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Abstract: Levels of melatonin in mammalian circulation are well documented; however, its levels in tissues and other 

body fluids are yet only poorly established. It is obvious that melatonin concentrations in cerebrospinal fluid (CSF)  

of mammals including humans are substantially higher than those in the peripheral circulation. Evidence indicates that 

melatonin produced in pineal gland is directly released into third ventricle via the pineal recess. In addition, brain tissue  

is equipped with the synthetic machinery for melatonin production and the astrocytes and glial cells have been proven  

to produce melatonin. These two sources of melatonin may be responsible for its high levels in CNS. The physiological 

significance of the high levels of melatonin in CNS presumably is to protect neurons and glia from oxidative stress.  

Melatonin as a potent antioxidant has been reported to be a neuroprotector in animals and in clinical studies. It seems  

that long term melatonin administration which elevates CSF melatonin concentrations will retard the progression of  

neurodegenerative disorders, for example, Alzheimer disease.  

Keywords: Melatonin, pineal gland, CNS, CSF, oxidative stress, neurodegenerative disease.  

INTRODUCTION 

 Melatonin is a secretory product of pineal gland in 
mammals and it is synthesized by pinealocytes beginning 
with the essential amino acid, tryptophan. Its isolation and 
structural identification by Lerner et al. [29] have been great 
contributions to all fields of biology and medicine. Since its 
discovery, a large variety of physiological functions of mela-
tonin have been uncovered. These include melatonin syn-
chronization of circadian and seasonal rhythms, regulation of 
the reproductive activity in photoperiodic species [48], de-
fending against oxidative stress [69], balancing organismal 
energy metabolism [17, 58, 67] and retarding the aging proc-
ess [9, 64, 67].  

 In addition to the pineal gland, melatonin is found in a 
large number of extrapineal tissues and organs which also 
have the capacity to biosynthesize the indoleamine. Cells and 
organs that produce melatonin include astrocytes, glial cells, 
lymphocytes, retinal cells, gut, testes, ovary, placenta, skin, 
etc [69]. Among them, the gut and skin are the largest organs 
to produce melatonin. The extrapineal derived-melatonin, 
however, seems to play a little role in the classic blood  
melatonin circadian rhythm due to the fact that pinealectomy 
diminishes this rhythm [46]. It has been speculated that 
melatonin of extrapineal origin is consumed by the tissues or 
organs where melatonin is produced as a defense against the 
oxidative stress [69].  
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 Recent studies have also documented that a variety of 
food stuffs, e.g., vegetables, cereals, fruits, nuts, seeds, 
grapes, red wine and beer contain considerable amounts of 
melatonin [25, 26, 37, 38, 45]. Food consumption in some 
cases alters the blood melatonin levels [22]. There are no 
data indicating that food-derived melatonin or post-
prandially-absorbed melatonin significantly alter circadian or 
seasonal physiological rhythms.  

 In recent decades, it was commonly accepted that the 
physiological levels of melatonin in the blood represent the 
levels throughout the body. The blood values range from 
several pg/ml during the day to more than 50 pg/ml at its 
nighttime peak. These levels, however, do not reflect the real 
concentrations of melatonin in tissues or in other body fluids. 
These values significantly underestimate the levels of mela-
tonin in vivo. For example, the gut produces several hundred-
fold more melatonin than the pineal gland generates [24]; 
this melatonin in retained in gut tissue where levels are 
higher than in the blood. In bone marrow of rats much higher 
levels of melatonin also have been found [68]; this is also 
true for bile of the human and other mammals [65], ovarian 
follicular [8] and amniotic fluid of women [42] and cerebro-
spinal fluid of sheep [62, 71]. The real melatonin levels in 
different tissues or body compartments remain virtually un-
known. In the current review, what is known regarding the 
levels of melatonin in central nervous system (CNS) is dis-
cussed and the physiological significance of melatonin in the 
mammalian CNS is also addressed. 

