
Received: 27 October 2021 - Revised: 25 February 2022 - Accepted: 6 May 2022

DOI: 10.1002/rmv.2363

R EV I EW

Potential intestinal infection and faecal‐oral transmission of
human coronaviruses

Tingting Ning1 | Si Liu1 | Junxuan Xu1 | Yi Yang1 | Nan Zhang1 | Sian Xie1 |

Li Min1 | Shutian Zhang1 | Shengtao Zhu1 | Youchun Wang2

1Department of Gastroenterology, Beijing

Friendship Hospital, Capital Medical

University, National Clinical Research Center

for Digestive Disease, Beijing Digestive

Disease Center, Beijing Key Laboratory for

Precancerous Lesion of Digestive Disease,

Beijing, China

2Division of HIV/AIDS and Sexually

Transmitted Virus Vaccines, National

Institutes for Food and Drug Control (NIFDC),

Beijing, China

Correspondence

Shengtao Zhu, Beijing Friendship Hospital,

Capital Medical University, Beijing, 100050,

China.

Email: zhushengtao@ccmu.edu.cn

Youchun Wang, Division of HIV/AIDS and

Sexually Transmitted Virus Vaccines, National

Institutes for Food and Drug Control, Beijing,

102629, China.

Email: wangyc@nifdc.org.cn

Funding information

National Natural Science Foundation of China;

Beijing Friendship Hospital; Capital Medical

University

Abstract

Human coronaviruses (HCoVs) were first described in 1960s for patients experi-

encing common cold. Since then, increasing number of HCoVs have been discov-

ered, including those causing severe acute respiratory syndrome (SARS), Middle

East respiratory syndrome (MERS), and the circulating coronavirus disease 2019

(COVID‐19), which can cause fatal respiratory disease in humans on infection.

HCoVs are believed to spread mainly through respiratory droplets and close con-

tact. However, studies have shown that a large proportion of patients with HCoV

infection develop gastrointestinal (GI) symptoms, and many patients with confirmed

HCoV infection have shown detectable viral RNA in their faecal samples.

Furthermore, multiple in vitro and in vivo animal studies have provided direct evi-

dence of intestinal HCoV infection. These data highlight the nature of HCoV GI

infection and its potential faecal‐oral transmission. Here, we summarise the current
findings on GI manifestations of HCoVs. We also discuss how HCoV GI infection

might occur and the current evidence to establish the occurrence of faecal‐oral
transmission.
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1 | INTRODUCTION

According to the International Committee on Taxonomy of Viruses,

coronaviruses (CoVs) are classified under the order Nidovirales, family

Coronaviridae, and subfamily Orthocoronavirinae (Figure 1). They are a

group of enveloped viruses with non‐segmented, single‐stranded, and
positive‐sense RNA genomes.1 Apart from infecting vertebrates (such

as pigs and chickens), seven CoVs can infect human hosts and are

called human CoVs (human coronaviruses (HCoVs)).2 Severe acute

respiratory syndrome (SARS) coronavirus (SARS‐CoV), Middle East

respiratory syndrome (MERS) coronavirus (MERS‐CoV), and SARS

coronavirus 2 (SARS‐CoV‐2) are highly pathogenic (HP) HCoVs, which
have caused regional and global outbreaks.2 HCoV‐229 E, HCoV‐
NL63, HCoV‐OC43, and HCoV‐HKU1 are common HCoVs that usu-

ally cause mild illness.2

Although HCoVs primarily manifest as respiratory infections,

airway exposure is intuitively assumed to be the infection route.

However, epidemiological studies, biological evaluation of the vi-

ruses, and bioinformatic prediction collectively suggest that humans

might also acquire HCoV infection via the gastrointestinal (GI) tract.

