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Abstract: Location estimation in wireless sensor networks (WSNs) has received tremendous attention
in recent times. Improved technology and efficient algorithms systematically empower WSNs with
precise location identification. However, while algorithms are efficient in improving the location
estimation error, the factor of the network lifetime has not been researched thoroughly. In addition,
algorithms are not optimized in balancing the load among nodes, which reduces the overall network
lifetime. In this paper, we have proposed an algorithm that balances the load of computation for
location estimation among the anchor nodes. We have used vector-based swarm optimization on
the connected dominating set (CDS), consisting of anchor nodes for that purpose. In this algorithm,
major tasks are performed by the base station with a minimum number of messages exchanged by
anchor nodes and unknown nodes. The simulation results showed that the proposed algorithm
significantly improves the network lifetime and reduces the location estimation error. Furthermore,
the proposed optimized CDS is capable of providing a global optimum solution with a minimum
number of iterations.

Keywords: localization; accuracy; load balance; swarm optimization; network lifetime

1. Introduction

Wireless sensor networks (WSNs) are widely used in observing, agriculture, home, and defence
environments that are dynamic. Emerging information technology and application requirements have
shifted the paradigm of a static network scenario to dynamic environments of WSNs. The mobility of
nodes (anchor and unknown) in the network makes it difficult to estimate the location of an unknown
node. The accuracy of the location of nodes in such networks is of great importance and depends on
location estimation and verification [1,2]. The major drawback of WSNs is the lifetime of the network,
as the nodes have limited resources to power up. Compared to unknown nodes, anchor nodes are
more privileged, with better power and computational resources. However, unknown nodes drain
their resources faster to perform heavy computational tasks. Therefore, the network becomes partially
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unavailable until the exhausted nodes are replaced. However, the replacement process is not always
feasible in the dynamic configuration settings of the applications. Moreover, WSNs use a virtual
backbone to prolong the network lifetime [3–5]. Therefore, the localization process has to be efficient
in the terms of minimizing resource utilization. Such efficient utilization of resources is achieved by
optimization [6–8] and load balancing [9] on the virtual backbones.

In this paper, we introduce an approach by constructing a connected dominating set (CDS) based
virtual backbone only with anchor nodes optimized in terms of load balance using a vector-based
swarm optimization (VBSO) mechanism [10]. This optimized CDS is then used for location estimation
in WSNs. The purpose of including CDS in the proposed algorithm is to use the anchor nodes properly
and to increase the overall network lifetime. The remaining paper is organized as follows. Section 2
reviews the related work in this field. The network model for the algorithm is explained in Section 3.
The proposed algorithm is shown in Section 4. The detailed process of the applied optimization is
explained in Section 5, and the localization details are discussed in Section 6. The results are explained
in Section 7. Finally, conclusions are drawn in Section 8.

2. Related Work

Researchers have recently considered various algorithms to improve the lifetime of nodes without
compromising their location estimation accuracy. Localization techniques are broadly categorized into
(i) direct and (ii) indirect approaches. The former is based on manual configuration and GPS-based
techniques and the latter on range-based and range-free techniques [1]. Location identification
of nodes with range-based approaches uses different methods, such as time difference of arrival
(TDoA), angle of arrival (AoA), time of arrival (ToA), and a received signal strength indicator (RSSI).
On the other hand, range-free approaches use region inclusion, hop count, and neighbor location
identification methods that avoid a direct relationship between point-to-point distances and are,
therefore, more economic. Some hybrid approaches, including RSS–AoA and RSS–ToA, have been
discussed in References [11–14]. These hybrid approaches provide generality by applying data fusion
and are also used for global synchronization with high accuracy but lag behind in computational cost,
special hardware requirements, and energy consumption. Another hybrid localization algorithm is
shown in Reference [15] that uses message passing and approximation of posterior distribution of
targets. It also uses Bayesian distribution [16,17]. These techniques either use range or angle as their
measurement parameter and geometrical interpretations (such as triangulation or trilateration) are
calculated accordingly. This seems easier to apply in the absence of noise. Moreover, the problem
with such a geometric-based calculation is the existence of a larger intersection area of hyperbolas
rather than a point. Therefore, to improve the efficiency of the localization techniques in the presence
of noise, the two measurements—range and angle—are integrated as hybrid approaches. The generic
approaches of range-free methods were recently further modified for their economic value and are
discussed hereafter. Energy-efficient load- balanced clustering (EELBC) is one of the range-free
approaches for localization [18]. This algorithm uses a minimum heap of cluster heads (CHs) or
gateway nodes and the nodes are assumed to be aware of the position through GPS. Additionally,
network setup is performed in two phases, bootstrapping and clustering. In the clustering phase,
the sink executes the clustering algorithm depending on the minimum heap algorithm. The extra cost
of GPS makes this algorithm less attractive.