ORIGIN OF MELATONIN IN CNS 

 While the pathway for melatonin synthesis is well docu-
mented, there is some controversy concerning the rate limit-
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ing enzyme in its production. The essential enzymes in  
the melatonin pathway are arylalkylamine N-acetyltrans- 
ferase (AANAT) and hydroxyindole O-methyltransferase 
(HIOMT). The AANAT is often portrayed as the rate limit-
ing enzyme but this may not be the case under all circum-
stances [32] and HIOMT also plays a crucial role to control 
melatonin synthesis by converting N-acetylserotonin to 
melatonin [13, 32, 52]. Historically, melatonin originating 
from the pineal gland was believed to be the sole source of 
melatonin in the blood and CNS and the pineal gland secre-
tion was responsible for melatonin fluctuations in the CSF of 
mammals. Recent studies indicate that pineal-derived mela-
tonin may not be the only resource of melatonin in CNS. The 
mRNAs of AANAT and HIOMT have been indentified in 
the brain tissue of rats [63]. This indicates that that brain 
may possess the machinery for melatonin synthesis. Whether 
the neurons in fact synthesize melatonin is an open question. 
The astrocytes of rats and the human glioma C6 cellline, 
however, have been found to produce melatonin under in 
vitro conditions [33].  

 On other hand, extremely high levels of N1-acetyl-N2-
formyl-5-methoxykynuramine (AFMK), a unique melatonin 
metabolite, have been measured in the CSF of patients with 
meningitis [59]. The levels of AFMK in those patients are 
several orders of magnitude higher than the melatonin levels 
in the CSF of normal subjects. AFMK was actually identi-
fied in brain of rats decades ago [23] and might be the major 
metabolite of melatonin in neurons or in other systems [69]. 
Due to the fact that one melatonin molecule only forms one 
AFMK molecule, it appears that the levels of AFMK men-
tioned above exceed the productive capacity of pineal-
derived melatonin. Considering this, it is likely that both 
pineal and extrapineal, i.e., brain tissue, melatonin contribute 
to the level of this indolamine in the CSF. 

 As an effective antioxidant and neuroprotector [11, 12, 
39] the synthesis of melatonin may be inducible as a result of 
oxidative stress or other stresses. The phenomenon of stress-
induced melatonin production has been observed in plants 
[2], pancreas of rats [28] and in human CSF after traumatic 
brain injury [55]. Stress-induced melatonin production may 
be an explanation for the high levels of AFMK in the CSF of 
patients with meningitis.  

PINEAL GLAND AND MELATONIN IN THE CSF 

 The human pineal gland is located near the center of the 
brain and is surrounded with basal cistern, ventricles, chor-
oid fissure and choroid plexus (Fig. 1).  

 The relationship of pineal gland with surrounding struc-
tures is an interesting issue and has been recently re-
examined. Roughly four decades ago, Sheridan et al. [56, 57] 
unambiguously identified the pineal recess of the “deep pin-
eal gland” and noted that it directly contacts the third ventri-
cle in the hamster. At that time, however, the physiological 
significance of this recess, which is an evagination of the 
third ventricle was unknown. It was believed that the CSF 
melatonin was derived exclusively from the peripheral circu-
lation, i.e., pineal melatonin is secreted into the Galen vein, 
which drains into the sagittal sinus, jugular vein and then 
into the general circulation. Thereafter, circulating melatonin 

was finally transported back to the CSF via the cerebral ar-
teries to enter the ventricular system after its release by the 
choroid plexus. Thus, melatonin concentrations in CSF were 
expected to be similar to those in the peripheral blood. This 
concept has been challenged by a discovery that the mela-
tonin in CSF exhibits a concentration gradient in sheep [71]. 
The highest concentration is measured in the third ventricle 
near the pineal recess in the sheep ventricular system; there-
after, the concentrations of melatonin gradually decrease  
in CSF collected from the center of the third ventricle,  
aqueduct, fourth ventricle and lumbar subarachnoid space. 
Likewise, melatonin concentrations are lower in the lateral 
ventricles than in the third ventricle. A similar melatonin 
concentration gradient in the CSF of humans has also been 
observed [35].  

 

Fig. (1). Human pineal gland in related to its surrounding struc-

tures. Horizontal brain section. Red arrow – pineal gland with sur-

rounding basal cistern. Green arrow – third ventricle. Black arrow – 

the choroid fissure. Yellow arrow – choroid plexus of the inferior 

horn of the lateral ventricle. Blue arrow – hippocampus. Modified 

from Maurizi [41]. 