Abbreviations: ACE2, angiotensin‐converting enzyme 2; COVID‐19, coronavirus disease 2019; CoVs, coronaviruses; CPE, cytopathic effect; dpi, days post infection; DPP4, dipeptidyl
peptidase four; FaSGF, fasting‐state gastric fluid; FaSIF, fasting‐state intestinal fluid; FeSGF, fed‐state gastric fluid; FeSIF, fed‐state intestinal fluid; GI, gastrointestinal; hACE2, human ACE2;
hAPN, human aminopeptidase N; HCoVs, human coronaviruses; HP, highly pathogenic; MERS‐CoV, Middle East respiratory syndrome coronavirus; SARS‐CoV, severe acute respiratory
syndrome coronavirus; SARS‐CoV‐2, severe acute respiratory syndrome coronavirus 2; sgRNA, subgenomic RNA.
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In this review, we revisit the GI symptoms and shedding of the virus

into the faeces of patients infected with HCoVs, supporting the

possibility of faecal‐oral transmission.

2 | GASTROINTESTINAL SYMPTOMS OF HUMAN
CORONAVIRUSES

2.1 | SARS‐CoV

In the SARS outbreak in 2002‐03, patients with SARS frequently

experienced GI symptoms. Diarrhoea was the most common GI

symptom; occurring in 10.6%–73% of the patients with SARS3–14

(Table 1). The significant difference in the prevalence of diarrhoea

has been postulated to be partly linked to the different modes of

transmission.7 Among the first 138 patients with SARS in Hong Kong,

28 (20.3%) presented with watery diarrhoea, and up to 38.4% of the

patients had symptoms of diarrhoea during the course of illness.7 In

the clustered 75 cases of Amoy Gardens in Hong Kong, although only

1% of the patients had diarrhoea on admission, up to 73% of the pa-

tients eventually developed watery diarrhoea.6 The first 138 patients

are believed to be infected by droplet transmission, whereas the

community outbreak has been linked to the faulty sewage system in an

apartment complex in which faecal‐oral transmission might be a major
route of transmission.7 The great variation in the prevalence of diar-

rhoea might also be attributed to differences in classifying the

symptoms as diarrhoea and whether diarrhoea is reported on admis-

sion or during hospitalisation.4,6,7 Moreover, patients might receive

different medications for SARS, such as lopinavir or antibiotics, some

of which are likely to induce diarrhoea as an adverse event.7

Although diarrhoea on presentation is not associated with oxy-

gen requirement and overall mortality of these patients, patients

with diarrhoea have higher rates of admission to the intensive care

unit and intubation.7 Further studies are necessary to determine

whether the intestinal viral load is correlated with GI symptoms and,

particularly, the clinical outcomes of these patients. Notably, GI

symptoms may indicate the onset of infection in some patients with

SARS. Among the first 138 patients in Hong Kong, 5.8% presented

with fever and diarrhoea only before the onset of respiratory

symptoms.7 Similarly, according to a single‐centre case series study

(n = 267), several patients have presented with high fever and

frequent watery diarrhoea, with minimal cough and completely

normal chest radiograph.12

2.2 | MERS‐CoV

MERS‐CoV was first reported in September 2012 in samples from a

Saudi Arabian businessman who died from acute respiratory and

renal failure.15 In the initial MERS‐CoV outbreak in 2012, a quarter

of patients with MERS‐CoV reported GI symptoms such as diar-

rhoea or abdominal pain at presentation.16 Subsequent cohorts

have consistently reported GI symptoms among patients17–22 (Ta-

ble 1). The number of MERS‐CoV‐infected cases reported in chil-

dren is low. In the case series of seven children, vomiting (28%) and

diarrhoea (28%) have been reported as the most common GI

symptoms.22

Similarly, GI symptoms might serve as the indicator of onset in

some patients with MERS.18,23 Patients with MERS have presented

with diarrhoea, without any respiratory symptoms.19,21

F I GUR E 1 Taxonomy of human coronaviruses (HCoVs): the updated classification scheme of HCoVs and other coronaviruses. The seven
known HCoVs are in green. Abbreviation: MERS‐CoV, Middle East respiratory syndrome coronavirus; SARS‐CoV, Severe acute respiratory
syndrome coronavirus
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2.3 | SARS‐CoV‐2

Some patients with coronavirus disease 2019 (COVID‐19) have re-

ported GI symptoms during disease onset and subsequent hospital-

isation. However, the overall proportion of GI symptoms reported

were lower than that reported for SARS‐CoV and MERS‐CoV
infections.24

The first case of COVID‐19 presented with nausea and vom-

iting upon hospital admission, followed by diarrhoea and abdominal

discomfort.25 Subsequent cohorts have consistently reported GI

symptoms among patients with COVID‐19 26‐33 (Table 1). The

occurrence of GI symptoms can not only coexist but also precede

the typical phenotype of COVID‐19. A man with a 4‐day history of

diarrhoea, without typical symptoms of COVID‐19, subsequently
tested positive.34 Similarly, among 138 patients with COVID‐19,
14 first experienced diarrhoea and nausea, preceding fever.35 Of

note, GI symptoms can be the only presentation of SARS‐CoV‐2
infection.36 Among the nine patients with only GI symptoms at

admission, four had no respiratory symptoms or fever during

hospitalisation.