Another variant of the load-balanced cluster-based algorithm creates clusters based on distances
and the distribution density of the nodes [19]. Here, node distribution follows Poisson’s process
and has fixed locations and, hence, mobility is not considered. This algorithm lacks load balancing
factors. In another range-free approach, three NP-hard problems: the min–max degree maximal
independent set (MDMIS), the load-balanced virtual backbone (LBVB), and the min–max valid-degree
nonbackbone node allocation (MVBA) were considered [20]. An additional approximation algorithm
was also proposed in the method which uses the linear relaxing and random rounding techniques.
Genetic-based approaches have been discussed in References [21–24]. One variant of the genetic
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algorithm using a simplex method is shown in Reference [25]. This simplex method is used to optimize
the error minimization problem in widely used DV-hop for searching a local optima. The use of the
multiobjective genetic algorithm to create a load-balanced virtual backbone is shown in Reference [26].
The mobility of the network increases the iterations of the algorithm to get a local optimum solution,
making the overall approach disadvantageous. The identification of balanced nodes in wireless
sensor networks for data aggregation has also been shown with a probabilistic network model for a
data aggregation tree [27]. Moreover, an algorithm for the identification of a load-balanced maximal
dominator node Set (LBMDS) and connector nodes for LBMDS have been developed. An expected
allocation probability algorithm (EAP) to solve parent node assignment (PNA) has been proposed.
A novel distributed tracking process of the sensor nodes has been introduced [28]. In this approach,
a local node using a fuzzy system provides a partial solution, with a centralized algorithm that merges
all the partial solutions. The centralized algorithm is based on the calculation of the centroid of the
partial solutions. The deviation of the partial solutions increases the complexity of the algorithm,
which is an identified concern in this approach.

The solution for swarm configuration-based localization uses the min–max method and swarm
optimization [29]. Swarm uses a sequential Monte Carlo localization method to consider mobility and
does not require additional hardware. As it can work with seed movement, the mobility factor lowers
the cost of implementation without compromising accuracy. We have considered this approach as a
candidate, as well for comparison. An ant colony-based optimization approach is described in the
literature [30]. A distributed method for parametric regression in a clustered WSN using particle swarm
optimization was also introduced recently with multiobjective optimization (MO) [31]. Moreover,
the same as the vector-evaluated particle swarm optimization method, it considers the MO problem
in two phases; the algorithm obtains a set of candidate network regressors and computes the final
model using a weighted averaging rule. However, this parametric regression is not suitable for real
time-based scenarios with the mobility effect. A novel optimized localization method using glowworm
swarm optimization (GSOL) has been introduced to overcome this drawback [32]. The fitness function
of this optimization process follows the deviation or error calculation with the Euclidean distance
aspect. After the multi-iterations, all the mobile nodes within the network concentrates around one or
multiple nodes providing local optimal location create the global optimal location. We have considered
this algorithm also as another candidate for comparison due to its claimed efficiency. Some other
techniques for the optimization and load balancing the virtual backbone include: Neural networks [33],
the machine learning approach [34], and the differential evolution approach [35].

The aforementioned short survey on the range-free optimization algorithms in WSNs has some
drawbacks: (i) The algorithms are not load-balanced and, therefore, partial exhaustion of the network
exists; (ii) the redundancy of the clustering nodes makes the process complex; (iii) heavy functioning
load on some nodes lowers the network lifetime; and (iv) validation for the overall mobile (unknown
and anchor: Both are mobile) environment is not ensured. The present work aims to provide a solution
for the abovementioned deficiencies by developing an approach of localization using a VBSO-based
CDS construction.