 It is well known that the direction of flow of CSF is from 
the lateral ventricles through the interventricular foramina 
into the third ventricle, to the aqueduct and to the fourth ven-
tricle. It is assumed that the high level of melatonin in the 
third ventricle near the pineal recess is gradually diluted by 
the CSF flow. Melatonin in the lateral ventricles is probably 
derived from the melatonin that diffuses against the current 
from the third ventricle and may also be released from the 
choroid plexi which are prominent in these ventricles. When 
the pineal recess was surgically sealed, the high concentra-
tion of melatonin in the third ventricle was markedly reduced 
[71]. These are consistent with the idea that a major portion 
of CSF melatonin is directly released into the third ventricle 
from the pineal gland via the pineal recess rather than being 
derived from the peripheral circulation.  

 Since the anatomy of the pineal gland and its surrounding 
structures is similar in sheep and in humans, it is reasonable 
to assume that the majority of melatonin in the CSF of hu-
mans also comes directly from the pineal gland. The anat-
omic evidence of a direct connection of pineal gland with 
CSF in humans has recently been highlighted by Maurizi 
[41]. This investigator argues that the shunting of pineal de-
rived-melatonin directly into the ventricular system should 
be taken seriously. 
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 A clinical study has recently reported that melatonin con-
centrations in third ventricle of patients with movement dis-
orders are significantly higher than in lateral ventricles and 
in blood. The authors argue that pineal melatonin is likely 
directly released into the third ventricle in humans [30]. 
While much of the melatonin may be of pineal origin, other 
CNS sources of CSF melatonin should not be ignored. These 
sources include melatonin from the peripheral circulation 
and melatonin synthesized by brain tissue, especially, under 
the stressful conditions such as in a brain inflammatory  
response [59] or in brain traumatic injury [55].  

LEVELS OF MELATONIN IN CSF 

 Measurement of the levels of melatonin in ventricular 
CSF is complicated by the fact that third ventricular CSF is 
difficult to collect in humans. Extracting CSF from the ven-
tricular system is obviously not a routine procedure and 
when it is done, it is usually after serious injury to the brain. 
Several studies have documented different concentrations of 
CSF melatonin in rats, in sheep and in humans with a dam-
aged or diseased brain. Also, marked differences in CSF 
concentrations in different species or within individuals of 
the same species should also be expected. These differences 
may partially a result of the methodologies which are used  
to detect melatonin, partially result from the location where 
the CSF is collected and also the time when the CSF is  
extracted. 

 As to the methodologies used to measure melatonin, the 
high performance liquid chromatograph ( HPLC) plus mass 
spectrum (MS) technologies are more specific and accurate 
than radioimmunoassay or ELISA. Complicating the meas-
urement is that two forms of melatonin, i.e., free and protein- 
bound melatonin are present in the CSF. The amounts of 
bound melatonin are several-fold greater than the free mela-
tonin in CSF [53]. Route HPLC methods only detect free 
melatonin and, thus, the melatonin levels in CSF are usually 
significantly underestimated.  

 The site of CSF collection is also important when esti-
mating melatonin concentrations. As mentioned previously, 

there is a melatonin concentration gradient in CSF through-
out the third ventricle. When CSF is obtained via the lumbar 
puncture, which is often the case, melatonin levels would be 
expected to be significantly lower than CSF collected from 
the ventricles of the brain.  

 The time of CSF collection is another important factor 
impacting CSF melatonin levels. Melatonin levels in CSF, as 
in the blood, exhibit a circadian rhythm with a peak at night 
and basal levels during the day [18]. For most human stud-
ies, the CSF is collected during the daytime and invariably 
the nighttime rise is missed. The highest nighttime melatonin 
concentration in CSF has been reported in sheep; in this case, 
the levels were 19,934 ± 6,388 pg/ml [71]. These levels are 
several hundred-fold higher than the melatonin concentra-
tions measured in simultaneously-collected blood samples. 
For a comparison of melatonin concentrations in human 
CSF, the results of several studies are summarized in Table 1.  