A large study that collected data from 1099 patients from 552

hospitals in China reported nausea or vomiting in 5.0% and diar-

rhoea in 3.8% of patients.37 In a cohort of 140 patients with

COVID‐19 in Wuhan, GI symptoms, including nausea (17.3%),

diarrhoea (12.9%), and vomiting (5.0%) has been reported in up to

39.6% of the patients.24 The incidence of GI symptoms in patients

with COVID‐19 in the Wuhan area has been found to be signifi-

cantly higher than the overall incidence of GI symptoms in patients

with COVID‐19 across China, which may be related to the virulence

of SARS‐CoV‐2.
Similar to adults, GI symptoms have been observed in a

cohort of 171 paediatric patients with COVID‐19.38 Diarrhoea

and vomiting have been observed in 8.8% and 6. 4% children,

respectively. Although different clinical features, such as a milder

disease course38 and fewer respiratory symptoms,39 have been

reported in children with COVID‐19, GI symptoms appear to be

similar. However, more clinical data are needed for further

confirmation.

2.4 | Common HCoVs

Similar to the aforementioned HP‐HCoVs, common circulating

HCoVs can also cause GI symptoms (Table 1). HCoV‐229 E has

caused vomiting in up to 80% of infected patients.40 Of the 35

samples that tested positive for HCoV‐OC43, two were associated

with vomiting.41 Similarly, digestive problems have been noted in

approximately one‐third of patients infected with HCoV‐NL63.42

HKU‐1 is also commonly associated with intestinal illness.43 It is also
suggested that the frequency of GI symptoms does not differ be-

tween patients with OC43, NL63, and HKU‐1.44 GI symptoms have
also been observed in children with common HCoVs and are more

common in children than that in adults.45

3 | EVIDENCE OF INTESTINAL INFECTION

3.1 | Intestinal expression of HCoVs receptors

3.1.1 | SARS‐CoV and SARS‐CoV‐2

Entry of SARS‐CoV and SARS‐CoV‐2 into the cells is dependent on

the cellular surface protein angiotensin‐converting enzyme 2 (ACE2).
ACE2 is abundantly expressed in the brush border of enterocytes in

all parts of the small intestine,46,47 which is consistent with previous

findings that ACE2 mRNA is highly expressed in the GI tract.48 The

expression patterns of ACE2 indicate the potential for SARS‐CoV and

SARS‐CoV‐2 intestinal infections.

3.1.2 | MERS‐CoV

MERS‐CoV uses dipeptidyl peptidase‐4 (DPP4) as its receptor.49 The
human small intestine expresses the highest level of DPP4 mRNA and

protein among all human organs, including the lungs and bronchi.50

The abundantly expressed DPP4 in the human intestine may account

for the high susceptibility of these cells to MERS‐CoV.

3.1.3 | Common HCoVs

HCoV‐NL63 also uses ACE2 as its receptor.51 The expression

patterns of ACE2 also indicate the potential of HCoV‐NL63 in-

testinal infection. Human aminopeptidase N (hAPN) mediates the

entry of HCoV‐229E and is widely expressed in the intestinal

epithelium, particularly in the apical regions.52 HCoV‐OC43 and

HCoV‐HKU1 employ sialoglycan‐based receptors with 9‐O‐
acetylated sialic acid (9‐O‐Ac‐Sia) as a key component, and 9‐O‐
Ac‐Sia is selectively expressed on the luminal surface of the in-

testinal epithelium.53 In summary, the expression patterns of these

receptors indicate the potential for common HCoV intestinal

infections.

