each of the three cancer types, hence providing
strong evidence to our model.

This study focuses on three cancer types: triple negative
breast cancer (TNBC), testicular germ cell tumor (TGCT) and
cervical squamous cell carcinoma (CESC). The reason for limiting
to three cancers is we want to use this as a proof-of-principle to
demonstrate that the overall approach works. A follow-up study
is planned for a majority of the TCGA cancer types.

The key contributions of the study include: (a) a new model
for explaining the age-dependent occurrence rates of a can-
cer type based on the risk level of cancer development in the
relevant organ and the availability level of the growth signals
needed by a specific cancer type, hence revealing a fundamen-
tally important insight: having sufficient levels of exogenous
growth signals is a necessary component of a cancer develop-
ment; and (b) a set of noval growth signals for three cancer types,
with strong data and model support, which could be clinically
tested.

Results
Identification of cell-cycle related growth signal
receptors

Our differential gene-expression analyses of the TCGA data have
revealed that 100 growth-signal receptor genes are upregulated
in TNBC samples versus controls (see METHODS), detailed in
Supplementary Table S1. Among these upregulated genes, we
have conducted a clustering analysis to identify those that
strongly correlate with cell-cycle genes in terms of expression
levels, to identify the receptors that are possibly functionally
associated with cancer cell cycle (see METHODS). At the end,
nine receptor genes were identified: ADIPOR1, F11R, EPHB3, FZD6,
GPRC5A, PLAUR, PTPRK, TFRC and TRAF4, with their co-expression
data shown as a heatmap in Supplementary Figure S1(a).

Similarly, 143 and 83 receptor genes are upregulated in TGCT
and CESC, respectively, detailed in Supplementary Table S1.
And 20 and 12 receptor genes having strong correlation
with cell-cycle genes in TGCT and CESC, respectively, were
identified: ACVR1B, CXCR4, DDR1, EPHB4, ERBB2, ERBB3, F11R,
F2RL1, FGFR1, FGFR3, FZD5, GRB2, LRP1, LRP4, PTK7, RAMP2,
SMO, TNFRSF12A, TNFRSF1A and TRAF4 in TGCT; and ADGRG1,
CELSR2, DDR1, EPHA2, ERBB3, F11R, FZD6, GPRC5A, GRB7, IL10RB,
MST1R and TRAF4 in CESC. Heatmaps for co-expressions
between the cell-cycle and receptor genes are shown in
Supplementary Figure S1(b) and (c).

It is noteworthy that two receptor genes F11R and TRAF4,
both immunity-related receptors, are shared by the three can-
cer types; and both have been used or suggested as potential
therapeutic targets across multiple cancer types, such as glioma
and lung cancer [11,12]. Out of the three lists of the identified
receptor genes, ADIPOR1, EPHB3, PLAUR, PTPRK and TFRC are
unique to TNBC. All the receptor genes identified for TGCT are
unique to the cancer type except for DDR1, ERBB3, F11R and
TRAF4. A total of 6 of the 12 identified receptors genes for CESC
are unique to the cancer type, namely: ADGRG1, CELSR2, EPHA2,
GRB7, IL10RB and MST1R. Interestingly, not all these receptors are
essential to the development of the relevant cancer types based
on our regression analyses, based on our regression analyses in
Section 3.

Prediction of circulatory concentration
of a growth signal

For each identified receptor, our model requires the age-
dependent circulatory concentration data of its cognate ligand.
However, no such data are publicly available for the vast majority
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Figure 1. Co-expression patterns among cell-cycle genes in TNBC and in normal proliferating cells. (a) The co-expression patterns in TNBC. (b) The co-expression

patterns in normal proliferating cells. Black is for the G1 phase, purple for G1/S transition, blue for G2 phase, red for G2/M transition, light blue for M phase, dark green

for M/G1 transition and yellow for S phase.

of the receptors based on our extensive search against public
databases and literature. Therefore, we have employed the
following procedure to estimate such a concentration for each
ligand: (i) identifying the main organs for producing the ligand
through database search; (ii) estimating the age-dependent
synthesis level of the ligand by each such organ based on the
expressions of the relevant synthesis genes using data from
the GTEx database [13] and summing over the expression levels
across all relevant organs; and (iii) predicting that the circulatory
concentration of the ligand is proportional to the total synthesis
level.