 As indicated in this table, the majority of these studies 
are performed during the day or post mortem. Even in the 
single case where CSF via lumbar punctured was collected at 
night, the patient was in light at the time. Under these condi-
tions, melatonin levels are either at their basal values or in 
the process of degradation. In addition, most of these studies 
only measured the free melatonin present in the CSF. Based 
on the findings reported by Rizzo et al. [53], the free mela-
tonin only comprised one fourth of the total melatonin in the 
CSF. Thus, it seems that melatonin levels in CSF are in fact 
much higher than the values currently published. It is also 
obvious that the melatonin levels in CSF far exceed these 
measured in the serum at the same time.  

SIGNIFICANCE OF HIGH LEVELS OF MELATONIN 
IN CSF 

 Melatonin is a pleiotropic molecule that plays several 
important roles in CNS including circadian rhythm regula-
tion [20], sleep promotion and blood pressure modification 
[60]. These actions are probably mediated by the membrane 
melatonin receptors which are located in a variety of cells in 
the CNS. Several excellent publications have reviewed the 

Table 1. Summary of the Presumed Physiological Concentrations of Melatonin in Human CSF 

  Reference Year 

Collection Time Collection Site Ages (Yr) Method Melatonin Form 

Melatonin (pg/ml) 

Rousseau et al. [54]  1999 08:00-09:00h Lumbar cistern 25.3 ± 4.5 RIA Free 32.5 ± 25.5 

Liu et al. [31] 1999 1-12 h after death Ventricular 76 ± 1.4 RIA Free 273 ± 47 

Rizzo et al. [53] 2002 Night Lumbar cistern N/A HPLC Free + bound 

 

28.6 ± 7.0 

Zhou et al. [72] 2003 1-12 h after death Ventricule 76 ± 2 RIA Free 280 ± 64 

Longatti et al. [34] 2004 Day time Third ventricule N/A N/A Free 542 

Longatti et al. [35] 2007 Day time Third ventricule 60.3 ± 17.9 HPLC Free + bound 442 ± 45 

Seifman et al. [55] 2008 09:00h ventricule 30-74 ELISA Free 1.47 ± 0.35 

Leston et et al. [30]  2010 08:10-11:10 h Third ventricule 26-68 RIA Free 8.69 ± 2.75 
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functions of melatonin in the brain and the interested readers 
should consult these articles [10, 19, 27].  

 In the current review, we address the neuroprotective 
effects of melatonin. These actions of melatonin are in part 
based on the discovery that melatonin is a potent endogenous 
free radical scavenger and antioxidant [66]. It is well known 
that CNS is an ready target for oxidative stress since brain 
consumes large amounts of oxygen; therefore, it produces 
more reactive oxygen species (ROS) than other organs and 
tissues. If these ROS are not scavenged or detoxified by any 
of a number of antioxidants, neuronal cells are injured by a 
process which is referred to as oxidative stress or nitrosative 
stress. Many neurodegenerative disease including Alzheimer 
disease, Parkinson disease and amyotrophic lateral sclerosis 
(ALS) are at least in part related to neuronal oxidative dam-
age and cell loss [43, 47]. Melatonin is one of the best 
endogenously-occurring molecules that protect the brain 
from such damage. Melatonin not only has the capacity to 
scavenge a variety of ROS and reactive nitrogen species 
(RNS) including hydroxyl radical (HO.), superoxide anion 
radical (O2

.-) hydrogen peroxide (H2O2), nitric oxide (NO.) 
and peroxynitrite anion (ONOO-) [70], but also it up-
regulates gene expression and stimulates the activities of 
several antioxidant enzymes, including glutathione peroxi-
dase, superoxide dismutase and catalase [49, 50]. In addition, 
melatonin acts at the level of electron transport chain of  
mitochondria to inhibit ROS formation [1]; this is referred  
as the free radical avoidance effect of melatonin [21].  