3.2 | Detection and isolation of HCoVs from faeces

3.2.1 | SARS‐CoV

Viral presence in faeces is an important finding because it suggests

the possibility of faecal‐oral transmission. Multiple studies have re-

ported the positive detection of viral RNA in faecal samples from

patients with SARS‐CoV.6,7,10,54 A retrospective cohort study indi-

cated that viral RNA could be detected in the faeces of 28% of the

patients.55 Prolonged faecal shedding of viral RNA is common, and

faecal samples remain positive even after the respiratory and/or

sputum samples exhibit no detectable virus.56 Viral RNA has been

detected in a patient's faeces 73 days after symptom onset.7 More-

over, in certain cases, the viral load of the faecal specimens has been

4 of 13 - NING ET AL.



found to be higher than that of nasopharyngeal aspiration speci-

mens.57 Notably, viable SARS‐CoV has been isolated from faeces,58

suggesting the possibility of GI tract infection and possible faecal‐oral
transmission.

3.2.2 | MERS‐CoV

MERS‐CoV has also been detected in the faeces of patients with

MERS.59 However, only 14.6% of faecal samples yielded viral RNA,

and the duration of viral shedding in faecal samples has never been

reported.60 Interestingly, subgenomic RNA of the N gene, an inter-

mediate in the replication cycle of MERS‐CoV, has been detected in

faecal samples,60 which implies that the virus was probably replicated

in the GI tract of the patient with MERS.

3.2.3 | SARS‐CoV‐2

Several studies have demonstrated the presence of viral RNA in

faeces or anal/rectal swabs of patients with COVID‐19.25,61–64

Rather, the faeces remained positive in 23% of patients even after

respiratory specimens tested negative for viral RNA.65 In some cases,

the viral load in faeces was higher than that in pharyngeal swabs.

Persistent faecal viral shedding is also prominent in paediatric pa-

tients.62 The presence and persistence of such amounts of viral RNA

in faeces is unlikely to be explained by only the swallowing of virus

particles replicated in the throat, but rather suggests the potential

for enteric SARS‐CoV‐2 infection.

Given that extrapulmonary detection of viral RNA does not mean

infectious virus is present, further positive viral culture suggests the

possibility of GI tract infection and possible transmission. More

recently, the isolation of infectious SARS‐CoV‐2 viruses from faecal

samples of patients with COVID‐1966–68 confirmed the release of

infectious virions into the GI tract and directly proved that SARS‐
CoV‐2 could spread via faeces.

3.2.4 | Common HCoVs

The viral RNA of all common HCoVs has been detected in faeces.

HCoV‐43 and HCoV‐HKU1 have been found to be more abundant

than HCoV‐NL63 and HCoV‐229E.26,27 These results suggest the

possibility of GI tract infections in common HCoVs.

3.3 | Gastrointestinal pathological findings in
patients with HCoV infections

3.3.1 | SARS‐CoV

Recently, many groups have reported the enteric involvement of

SARS infection. To et al. reported that positive cytoplasmic signals

of SARS‐CoV had been detected in the surface enterocytes of the

small intestine obtained from autopsies of fatal cases of SARS,

demonstrating SARS‐CoV tropism towards the small intestine.28

Active SARS‐CoV replication in the enterocytes of the small and

large intestine from colonoscopy biopsy and autopsy has been re-

ported by Leung et al.7 Small intestine biopsy specimens obtained

from post‐mortem examination, which is usually performed within a

few days after the death of patients, still yielded viable SARS‐CoV.
Moreover, the culture yield from the small intestine has been found

to be even higher than that from lung tissues, which is generally

believed to be the primary target organ of this virus.7 In a study by

Shi et al.,29 scattered epithelial cells in the small and large intestines

have been infected with SARS‐CoV. Moreover, the viral particles

are present in the dilated endoplasmic reticulum of the mucosal

epithelial cells but not on the surface of the microvilli of superficial

enterocytes, as reported by Leung et al.7 This might be attributed

to better preservation of samples from biopsy than that from

autopsy.

3.3.2 | MERS‐CoV

Timely biopsy and autopsy studies on MERS victims were not per-

formed, which limited the knowledge about the pathogenesis of

MERS‐CoV. In this scenario, it is difficult to determine whether there
is enterocyte damage in the intestines of patients with MERS.