3. Network Scenario

The present research work considers that the n unknown nodes are located within a plane of
M × M area with true locations defined by ui = (xi, yi) and estimated locations are defined by
ūi = (x̄i, ȳi), ∀i = 1, 2, .., n. We have also considered m anchor nodes with known locations defined by
aj = (xj, yj), ∀j = 1, 2, .., m.

The transmission area is considered to be a circle. The centre of the circle consists of the
corresponding node itself. The number of unknown nodes connected to an anchor node is variable at
different time intervals and, therefore, we have calculated that the expected number of connectivity for
each anchor node in the network can be given as:
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ζ =
n

M2 πr2. (1)

The network of n unknown nodes and m anchor nodes along with their connectivity is considered
as a graph G(V, E). G

′
(V
′
, E
′
) ⊆ G(V, E), where G(V, E) is the original sensor network scenario and

G
′
(V
′
, E
′
) consists only of the optimized backbone anchor nodes considered as optimized CDS and

its links to the unknown nodes u1, u2, ..., un ∈ U, the set of unknown nodes, such that ∀ui, aj ∈ V
′

{i = 1, 2, .., n and j = 1, 2, .., m}. All the unknown nodes in the set U are the one-hop neighbors of any
anchor node present in the CDS such that D ⊆ A, the set of anchor nodes {a1, a2, .., am}, V

′ ⊆ V and
V
′
= D ∪U, where D is the dominating set.

The proposed network model is mobile in nature for both the anchor nodes and unknown nodes.
Relative mobility is required to be calculated to check the mobility direction and the relative distances. The
relative mobility between an unknown node ui with respect to anchor node aj at a given time t is given by:

RMa,u
t = da,ut − da,ut−1 , (2)

where da,ut =
k√
Pr

and Pr is the power received by the receiving antenna and is calculated by the Friis
space model [36]. k is constant here. da,ut is used to calculate the distance and closeness between two
nodes. RMa,u

t is positive if node u is moving away from a and negative if u is coming closer to a.
This relative mobility effects the CDS generation and further the related vectors. This relative mobility
is used to generate the updated distance matrices for location estimation.

4. Vector-Based Swarm Optimized CDS

Our proposed algorithm considers the following assumptions:

• The anchor nodes are preinstalled with their own location, also known to the base station (BS).
• The base station can control all the anchor and unknown nodes. Multiple base stations are

allowed, depending on the range of communication.
• Unknown nodes and anchor nodes have random mobility.
• According to the privilege concern, BS is the most privileged in terms of storage and resource.

Anchor nodes are more privileged, compared to unknown nodes. Therefore, the maximum
computing tasks are controlled by BS; anchor nodes and unknown nodes are kept only with a
minimum message exchange process. One BS broadcasts the aggregated information to other BS.

The proposed method starts with broadcasting by anchor nodes which have more privileges than
the resource constrained unknown nodes. The anchor nodes broadcast the neighbor discovery packet
(NDP) as per the following format.

NDP : {A_addr, Leash_C = 1, Seq, Accept_S = 0},

where A_addr is the source address of the anchor node, Leash_C is set to 1 to bound the packet with a
limited transmission of one-hop nodes, Seq is the sequence number of the NDP to avoid void routing
and stale of packets, and Accept_S is the status of the acceptance of the NDP by an unknown node
set at 0. It may happen that in this process of broadcast, another anchor node receives the NDP,
in which case, the receiving anchor node will simply discard the NDP. Once this NDP is received by
the unknown nodes who are in the one-hop neighborhood of the sender, the unknown nodes reply
with a reply neighbor set (RPNS) by decrementing the leash value by 1 and changing the acceptance
status to 1. The RPNS is composed of the following components.

RPNS : {SrcAddr, Leash_C = 0, Seq, Accept_S = 1, U_addr}|U_addr is the address o f unknown node.