 The potential associations of physiological levels of 
melatonin in CSF and neurodegenerative disease, e.g, Alz-
heimer disease, have been reported. Several clinical investi-
gations have shown that melatonin concentrations in CSF of 
Alzheimer patients are several-fold lower than those in age-
matched non-Alzheimer control subjects [31, 61, 72]. CSF 
melatonin levels in patients with Alzheimer disease are nega-
tively correlated with disease status, i.e, the more severe the 
disease, the less melatonin is present in CSF [72]. Currently, 
it remains unknown whether the low levels of melatonin in 
the CSF of Alzheimer patients is the result of reduced mela-
tonin production in these patients or elevated melatonin me-
tabolism related to the disease status since increased oxida-
tive stress consumes more melatonin.  

 Several small scale and non-double-blinded clinical trials 
have tested the treatment effect of melatonin as a powerful 
antioxidant in Alzheimer disease. Some promising results 
have been obtained from these clinical studies. These studies 
show that the oral administration of 6-9 mg melatonin at bed 
time significantly retards the progression of the disease, re-
duces symptoms such as sundowning and modifies the sleep 
pattern of the patients [3, 6, 7, 16, 36]. These preliminary 
observations require confirmation in large scale and well-
controlled clinical trials. Nevertheless, these preliminary and 
promising results warrant further research in terms of the use 
of melatonin to treat Alzheimer disease and other neurode-
generative disorders.  

 In addition to the human studies, the protective effects of 
melatonin on brain damage caused by a variety of processes 
have been intensively investigated in animal studies. Mela-
tonin administration or pineal grafts into the brain signifi-

cantly reduced the infarct volume in the rat brain induced by 
the middle cerebral artery ischemia/reperfusion [5, 14]. In 
the transgenic animal models of Alzheimer disease, long 
term melatonin supplementation not only protected against 
cognitive deficits and indices of neurodegeneration but also 
prolong the survived period [15, 40, 44]. The neuroprotective 
effects of melatonin are mainly attributed by its powerful 
antioxidant capacity [51].  

 An obvious advantage of melatonin in neurodegenerative 
diseases is its ready permeability into the CNS. Melatonin as 
a lipophilic and hydrophilic molecule [4] passes the blood-
brain barrier with ease. A clinical study shows that 10 min 
after oral melatonin intake, a melatonin peak is observed in 
the CSF and a relatively high level of melatonin is main-
tained for several hours [18]. The elevated melatonin level in 
CSF is beneficial to the brain tissue around the ventricles in 
terms of oxidative stress, especially in neurodegenerative 
conditions such as Alzheimer disease where the level of oxi-
dative damage is increased. Based on anatomical relation-
ships of the pineal gland with the ventricular system and the 
CSF, Maurizi [41] concluded that “ the elevated levels of 
melatonin in the CSF would be translocated into neurons, 
protecting these cells from oxygen free radical damage”; he 
also reminded the reader that “a prudent shopper can buy a 
year’s supply of supplemental melatonin tablets which pro-
vide a dose of 9 mg daily, which seems to slow the progres-
sion of the Alzheimer disease, for less than $25”.  

CONCLUSION REMARKS 

 Evaluation of the melatonin levels in tissues and other 
body fluids based on the blood melatonin concentrations 
appears to be inadequate since the distribution of melatonin 
in the body is not homogenous. Several studies have shown 
that levels of melatonin in CSF are much higher than those in 
the blood. Evidence indicates that melatonin originating 
from the pineal gland and melatonin synthesized by brain 
tissue both contribute to the high level of melatonin in CSF. 
The major source of melatonin in CSF seems to come from 
the direct release of melatonin from the pineal gland into the 
pineal recess of the third ventricle. This leads to a melatonin 
concentration gradient in CSF as the fluid flows through the 
ventricular system including the aqueduct, fourth ventricle, 
and subarachnoid space. Melatonin in the CSF is speculated 
to protect the surrounding brain structures from oxidative 
and nitrosative stress. A low level of melatonin in CSF may 
relate to the etiology of neurodegenerative diseases which 
have elevated oxidative stress, e.g., Alzheimer disease. De-
creased melatonin levels in CSF have been observed in pa-
tients with this neurodegenerative condition. Long term 
melatonin supplementation may retard the progress of some 
neurodegenerative diseases. This conclusion is based on a 
variety of animal studies and several small scale clinical in-
vestigations.  
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