3.3.3 | SARS‐CoV‐2

The first autopsy report was of an 85‐year‐old man with COVID‐
19,30 who showed segmental dilatation and stenosis of the small

intestine. Similarly, histological examination of another patient who

died of severe COVID‐19 has shown degeneration, necrosis, and

shedding of the GI mucosa at varying degrees.31

Further, a GI endoscopy and biopsy report of a 78‐year‐old pa-

tient with COVID‐19 in Guangdong Province, China, has shown

symptoms of GI bleeding.65 The GI tract contained numerous infil-

trating plasma cells and lymphocytes with interstitial oedema. Be-

sides staining of the viral N in the cytoplasm of GI epithelial cells

demonstrates that SARS‐CoV‐2 could infect these glandular epithe-

lial cells.65 In summary, although further histological assessments

might be needed to determine enterocyte damage in the intestine,

the endoscopic and histological examination in patients with COVID‐
19 provides direct evidence of active SARS‐CoV‐2 replication in the

intestine.

3.3.4 | Common HCoVs

Studies including the pathological analysis of GI tissues are needed to

determine enterocyte damage among patients infected with these

common HCoVs.

NING ET AL. - 5 of 13



4 | INTESTINAL INFECTION

4.1 | In vitro models for HCoV intestinal infection

4.1.1 | SARS‐CoV

Several studies based on human cell lines have confirmed that SARS‐
CoV can infect intestinal cells in vitro. SARS‐CoV has been reported

to infect colon carcinoma‐derived lines Caco‐2 and CL14.32 The virus
can grow and produce cytopathic effect (CPE) in Caco‐2 cells.33

Further studies are needed to determine whether enteroids are

susceptible to SARS‐CoV infection.

4.1.2 | MERS‐CoV

MERS‐CoV has been reported to infect the primary enterocytes. All

the inoculated enterocytes have shown to highly express viral N,

undergo significant membrane fusion, and form syncytia, with greatly

increasing viral load.20 The normal human small intestine is also

susceptible to MERS‐CoV and supports viral replication. In the

infected intestine, N‐positive enterocytes explicitly revealed that the
infected enterocytes form syncytia, similar to those in the primary

cells. Notably, although only patchy areas of the epithelium are

infected, an increased viral load has been observed.20 In summary,

both human primary intestinal epithelial cells and the small intestine

can be infected by MERS‐CoV and support viral replication. Human

enteroids are also highly susceptible to MERS‐CoV and support

robust viral replication. Normalised viral loads exhibit a constant

increase in the infected enteroids, which is consistent with produc-

tive MERS‐CoV infection in enteroids, as evidenced by the strong

signal of viral N in the virus‐inoculated enteroids. In addition, infec-

ted enteroids develop progressive CPE over time.20 Notably, MERS‐
CoV replicates more robustly in human enteroids than that in pri-

mary epithelial cells and ex vivo human tissues.20 In summary, these

results strongly suggest that MERS‐CoV can enter and replicate in

the intestinal epithelial cells.

4.1.3 | SARS‐CoV‐2

Many studies based on human cell lines or organoids have confirmed

that SARS‐CoV‐2 can infect the intestinal cells in vitro.68–70 The hu-

man colon carcinoma‐derived cell line, Caco‐2, could produce much

higher amounts of infectious SARS‐CoV‐2 than that produced by the
human lung adenocarcinoma cell line Calu‐3.69 In addition, SARS‐
CoV‐2 readily infects human enteroids,71,72 which then release

mature viral particles from the basolateral and apical cells of the

lumen.72 The robust SARS‐CoV‐2 replication in human enteroids

suggests that the human intestinal tract may be a transmission route

for SARS‐CoV‐2. Additionally, bat enteroids, which are susceptible to
human SARS‐CoV‐2 infection and sustain robust viral replication,

have been cultured to explore SARS‐CoV‐2 replication in the bat

gut.68 Moreover, bat enteroids might enable virus isolation with

higher efficiency than that by Vero E6 cells, which is commonly used

for virus isolation.68 Thus, bat intestinal organoids can also be used

for mechanistic studies of SARS‐CoV‐2 intestinal infection. In sum-

mary, these in vitro studies confirm that SARS‐CoV‐2 can enter and

replicate in the intestinal epithelial cells.