Upon receiving the RPNS, the anchor nodes enlist the U_addr as its one-hop neighbor in a
neighbor set list (NSL) and send it to the base station (BS) with cryptographic services so that the list
cannot be manipulated by any third party attack or compromised insider node.
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Anchor → BS : NSL = {A_addr|U_addr1, U_addr2, ...}

After receiving all the NSLs from the anchor nodes, BS calculates the maximum degree anchor
node and enlists the anchor node in an empty dominating set D. This operation iterates until at least
three anchor nodes are in the dominating set and all the unknown nodes are a one-hop neighbor of at
least one of the anchor nodes in the set of anchor nodes A. The process outputs a connected dominating
set (CDS), but the problem is the anchor nodes are unbalanced in terms of number connections with
unknown nodes. To solve this problem, swarm optimization is performed on the CDS. BS creates
binary vector Vj for each of the anchor nodes present in the CDS and vector-based swarm optimization
is applied for the best solution to achieve an optimized CDS for the backbone. All these n-bit binary
vectors (as number of unknown nodes is n) create the initial population of swarm. Fitness value is
calculated on each of these vectors and direct and indirect cooperation is calculated. After mutation on
the initial population of vectors, boundary values are checked and selection starts again for the next
iteration. If the convergence condition is met successfully, we get the output of the best-fit solution for
our purpose. Once we get the optimized dominating set, trilateration is performed to get the location
of unknown nodes. The algorithm is summarized in Algorithm 1.

Algorithm 1 Proposed Localization Algorithm

1: procedure ANCHOR NODES aj AND UNKNOWN NODES ui
2: Initialize {A} = {a1, a2, ..., am} and {U} = {u1, u2, ......, un} and dominating set D = ∅
3: for Broadcast by anchor node aj do
4: Send NDP : {A_addr, Leash_C = 1, Seq, Accept_S = 0}
5: end for
6: for On receiving, node ui computes do
7: Leash_C = Leash_C - 1;
8: Accept_S = 1;
9: Send RPNS : {A_addr, Leash_C, Seq, Accept_S = 1, U_addr}

10: end for
11: if Leash_C == 0 && Accept_S == 1 then
12: Create NSL
13: aj → BS : NSL = {A_addr|U_addr1, U_addr2, ......}
14: else
15: exit
16: end if
17: BS performs:
18: while True do
19: if ∀ ui ∈ (∃ N (aj) && |D| ≥ 3) then
20: Break while loop;
21: else
22: Calculate the maximum degree anchor nodes amax
23: D = D ∪ amax
24: end if
25: end while
26: m′ = |D|
27: for k=1 to m’ do
28: BS creates binary vector ∨j, ∀j = 1, 2, ..., m′

29: Apply VBSO algorithm
30: Apply Trilateration
31: end for
32: end procedure
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5. Optimization Process with VBSO

To optimize the obtained CDS, we have applied vector-based swarm optimization (VBSO) on
the obtained CDS. The solution for optimizing the CDS exhibits the features of the maximization
problem. To solve this problem, we considered the connections of anchor nodes in the CDS with
their corresponding one-hop neighboring unknown nodes as n-dimensional vector Vj. The proposed
method provides a global maximization solution, which is formulated as a pair (Vj, f ), where Vj ⊆ Rn

is a bounded set on Rn and f : Vj → R is n dimensional real valued function. The domain Rn of
function f is considered the search space. We have to find a point x̂ ∈ Vj so that f (x̂) is a global
maximum on Vk. Thus, each element x of Rn is considered a candidate solution in the defined search
space with x̂ being optimal such that f (x̂) ≤ f (x). The optimization process for CDS with VBSO
algorithm has been summarized in Algorithm 2.

5.1. Initialization of Vectors

Each unknown node in the network is allocated to one of the anchor nodes in the CDS. Each anchor
node aj and its connections with one-hop neighboring unknown nodes ui is represented by an
n-dimensional binary vector Vj, ∀j = 1, 2, .., m

′
, where m

′
is the number of anchor nodes in CDS

and m
′ ⊆ m.

Let us consider the scenario shown in Figure 1. The scenario consists of five anchor nodes and
twelve unknown nodes. The blue circles represent anchor nodes, green circle nodes represent unknown
nodes, blue solid lines represent a CDS and green solid lines represent the connection between an
anchor node of CDS and unknown node in the network. As per our algorithm, we require at least
three anchor nodes in the CDS to calculate a location with the trilateration process. Therefore, anchor
nodes 1, 2, and 3 create the required CDS for the purpose for which the vector representation (V1, V2,
and V3) is shown in Figure 2. These vectors are considered parent vectors for the VBSO algorithm.
The vector representation for each anchor node is formulated as:

Vji =

{
1, i f anchor aj is one hop neighbour o f ui

0, else
∀ i = 1, 2, .., n and ∀ j = 1, 2, .., m

′
(3)

A1

A1

A2

A3

A4

A5

U7

U1

U1

U4

U11

U5

U12

U1

U1

U9

U2

U3

U8

U6

U10

Figure 1. Example scenario.
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Figure 2. Vector representation for connected dominating set (CDS) shown in Figure 1.