For each receptor, its cognate ligand is identified via search-
ing the Human Protein Atlas [14], which provides the informa-
tion regarding the main producing organs and releasing the
ligand into circulation at a high or medium level by each such
organ.

For each such ligand, we have identified the encoding gene
if it is a growth factor like epidermal growth factor, or gene g
encoding its key synthesis enzyme if it is a growth hormone
such as androgen using information from the BioCyc database
[15]. We have then predicted the age-dependent level, C(g, j), of
the ligand production based on the total expression level of the
gene across all the relevant organs as follows:

C
(
g, j

) =
∑

i
ωiEi

(
g, j

)
(1)

where Ei(g, j) is the expression level of gene g in organ i at age j
collected from GTEx; and ωi is 1.0 if organ i produces and releases
the ligand at a high level, and 0.5 if at a medium level according to
data given in Human Protein Atlas for each target organ. If there
are parallel pathways for synthesizing the ligand, we calculate
this function for each gene and then sum over the results across
all the relevant genes.

Using this procedure, we have predicted the age-dependent
concentration of the cognate ligand for each identified receptor

of each cancer type, with the detailed gene names and
the corresponding age-dependent concentrations given in
Supplementary Table S2.

The key information derived from this calculation is the rel-
ative, rather than the absolute level of the ligand synthesis over
age, which gives the shape of its age-dependent distribution of
synthesis. We further assume that the circulatory concentration

of the ligand is proportional to its C
(
g, j

)
value.

To demonstrate the validity of this prediction approach, we
have compared the experimentally determined age-dependent
circulatory concentrations of estrogen with the expression levels
of their respective synthesis genes. CYP19A1 and HSD17B are
the main synthesis genes for estrogen [16]. Between the two,
HSD17B is used in our calculation since it is involved in a fewer
non-estrogen synthesis processes than CYP19A1 according to
the Uniprot database, hence less contributions, i.e. noise by
such processes. Ovary is the main organ for its production and
release to blood. In addition, adrenal gland and adipose tissue
also produce significant fractions of the estrogen in circulation
[17]. The age-dependent total expression of HSD17B in ovary,
adrenal gland and adipose tissue was compared to the exper-
imentally determined blood concentrations of estrogen [18] in
Supplementary Figure S2. We can see that the overall trends of
the two sets of curves are comparable, hence providing support-
ing data to our estimation scheme.

The reason that we used the concentrations of ligands rather
than the expressions of their receptors in our model is 2-fold:
(1) generally, the receptor levels tend to be a function of the
ligand levels; and (2) the availability level of the ligand plays the
intrinsic role in the ability of a cancer’s development.

Modeling cancer occurrence using cancer risk
and growth-signal availability

(1) Triple negative breast cancer. Figure 2(a) shows the age-
dependent occurrence rate of TNBC collected from the SEER
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report. To facilitate our regression analyses, we have used the
following analytic function:

y(x) = −4.7049 × 10−4x3 + 6.086 × 10−2x2 − 1.576 × +11.0795 (2)

to approximate this occurrence distribution collected as a series
of discrete data, where x denotes age, which is achieved through
a regression analysis (see Methods). The approximation accuracy
is R2

adjust = 0.9975 with P < 0.001 between the analytic function
and the set of discrete points at ages 20, 25, . . . , 80, 85.

Our goal here is to demonstrate that the occurrence rate of
TNBC can be statistically explained in terms of (1) the risk level of
the cancer, (2) predicted circulatory concentrations of the ligands
whose receptors strongly correlate with the cell-cycle genes and
(3) their interactive term(s).