4.1.4 | Common HCoVs

Several studies based on human cell lines have confirmed that

common HCoVs can infect intestinal cells in vitro. HCoV‐OC43 has

been reported to infect the human intestinal cell line, HRT18,73 while

HCoV‐NL63 can infect Caco‐2 cells.74 Whether common HCoVs can

infect enteroids requires further studies.

4.2 | Animal models for HCoV intestinal infection

4.2.1 | SARS‐CoV

The development of animal models to study HCoV biology and

pathogenesis is of interest to the scientific community, particularly if

the models appropriately mimic human infection.

Several inbred mouse strains have been evaluated as models of

SARS‐CoV infection.75–78 Although mice show evidence of infection

and lung disease, inbred mouse strains do not accurately reproduce

diffuse alveolar damage, oedema, pneumocyte necrosis, and hyaline

membrane formation observed in humans.79,80 Transgenic mice

expressing human ACE2 (hACE2) have been explored to mimic mild

SARS‐CoV infection. Upon intranasal inoculation of SARS‐CoV in

hACE2 transgenic mice, the mucosal layers of the GI tract show signs

of oedema, small vessel dilation, and lymphocyte infiltration. More-

over, in the small intestine, some epithelial cells appear desquama-

tive, and some lymph nodes show severe haemorrhage and

necrosis.81

In addition to mouse models, evidence from several other animal

models supports intestinal viral infection. SARS‐CoV has been re-

ported to infect masked palm civets. Viral RNA has been detected in

the small intestine of virus‐inoculated civets, and the positive signal is
mainly localised to macrophages. Moreover, mild focal haemorrhages

have been observed in the lamina propria of the small intestine.82

Furthermore, in the ferret models, intranasal infection with SARS‐
CoV shows intestinal infection, and viral RNA is detectable in the

GI tract.83 In addition, a few enterocytes in the ileum express SARS‐
CoV N.84

SARS‐CoV has been shown to infect non‐human primates,

providing the most genetically relevant infection model to mimic

human infections. Upon intranasal inoculation, the viral genome has

been detected in the faecal samples of all rhesus macaques.85 Simi-

larly, positive signals for N have been detected in the small intestines

of all the four rhesus macaques infected with SARS‐CoV via intra-

nasal inoculation of SARS‐CoV.86
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4.2.2 | MERS‐CoV

In contrast to SARS‐CoV, mice are not naturally susceptible to

infection by MERS‐CoV because the mouse DPP4 receptor differs

from the human counterpart in crucial regions of interaction with the

MERS‐CoV S protein.87

MERS‐CoV intestinal infection has been suggested in an earlier

study of intranasally inoculated human DPP4 mice,88 the mouse

intestines show an increasing viral load after MERS‐CoV inocula-

tion. Direct intragastric MERS‐CoV inoculation initiates an infection

in the intestinal mucosa, leading to progressive inflammation and

epithelial degeneration. With the progression of intestinal MERS‐
CoV infection, a sequential respiratory infection occurs.20 At-

tempts to experimentally infect hamsters and ferrets with MERS‐
CoV have not been successful.89,90 Thus, although MERS‐CoV has

been shown to infect non‐human primates,91,92 GI pathology re-

mains unaddressed.

4.2.3 | SARS‐CoV‐2

Because SARS‐CoV‐2 cannot infect wild‐type mice, many efforts

have been made to establish suitable animal models for mimicking

specific aspects of SARS‐CoV‐2 infection in humans.93–96

Transgenic mice expressing hACE2 have been explored to mimic

mild SARS‐CoV‐2 infection.95 However, upon intranasal inoculation

of SARS‐CoV‐2 in hACE2 transgenic mice, viral RNA is only tran-

siently detected on the first day post infection (dpi), and no histo-

pathological lesions of SARS‐CoV‐2 have been observed. The failure

to establish intestinal infection in this model could be related to

suboptimal viral replication in transgenic mice.95

Knock‐in mice expressing hACE2 have been designed as a more

relevant infection model than transgenic mice.93 Notably, aged

hACE2 mice had high levels of viral RNA in the faeces.93 Importantly,

intragastric administration of SARS‐CoV‐2 could cause productive

infection in the respiratory tracts of hACE2 mice, as demonstrated by

the presence of high levels of viral RNAs and active viral protein

expression.93 This result also highlights the possibility of faecal‐oral
transmission of SARS‐CoV‐2.