5.2. Calculate the Fitness Vector

The formulation of the fitness function is a critical and important task in the optimization process,
as it helps for fast convergence with the optimum solution. To formulate the fitness function, we have
used two parameters, which are also considered in our previous work [37].

Dominating set θ value for the connected dominating set D given as: |CDSθ | =
(

∑m
′

j=1 |degj −
¯deg|θ

) 1
θ , where degj is the degree of each dominator anchor node in the set D and ¯deg is the mean of

all the degrees of the dominator in the set D. The calculation of allocation scheme value: |Alθ | =(
∑m

′

j=1 |deg
′
j − ζ|θ

) 1
θ considers that there are m

′
disjointed sets for m

′
anchor nodes present in the set

D, such that N(aj) ∩ N(ak) = ∅ and ∀ui ∈ N(aj), 1 ≤ j ≤ m
′

so that (ui, ai) ∈ E
′
. N() here represents

the neighborhood. deg
′
i is the valid degree of an anchor node aj, i.e., the number of unknown nodes

already allocated to the anchor node aj.
The objective of the problem defined in this paper is to identify an optimized CDS with minimum

Dθ and Alθ values. Therefore, the fitness function can be given as:
f (Vj) =

n− |D|
W1|CDSθ |+W2|Alθ |

W1 +W2 = 1, such that 0 <W1,W2 < 1
(4)

The linear combination of the two metrics CDSθ and Alθ is made to adjust the bias factorsW1

andW2, according to the network environment. The above equation emphasizes that to maximize
the fitness function for achieving optimum value, the denominator needs to be minimized and the
numerator needs to be maximized so that the overall fitness function will be maximized accordingly.
The experimented value of θ = 2, as it is analogous for an electro static field.

5.3. Reproduction in VBSO

The reproduction method in the VBSO algorithm primarily depends on creating cooperation
vectors. Multiple vectors in the search space are combined with vector operations to achieve the
cooperation vector.

The direct cooperation vector and differential cooperation vectors are used to create a cooperation
vector. The direct cooperation vector at the kth iteration is given by:

Vdir = w1·Vx + w2·Vy + w3·Vz + w4·Vb + w5·Vr, (5)

where Vx,Vy,Vz belongs to the initial population vectors, Vb is the best vector in the neighborhood,
and Vr is the random vector and w1 + w2 + w3 + w4 + w5 =1. These values are called cooperative
weighting coefficients (CWC). Figure 3 represents a direct cooperation vector with Vx and Vb which
actually outputs the global optimum (GO). Following the same line, Figure 4 represents another direct
cooperation vector with Vx, Vy, Vbm and Vr.
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Figure 3. Global optima with Vx and Vb.

Di2

Di1

GO

Vb

Vx

Vdir

Vr

Vy

Figure 4. Direct cooperation vector.

For the scenario of more than three initial population vectors, the selection of three among them is
another crucial part which depends on higher fitness values and with a higher probability of selection.
The probability is therefore given as:

P(Vj) =
f (Vj)

∑m′
j=1 f (Vj)

. (6)

The differential cooperation vector signifies the search around direct cooperation vector. It helps
the algorithm to pass local optimums and converge to global one, as shown in Figure 5. Direct
cooperation vectors provide a local solution, whereas the differential cooperation vector uses these
direct vectors to get the global optimal solution, which is as good or better than all the other feasible
solutions. To obtain the unknown global optimum, we have followed k iterations, in which if two
simultaneous iterations have output the same values of local optima, we have considered it the global
optimum. The differential cooperation vector (Vdi f f ) of the population is calculated by considering
proper portions of differential vectors of a current solution, for example Vc, given as:

Vdi f f = w6·(Vx −Vc) + w7·(Vy −Vc) + w8·(Vz −Vc) + w9·(Vb −Vc) + w10·(Vr −Vc) (7)

where w6 + w7 + w8 + w9 + w10 = 1 (8)

Figure 6 shows the generation of the cooperation vector obtained from direct and differential
cooperation vectors, which can be given as:

Vco = Vdi f f + Vdir. (9)
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In all Figures 3–7, the contour lines represent the cost function that depends on the fitness value
of the vectors.