The age-dependent cancer risk is estimated using the num-
ber of stem-cell divisions in breast from birth to the current
age, which were retrieved from the SEER reports. The data at a
set of discrete ages are then approximated using the following
function via a regression analysis (see Methods):

f1(x) = 3.4262 × 10−3x2 − 1.6478 × 10−1x + 1.8588 (3)

where x is the age. The approximation accuracy is R2
adjust =

0.9963 with P < 0.001, as shown in Figure 2(a). Clearly there is a
substantial difference between the two curves, indicating that
some key contributing factors to cancer occurrence are missing.

We have examined if the predicted age-dependent concen-
trations of the ligands for the nine upregulated receptors iden-
tified in Section 1 may help to lead to considerably better fitting
than the one shown in Figure 2(a). Based on the observation
about the unimodal shape of cancer occurrence, we add one
selection criterion for a ligand: it should have a down trend
beyond some age, which leaves two sets of ligands out of the
nine: PLAU being the ligand for receptor PLAUR, and both BMP7
and LGALS9 being for PTPRK [19]. A preliminary analysis revealed
that BMP7 does not add to the accuracy level of our regression
result, hence leaving two ligands for our model construction.

According to the human protein atlas, PLAU is mainly
produced by adipose, kidney, lung and thyroid. LGALS9 is
predominantly produced by cerebellum, adrenal gland, lung,
stomach, small intestine and colon. The following functions
used to approximate the calculated concentrations of the two
ligands given in Supplementary Table S2, achieved through a
regression analysis (see Methods):

• approximation function for PLAU:

f2(x) = −3.5253×10−3x3 +5.831×10−1x2 −31.2997x+669.6023 (4)

and

• approximation function for LGALS9:

f3(x) = −4.232x + 802.4997 (5)

where x is the age. The approximation accuracies are R2
adjust =

0.9924 with P < 0.001 for PLAU regression and R2
adjust = 0.9999 with

P < 0.001 for LGALS9, shown in Figure 2(b). Then a regression of
y(x) against f1(x), f2(x) and f3(x) is done with the resulting function
y′(x) as follows and depicted in Figure 2(b):

y′(x) = −4.9437f1(x) + 0.0812f2(x) + 0.018f1(x)f2(x)

−0.3212f3(x) + 210.4023 (6)

where f1(x)f2(x) is an interaction term between the two functions.
The regression accuracy is R2

adjust = 0.9997 with P < 0.001, shown
in Figure 2(b).

The regression result suggests that the interaction between
PLAU and the risk level, along with PLAU alone, plays a major role
in determining age-dependent occurrence rates based on their
signs while other terms play more of fine-tuning roles. Based on
our literature review, PLAU encodes urokinase-type plasminogen
activator and is known to promote breast cancer [20], gastric
cancer [21] and non-small cell lung cancer [22]. LGALS9 encodes
galectin-9 and is known to be associated with cancer metastasis
and immunosuppression. From our transcriptomic data analy-
ses, the two relevant receptors are upregulated by 4.65- and 2.34-
fold in TNBC, respectively. Together these provide strong support
to our model.

(2) Testicular cancer. We follow the same regression analysis
for each step in our model development as in (1). Figure 3(a)
shows the age-dependent occurrence rate of TGCT collected
from the SEER report. Similar to the above, we have used the
following function:

y(x) = 3.528 × 10−7x5 − 1.0343 × 10−4x4 + 1.1727 × 10−2x3

−6.3306 × 10−1x2 + 15.707x − 128.067 (7)

to approximate the collected discrete data. The approximation
accuracy is R2

adjust = 0.9988 with P < 0.001 between the analytic
function and the set of discrete data points at ages 20, 25, . . . , 80,
85.