In addition to mouse models, evidence from several other animal

models also supports intestinal viral infection of SARS‐CoV‐2.94

When naive ferrets are inoculated with faecal supernatants of

infected specimens, infectious SARS‐CoV‐2 has been isolated from

subsequent nasal washes, thereby providing direct evidence of

faecal–oral transmission of SARS‐CoV‐2 in ferrets.94 Furthermore,

although diarrhoea is not clinically evident in challenged hamsters

intranasally infected with SARS‐CoV‐2, viral RNA has been contin-

uously detectable in the faecal samples of infected hamsters for

14 days and viral N has been detected in the enterocytes.96 Severe

enterocyte necrosis, damaged and deformed intestinal villi, and

increased lamina propria mononuclear cell infiltration have been

observed, thereby providing direct evidence for intestinal infection of

SARS‐CoV‐2 in hamsters.96

SARS‐CoV‐2 has been shown to infect non‐human primates, such
as rhesus macaques.97,98 Upon intranasal inoculation of SARS‐CoV‐2
to seven rhesus macaques, viral RNA‐positive anal swabs are

observed in all infected monkeys.98 Virus‐positive cells and inflam-

matory cell infiltration in the intestines of these animals has been

observed. Similarly, on infection of rhesus macaques with SARS‐CoV‐
2 via a combination of intranasal, intratracheal, oral, and ocular

inoculation, two of the eight primates have shown viral RNA‐positive
anal swabs.97 Small numbers of antigen‐positive lymphocytes and

macrophages were detected in the lamina propria of the intestinal

tract of all four macaques. Notably, viral mRNA, which indicates

active viral replication, could be detected in the GI tissue of a rhesus

macaque. Similar to clinical studies in patients, prolonged rectal

shedding of viral RNA has also been observed in rhesus macaques.97

Notably, both intranasal and intragastric inoculation cause histo-

pathological damage in the GI tract, including infiltration of inflam-

matory cells and exfoliation of the mucosal epithelium. Moreover, a

decrease in Ki67 and the number of mucin‐containing goblet cells

and an increase in cleaved caspase 3, suggest impairment of the GI

barrier due to inflammation induced by SARS‐CoV‐2 inoculation,

causing severe infection.99

Additionally, viral RNA has been found in the anal swabs of

SARS‐CoV‐2‐infected cats and dogs.100 In summary, data from many

animal models confirm the intestinal infection of SARS‐CoV‐2 and

the potential for faecal‐oral transmission.

4.2.4 | Common HCoVs

Transgenic mice expressing hAPN have been used to mimic HCoV‐
229E infection. Upon infection, large amounts of HCoV‐229E have

been found in the gut. In addition, the small intestine shows haemor-

rhagic areas along with coronavirus particles, which can be detected

using electronic microscope.101 Attempts to experimentally infect

animal models with other common HCoVs have not been successful.

5 | EVIDENCE OF FAECAL‐ORAL TRANSMISSION

Three key issues should be addressed to determine whether HCoVs

can establish faecal–oral transmission. First, whether HCoVs can

tolerate gastric acid exposure to subsequently establish an intestinal

infection. Second, whether infectious virus particles can tolerate in-

testinal fluid, which can then be shed through faeces. Finally, whether

the virus particles outside the host are of sufficient concentration and

infectivity for subsequent transmission needs to be determined.102

5.1 | Can HCoVs tolerate gastric acid and survive
passage into the gut?

The stomach environment varies over the course of the gastric

residence of a meal, which might affect the tolerance of pathogenic
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viruses in the gastric fluid.103 Based on human clinical studies, fed‐
state gastric fluid (FeSGF) has a hyperosmolar content and a higher

pH than that of fasting‐state gastric fluid (FaSGF).103 In vitro, FaSGF

is often a salt solution, containing sodium taurocholate, lecithin, and

pepsin, at a pH of 1.6, whereas the FeSGF is a pH 5.0, milk‐based
medium, to simulate the carbohydrate‐to‐protein‐to‐fat ratio

observed in the stomach after the consumption of meals.104 HP‐
HCoVs and common HCoVs are less tolerant to the high acidity of

FaSGF; however, to some extent, they can resist the digestive en-

zymes in FeSGF, which suggests that eating might facilitate the in-

vasion of these viruses.20,105

5.2 | Can infectious HCoVs be shed in faeces?