D
i2

D
i1

GO

V
diff

V
dir

V
co

Figure 5. Differential cooperation vector creation.

Di2

Di1

GO

Vb

Vc

Vy

Vdiff

Figure 6. Generation of Vdi f f with initial population vectors.

5.4. Mutation

To increase the diversity of the population, mutation is applied to the initial population vectors.
A number of mutation operators have been suggested in Reference [38–40]. Applying direct and
differential cooperation implicitly provide mutation in the process. In addition, a second mutation is
also applied to transfer the search space origin to a point far enough from the current origin. A random
mutation probability pm is selected. A random number r is generated and then compared with pm.
The second mutation is applied if rand > pm and rand is in (0, 1). In the mutation process, the random
bits in a vector Vk are flipped to get the mutation vector Vm . The candidate offspring vector Vo f f is
obtained by the following equation, and also shown in Figure 7:

Vo f f = Vm + Vco. (10)
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D '
i2

D '
i1

GO

V
co

V
m

V
m

D
i2

D
i1

V
off

Figure 7. Candidate offspring generation with mutation vector.

5.5. Boundary Check

After the mutation, new offspring vectors are checked for the boundary condition so that all
the offsprings must belong to the search space. An invalid offspring can lead to ab uncoordinated
and invalidated search and the convergence will become a delay. Different methods are shown in
References [41,42]. We have used the boundary check with a fitness function. If the fitness function of
a vector in the current iteration is smaller than the fitness function of the best vector in the previous
iteration, then replace the current unfit vector with its parent vector. The formulation of this process is
given as:

i f f (Vj)i < f (Vbest)i−1 : f (Vbest)i = max( f (Vbest)i−1, replace current vector with parent (11)

For example, considering the scenario of Figure 2, the fitness value of the best solution is 5.89
(considering r = 2m and θ = 2 (analogy to electro static field). After reproduction and mutation,
we have got the offspring vector as in Figure 8.

0 0 1 1 0 10 0 0 0 0 0V
off

U
1 U

2
U

3
U

4 U
5

U
6

U
7

U
8

U
9 U

10
U

11
U

12

Figure 8. Offspring of the parent vectors shown in Figure 2.

The candidate offspring has a fitness value of 0.278, which is less than the previous best solution
of 5.89. Therefore, we need to replace this candidate with one of the parents of the previous iteration
by calculating the hamming distance. This vector Vo f f has a hamming distance of 3, 6, and 9 from the
initial parent vectors V1, V2, and V3, respectively. Thus, this candidate offspring will be replaced by
vector V1 that corresponds to A1. This process of retaining the parent of best solution helps to converge
faster to the global optimum.

5.6. Selection of Offsprings

The identification of the next iteration vectors requires a selection process for suitable offspring
vectors. Various methods of selection have been discussed in References [38,43,44]. In our proposed
approach, all the valid candidate offsprings are directly transferred to the next iteration. The overall
process of the vector-based optimization approach used in our purpose has been summarized in
Algorithm 2. The convergence process of the optimization method is depicted in the form of a
flowchart in Figure 9.
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Algorithm 2 VBSO Algorithm on CDS

1: procedure VECTOR ∨j, ∀, j = 1, 2, ..., m′

2: while f (Vj) does not change successive l iterations do
3: Calculate |CDSθ | = (∑m′

j=1 |degj − deg|θ) 1
θ

4: Calculate expected allocated neighbour values as: ζ = n
M2 πr2

5: Calculate the allocation value given as: |Alθ | = (∑m′
j=1 |deg′j − ζ|θ) 1

θ

6: Calculate f (Vj) =
n−|D|

W1|CDSθ |+W2|Alθ |
7: if f (Vj) does not change in simultaneously l iterations then
8: goto Step 15
9: else

10: Calculate direct and indirect cooperation vectors
11: Apply mutation
12: Check boundary condition
13: Selection of offsprings for next iteration
14: goto 6
15: return the current optimal solution
16: end if
17: end while
18: end procedure

Start

Initialize population vector

Select three vectors based on
maximum degree of connectivity

Calculate CDS and Alθ θ

Calculate f(V)j

If f(Vj) changes in
simultaenous l

iterations

Calculate direct and
indirect cooperation

vectors

Mutation operation

Boundary checking

Offspring selection

Return the current
optimal solution

Stop

yesno

Figure 9. Flowchart of convergence process.