The retrieved caner-risk data are then approximated using
the following function via a regression analysis:

f1(x) = 1.0825×10−6x3−3.139×10−4x2+2.8804×10−2x−0.4512 (8)

where the approximation accuracy is R2
adjust = 0.9982 with

P < 0.001, shown in Figure 3(a).
As for TNBC, we have examined if the predicted age-

dependent concentrations of the ligands for the 20 upregulated
receptors may help to lead to considerably better model than
the one shown in Figure 3(a). By applying the ligand-section
criterion, we get five sets of ligands: both INHBCA and TGFB2
being ligands for receptor ACVR1B; NGR2 for ERBB3; BDNF for
F11R; APOE for LRP1, and TNFSF12 for receptor TNFRSF12A. By
further analyses as in TNBC, INHBC is the only ligand left.

According to the human protein atlas, INHBC is produced
dominantly in liver. The following function is used to approx-
imate its calculated concentrations given in Supplementary
Table S2:

f2(x) = −1.5364 × 10−2x2 + 1.3013x + 0.6324 (9)

where the approximation accuracy is R2
adjust = 0.9881 with

P < 0.001, shown in Figure 3(b). Then a regression of y(x) against
f1(x)and f2(x) is done with the resulting function y′(x) as follows:

y′(x) = 61.6296f1(x) + 1.7899f2(x) − 4.4485f1(x)f2(x) − 23.7107 (10)

where the regression accuracy is R2
adjust = 0.9931 with P < 0.001,

shown in Figure 3(b).
The regression result suggests that the risk level and the

level of INHBC play a major role in determining age-dependent
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Figure 2. Model fitting for TNBC occurrence rates. (a) The black curve represents the occurrence rate of TNBC (y(x)); The red curve represents the risk level of TNBC

(f1(x)), measured using the number of stem-cell divisions in breast since birth; and the x-axis is the age axis, and the y-axis is for the occurrence rate and the risk level

of TNBC. (b) The orange curve represents the predicted TNBC incidence rate (y’(x)); The black curve represents the known occurrence rate of TNBC (y(x)); The green

curve represents the calculated expression level of PLAU (f2(x)); The purple curve represents the calculated level of PLAU x risk (f1(x)f2(x)); and the blue curve represents

the calculated expression level of LGALS9 (f3(x)). The y-axis (from left to light) is for the predicted incidence rate of TNBC (y’(x)), the known occurrence rate of TNBC

(y(x)), the expression levels of PLAU (f2(x)), PLAU x risk (f1(x)f2(x)) and LGALS9 (f3(x)), respectively.

occurrence rates while the other terms play fine-tuning roles.
Based on our literature review, INHBC encodes the inhibin beta
C chain, known to be involved in ovarian cancer development
[23]. Its receptor Activin is known to be associated with cell
migration and cancer metastasis [24,25]. From our transcrip-
tomic data analyses, the receptor of INHBC is upregulated in
2.43-fold in TGCT. Together these provide strong support to our
model.

(3) Cervical cancer. We follow the same regression analysis for
each step in our model development as in (1). Figure 4(a) shows
the age-dependent occurrence rate of CESC collected from SEER.

Similar to the above, we have used the following function:

y(x) = −6.1202 × 10−6x4 + 1.5512 × 10−3x2 − 1.4449 × 10−1x2

+5.7552x − 69.3319 (11)

to approximate the collected discrete data. The approximation
accuracy is R2

adjust = 0.9823 with P < 0.001 between the analytic
function and the set of discrete data points at ages 20, 25, . . . ,
80, 85.

The retrieved caner-risk data at a set of discrete ages are
then approximated using the following function via a regression
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Figure 3. Model fitting for TGCT occurrence rates. (a) The black curve represents the occurrence rate of TGCT (y(x)); The red curve represents the risk level of TGCT

(f1(x)); The x-axis is the age axis, and the y-axis (from left to light) is for the occurrence rate (y(x)) and the risk of TGCT (f1(x)). (b) The orange curve represents the

predicted TGCT incidence (y’(x)); The black curve represents the known occurrence rate of TGCT (y(x)); The blue curve represents the calculated expression level of