Viral shedding through faeces is another essential characteristic of

faecal‐oral transmission. A study on human duodenal enteroids has

found that SARS‐CoV‐2 is released predominantly from the apical

side into the lumen, suggesting the possibility of viral shedding and

accumulation in the faeces of patients with COVID‐19.
Different coronaviruses have varying tolerance to small intesti-

nal fluids. SARS‐CoV and SARS‐CoV‐2 can retain viability and

infectivity in fasting‐state intestinal fluid (FaSIF); however, they

poorly tolerate fed‐state intestinal fluid (FeSIF).105 However, MERS‐
CoV maintains some viability in the presence of FeSIF.20 The matrix

and N of MERS‐CoV can form relatively hard inner and outer shells,

increasing virus stability in the environment,106 which may partly

explain the increased tolerance of MERS‐CoV to the small intestine

fluid compared to that of SARS‐CoV or SARS‐CoV‐2. Similar to

SARS‐CoV and SARS‐CoV‐2, HCoV‐229E well tolerates FaSIF and

poorly tolerates FeSIF.20 Thus, HCoVs could plausibly remain infec-

tious in the faeces, especially when the patient has diarrhoea

symptoms.

Consistent with these findings, several reports have shown the

successful isolation of HCoVs from human faeces.107,108 For example,

live SARS‐CoV‐2 has been found in the faecal samples from two

patients with COVID‐19.107 The isolation of infectious viruses from

the patient's faeces suggests SARS‐CoV‐2 enteric infection.

5.3 | Can HCoVs maintain infectivity outside the
host?

5.3.1 | SARS‐CoV

These data confirm that SARS‐CoV is viable under environmental

conditions that could facilitate faecal–oral transmission. SARS‐CoV
RNA has been found in the sewage water of hospitals.109 Although

studies on isolating infectious viruses in sewage are lacking, the

ability to maintain infectivity in liquids makes it possible for SARS‐
CoV to be transmitted through sewage. SARS‐CoV can survive for

up to 2 weeks after drying, remaining viable for up to 5 days at

temperatures of 22–25°C and 40%–50% relative humidity.110 In

addition, at 20 and 4°C, SARS‐CoV can persist in faeces for 3 and

17 days, respectively.111

5.3.2 | MERS‐CoV

MERS‐CoV remians stable at low temperature and low humidity, and

can be recovered after exposure to the environment for 48 h, thus

supporting fomite transmission.112 Accordingly, viral RNA can be

extensively detected in the environmental surfaces of patients with

MERS.113

5.3.3 | SARS‐CoV‐2

The possibility of faecal‐oral transmission of SARS‐CoV‐2 has impli-

cations, particularly in areas with poor sanitation.114 Chan et al.

demonstrated that SARS‐CoV‐2 could survive in faeces for up to one
to 2 days.115 A recent environmental study suggested that SARS‐
CoV‐2 could remain viable in aerosols for hours and could remain

stable on plastic and stainless steel for at least 72 h.116 Thus,

transmission via the faecal‐oral route is theoretically possible,

particularly in individuals with reduced gastric acidity due to medi-

cations such as proton pump inhibitors.

5.3.4 | Common HCoVs

HCoV‐NL63 suspensions diluted with phosphate buffered saline and

stored for up to 7 days at room temperature remained infective.117

Similar to HCoV‐NL63, both HCoV‐229E and HCoV‐OC43 can sur-

vive for several days in suspensions.118 A study with HCoV‐229E has
demonstrated a 99.9% die‐off of 10 days in tap water at 23°C and

over 100 days at 4°C.119 The ability to maintain infectivity in liquids

makes it possible for common HCoVs to be transmitted through

sewage.

6 | CONCLUSIONS

The current study provides strong evidence for intestinal infection of

HCoVs. However, further evidence is needed to determine the

mechanism of intestinal infection and the possibility of faecal‐oral
transmission of HCoVs.
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