IHNBC (f2(x)); The green curve represents the calculated level of INHBC x risk (f1(x)f2(x)). The x-axis is the age axis, and the y-axis (from left to light) is for the predicted

TGCT incidence rate (y’(x)), the known occurrence rate of TGCT (y(x)), and the expression levels of INHBC (f2(x)) and INHBC x risk (f1(x)f2(x)), respectively.

analysis:

f1(x) = −3.3745 × 10−6x3 + 5.2979 × 10−4x2 − 1.4998

×10−2x + 0.1103 (12)

where the approximation accuracy is R2
adjust = 0.9999 with

P < 0.001, shown in Figure 4(a).
As for the above, we have examined if the predicted con-

centrations of the ligands for the 12 upregulated receptors may
help to lead to a considerably better model than the one shown

in Figure 4(a). By applying the ligand section criterion, we get
two ligands: EFNA4 being the ligand for EPHA2, and MST1 for
MST1R. In addition, knowing that a major cause of cervical
cancer is the infection of human papillomavirus (HPV) [26], we
have searched for and found the age-dependent HPV infection
rate in the United States [27]. It is noteworthy that HPV is known
to be capable of driving cell cycle of the infected cells, hence
serving a growth signal in addition to its other roles in cancer
development [28].

According to the human protein atlas, EFNA4 is produced by
skin, esophagus, vagina, cervix and minor salivary gland; and
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Figure 4. Model fitting for CESC occurrence rates. (a) The black curve represents the occurrence rate of CESC (y(x)); The solid black curve represents the risk level of

CESC (f1(x)); The x-axis is the age axis, and the y-axis (from left to light) is for the occurrence rate (y(x)) and the risk (f1(x)) of CESC. (b) The orange curve represents

the predicted CESC incidence (y’(x)); The black curve represents the occurrence rate of CESC (y(x)); The blue curve represents the calculated expression level of EFNA4

(f2(x)); The purple curve represents the calculated level of EFNA4 x risk (f1(x)f2(x)); The green curve represents the calculated expression level of MST1 (f3(x)). The x-axis

is the age axis, and the y-axis (from left to light) is for the predicted CESC incidence (y’(x)), the known occurrence rate of CESC (y(x)), the expression levels of EFNA4

(f2(x)), EFNA4 x risk (f1(x)f2(x)) and MST1 (f3(x)), respectively. (c) The orange curve represents the predicted occurrence rate of CESC (y”(x)); The black curve represents

the known occurrence rate of CESC (y(x)); The red curve with dots represents the risk of HPV infection (f4(x)). The x-axis is the age axis, and the y-axis (from left to

light) is for the predicted occurrence rate of CESC (y”(x)), the known occurrence rate of CESC (y(x)) and the risk of HPV infection (f4(x)), respectively.
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MST1 is predominantly produced by liver. We have used the fol-
lowing functions to approximate the calculated concentrations
of the two ligands given in Supplementary Table S2, as follows:

• approximation function for EFNA4:

f2(x) = 8.0097 × 10−6x3 − 1.4053 × 10−2x2 + 4.5667

×10−1x + 121.1386 (13)

approximation function for MST1:

f3(x) = −3.6314 × 10−4x3 + 1.2115 × 10−1x2 − 17.5605x

+1, 350.0778 (14)

where the approximation accuracies are R2
adjust = 0.9861 with

P < 0.001 for EFNA4 and R2
adjust = 0.988 with P < 0.001 for MST1,

shown in Figure 4(b).
In addition, an analytic function is used to approximate the

HPV infection rates:

f4(x) = 1.65311 × 10−5x4 − 3.8812 × 10−3x3 + 3.2977 × 10−1x2

−12.2167x + 190.1301 (15)

The approximation accuracy is R2
adjust = 0.9861 with P < 0.001

for HPV, shown in Figure 4(c).
Then a regression of y(x) against all four functions f1(x), f2(x),

f3(x) and f4(x) and achieved an R2
adjust = 1.0 with P < 0.001. To gain

an understanding of how the two growth signals and HPV may
contribute to the occurrence rate of the cancer, separately, we
have conducted two separate regression analyses of y(x) against
f1(x), f2(x) and f3(x) and against f1(x) and f4(x), respectively, with
the regression results given below:

y′(x) = 242.206f1(x) + 2.0467f2(x) − 2.1752f1(x)f2(x)

−0.137f3(x) − 112.8687 (16)

where the regression accuracy is R2
adjust = 0.9896 with P < 0.001,

shown in Figure 4(b). And

y′′(x) = −20.6003f1(x) − 1.2046f4 (x − 5) + 1.5875f4 (x − 10)

−0.7187f4 (x − 15) + 26.5421 (17)

where we assume that it takes at least five years for HPV-infected
cervical cells to develop cancer; and 15 years after HPV infection,
no new cancers will develop. The regression accuracy is R2

adjust =
0.9797 with P < 0.001, shown in Figure 4(c).

Overall, both the two growth factors and HPV can separately
well explain the occurrence rate of the cancer. From the two
separate sets of curves in Figures 4(b, c), HPV seems to fit the
occurrence rates more accurately in the earlier portion of the
occurrence curve while the growth factors fit the later portion
better. This clearly makes sense as it can be expected that earlier
occurrence is probably largely due to HPV infection while the
later occurrence is possibly due to chronic inflammation like in
the other two cancer types.

The first regression result suggests that the risk level and the
level of EFNA4 play a major role in determining age-dependent

occurrence rates. Based on our literature review, EFNA4 encodes
Ephrin-A4 and is broadly expressed in TNBC and ovarian cancer.
MST1 encodes Serine/threonine-protein kinase 4, and is known
to be involved in many cancers, such as osteosarcoma, lung
cancer and liver cancer [23,29,30]. From our transcriptomic data
analyses, the two relevant receptors are upregulated in 2.05- and
4.76-fold by CESC, respectively. The second model suggests that
HPV alone is the main driver of the disease while other terms
play a fine-tuning role in the fitting results. Overall these provide
strong support to our model.

Discussion
Our computational study has led to an important discovery
that it takes (at least) two distinct factors for a cancer to take
place, namely cancer risk in an organ and the availability of
exogenous growth signals needed by a specific cancer type. This
represents the first such report for cancer in general, to the
best of our knowledge. While the work is purely computational,
the discovery is made through integration of multiple pieces of
evidence from independent sources, namely (1) the predicted
growth signals all have their receptors highly elevated in their
relevant cancers; (2) each such receptor strongly correlates with
a large number of cell-cycle genes; (3) both the receptors and
ligands have been found to play promoting roles in some can-
cer types in the literature; (4) some of the identified receptors
have been used or tested as drug targets for some cancers. For
example, PLAUR is a target for breast cancer silencing [31]; and
an inhibitor of PLAUR has been found to have anti-invasive or
antitumor effect [32]. EPHA2 has been considered as possible
anticancer target in ovarian cancer [33], which has been tested
in preclinical studies [34]; (5) our simple model can accurately
explain the rather nontrivial occurrence-rate distributions, using
only two types of factors; and (6) our preliminary data suggest
that this model is applicable to all cancer types in TCGA.

Our rationale for the interpretability of the model for cancer
occurrence rates is: (i) cancer is a disease that must have cell divi-
sion persistently at a rate dictated by some micro-environmental
factors. Our previous study suggests that it is chronic inflamma-
tion beyond a certain level coupled with local iron overload that
drives cell division, whose rate is dictated by the level of cytosolic
Fenton reaction: Fe2+ + H2O2 - > Fe3+ + •OH + OH [35]; (ii) to
divide at a needed rate, the affected cells must have sufficient
supplies of growth signals of specific types in circulation needed
by each cancer type; and (iii) the concentrations of such growth
signals tend to decrease with age. Overall, we posit that it is the
combined effect of the risk level and the levels of specific growth
signals needed by individual cancer types that determines the
occurrence rate of the cancer. A key implication is: like the risk
factor, the availability of needed growth signals is an essential
component in a cancer’s development. In a sense, our study
generalizes the previous observations that female hormones are
needed for certain breast cancers and male hormone for some
prostate cancer.

The above has an unexpected corollary: cancers with occur-
rence rates peaking at a young age and going down quickly with
age suggest that such cancers must grow fast as dictated by their
cellular environment that we have previously suggested [35]. To
enable such cancers to divide at the environment-dictated rates,
certain growth factors must be sufficiently available, which only
young people are able to provide; and older patients without
sufficient levels of the needed growth signals may have the
disease manifested in a different form rather than cancer. TGCT
is a good example to explain this.
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TGCT has two major subtypes: seminoma (SE) and non-
seminoma (NSE). SE generally takes place in patients 10-year
older than the latter, and as expected, it grows and spreads more
slowly than the latter [36]. When the needed growth signals are
not sufficiently available, cancer cells will die, which explains
a long held observation that NSE tends to be associated with
more testicular atrophy than SE [37]. Further analyses of the
two subtypes strongly suggest that the faster growing, or more
aggressive cancers need both more powerful exogenous growth
signals and stronger intracellular infrastructure. Specifically, it
has been reported that NSE generally has more active telomerase
activities, hence better maintained telomere compared to SE [38],
knowing the oncogenesis roles of telomerase [39]. One potential
mechanism for the coordination between the needed growth
signals and the intracellular setup such as the activity level
of telomerase could be done through the oxidative stress level
since (1) the cell-division rate of a cancer is largely dictated
by the level of H2O2 (coupled with the iron level) as we have
previously established [35]; and (2) the expression level of telom-
erase can be modulated by the intracellular level of oxidative
stress [40], which is predominantly determined by the H2O2 level,
released by innate immune cells. This clearly warrants further
investigation.

An observation made of the identified growth factors for the
three cancer types is that different cancer (sub)type tends to
use a distinct set of growth signals. For example, the identified
growth signals for TNBC do not involve estrogen or progesterone
as other subtypes of breast cancers. To further test this obser-
vation, we have examined the male breast cancer in TCGA and
found that they predominantly rely on ADIPOQ, BMP4, 7, BDNF
and TNFSF13B, confirming the generality of our observation.

Another implication of this study is: by discovering the key
growth signals used by specific cancer tissues, one can possibly
design treatment strategies via cleaning out such signals in
circulation or by preventing their syntheses by using medicine
or certain diets. Actually, this type of strategy has been used for
treating limited cancer types such as estrogen/androgen-driven
cancers but our work suggests that this can be used as a general
strategy for fighting cancers of possibly all types. Hence, our
study could potentially pave a way for developing a general and
novel paradigm for cancer treatment: treating cancer by elimi-
nating their needed growth signals, possibly complementing the
current strategies which focus on cancer itself.

Materials and Methods
Data

All cancer risk and incidence data are collected from the SEER
database [3]. All RNA-seq data of cancer and control tissues
used are from TCGA. Table 1 gives the number of samples for
both control and cancer tissues for each of the three cancer
types. RNA-Seq data of normal proliferating cells for cell-cycle
gene analysis are retrieved from Gene Expression Omnibus
(GEO) [41]. Gene-expression data used to estimate the synthesis
rate of each target ligand are from GTEx, reprocessed by UCSC
Xena [13,42]. The list of genes involved in cell cycle is collected
from a published study [43] with the gene names given in
Supplementary Table S3.

Differentially expressed genes

For each cancer type, differential expression analyses of genes
were conducted by comparing RNAseq data between cancer and
control tissues using DESeq2 [44]. Two potential batch factors
were identified by using RUVg from RUVSeq package [45], based

Table 1. The number of samples for both control and cancer tissues
of the three cancer types

Normal Tumor

TNBC 113 123
CESC 13 305
TGCT 165 149

on differentially expressed housekeeping genes [46] as negative
gene sets and corrected. Genes with P-values <0.05 and |log2
FC| ≥ 1 are regarded as differentially expressed genes.

Core cell-cycle genes and clustering analysis

In our clustering analyses between growth-factor receptors and
cell-cycle genes, we have eliminated cell-cycle genes that are
also heavily involved in non-cell cycle processes, hence their
expression levels may not necessarily reflect the level of the
cell-cycle activity in each cancer type. A weighted correlation
network analysis was conducted to identify such genes, giving
the rest cell-cycle genes as the core cell-cycle genes [47], which
are given in Supplementary Table S4 for each cancer type. A
fuzzy clustering analysis was then conducted over the mean
expressions of the core cell-cycle genes in the control samples
as well as in cancer samples at N0, N1, N2, N3 and M1 stages,
respectively, using the Mfuzz package [48]. We then selected
representative genes from each cluster via calculating a member-
ship score of each gene to the cluster and using membership
score >0.82 as the selection criterion, where the cuttoff is deter-
mined empirically. Clusters without genes meeting this criterion
are discarded. The detailed clustering result for each cancer type
is given in Supplementary Table S5.

Cell-cycle related growth-signal receptors

A total of 387 receptors for growth-related factors are considered
based on our literature review, listed in Supplementary Table S6.
They fall into the following families: epidermal growth fac-
tor receptor (EGF receptor), fibroblast growth factor receptor
(FGF receptor), insulin-like growth factor receptor (IGF receptor),
platelet-derived growth factor receptor (PDGF receptor), trans-
forming growth factor receptor (TGFβreceptor), tumor necrosis
factor (TNF receptor), vascular endothelial growth factor receptor
(VEGF receptor), nerve growth factor receptor, hematopoietic
growth factor receptor, ephrin cholinergic receptor and some
others. A differential gene-expression analysis was conducted
to get all the upregulated receptor genes for each cancer type.

To determine which upregulated receptors correlate with
cell-cycle genes, we have conducted the analysis outlined in the
above section to get all the representatives for each cluster of
cell-cycle genes. A correlation analysis is conducted between
the upregulated receptor genes and representatives in each cell-
cycle gene cluster of each cancer type. Receptor genes correlated
with the mean expressions of the representative genes over
cancer samples at N0, N1, N2, N3 and M1 stages, respectively,
achieving the Pearson correlation coefficient (PCC) ≥ 0.4, and P-
value <0.05, are considered as cell-cycle related receptors, shown
in Supplementary Figure S1.

In all, 20, 9 and 12 receptors are found to correlate with
100%, 92.05% and 70% of cell cycle representatives in TGCT,
TNBC and CESC, respectively, with the gene names given in
Supplementary Table S7.
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Regression analysis

A regression analysis was conducted of the age-dependent can-
cer occurrence rate against (i) the age-dependent cancer risk and
(ii) the age-dependent circulatory concentrations of the target
ligands. Ligands with (i) average expressions <10 at any age
and (ii) non-declining concentrations are discarded. To find the
best ligands fitting the cancer occurrence data, we conducted an
regression against all subsets of the selected ligands using reg-
subsets in the leap package [49]. Bayesian Information Criterion,
Mallows’s Cp and adjust R2 together were used to select the final
regression model.

Data Availability
The data used in this study are openly available in SEER (https://
seer.cancer.gov/), TCGA (https://portal.gdc.cancer.gov/), GTEx
(https://gtexportal.org/home/), and GEO (https://www.ncbi.nlm.
nih.gov/geo/).
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KEY POINTS
• The paper presents a new discovery of that it takes two

key factors for a cancer to take place: the risk factor
and the availability level of growth signals specifically
needed by individual cancer types.

• It is the combined effect of these two types of factors
that dictates the unimodal distribution of the age-
dependent occurrence rate of each cancer type.

• A new method is presented for discovering the cancer-
specific exogenous growth signals needed in support
of its development, which in its own right could be
used as a novel way to treat cancer.
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