6. Localization of Unknown Nodes

Once the optimized CDS is achieved, we can apply any trilateration method to estimate the
location of an unknown node ui. The estimated distance d̄j from an unknown node ui to each
dominator anchor node in optimized CDS is given by the respective Euclidean distances between
them, as shown below.

d̄j
2
= (xj − x̄)2 + (yj − ȳ)2| ∀ j = 1, 2, .., m

′
, (12)

where (x̄, ȳ) is the estimated location of an unknown node of ui.
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The calculated distance with relative mobility becomes:

dj = d̄j + RMa,u
t . (13)

The above equation for j = 1, 2, .., m
′

can be transformed into the AX = b form, where:

A =

∣∣∣∣∣∣∣∣∣
(x1 − xm

′ ) (y1 − ym
′ )

. .

. .
(xm

′ − 1 − xm
′ ) (ym

′ − 1 − ym
′ )

∣∣∣∣∣∣∣∣∣ (14a)

X =

∣∣∣∣∣x̄ȳ
∣∣∣∣∣ (14b)

b =
1
2

∣∣∣∣∣∣∣∣∣∣∣∣

d2
1 − d2

m′
+ d2

m′u
− d2

1u
d2

2 − d2
m′

+ d2
m′u
− d2

2u
. .
. .

d2
m′−1

− d2
m′

+ d2
m′u
− d2

(m′−1)u

∣∣∣∣∣∣∣∣∣∣∣∣
(14c)

Equation AX = b is solvable by the standards of the least-square [45] solution to provide the
value of x given by:

x̄ = (AT A)
−1

ATb. (15)

The problems identified in the existing algorithms as stated in the section of related work have
been addressed by our proposed solution and summarized in Table 1.

Table 1. Addressing problem with proposed solution.

Existing Problems Solution in the Proposed Algorithm

Algorithms are not load-balanced and, therefore,
partial exhaustion of the network exists.

Load allocation attribute has been used with CDSθ

and Alθ .

Redundancy of clustering nodes make the process
complex and also causes heavy functioning load
on some particular nodes.

Redundancy is removed as the CDS is maintained
only by anchor nodes having a maximum degree,
so that other nodes can be at rest and can be used
later.

Validation for overall mobile (sensor and anchor:
Both are mobile) environment is not ensured.

In the proposed solution, we have considered all
anchor nodes and sensor nodes to be mobile and
therefore support full mobility of the network.

7. Result and Analysis

The proposed algorithm has been simulated in NS-2 with the following parameters enlisted in
the Table 2.

Table 2. Simulation parameters.

Simulation Area 100 × 100 m2

No. of unknown nodes 100 to 200

No. of anchor nodes 10 to 40

Mobility Random

Population size 10 to 40

Mutation probability 0.2
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The performance of the algorithm has been analyzed in the terms of localization error and network
lifetime and number of iterations used to provide the global optimum solution. The location estimation
error is defined as a squared error of the estimation and is given by:

ei =
m
′

∑
j=1

(dj − d̄j)
2, f or j = 1, 2, .., m

′
, (16)

where d̄j is the estimated distance and dj is the true distance between unknown node ui and anchor
node aj. The average error is given as:

eavg =
∑m

′

j=1 ei

m′
(17)

The statistical values of localization errors for our different simulation environment are shown
in Table 3. Results are shown for the variable number of anchor nodes ranging from 10 to 40, with
unknown nodes ranging from 100 to 200. The table also represents the number of anchor nodes used in
the VBSO-optimized CDS, by which the given number of unknown nodes has been localized. The result
signifies the fact that only 50% to 57% of all the anchor nodes are used. This means that the unused
anchor nodes can save their energy for future tasks, which actually elongates the network lifetime.

Table 3. Statistical values of experimentation.

No. of Anchor Nodes No. of Unknown Nodes Performance of Proposed Algorithm

Average Localization Error Optimized CDS Size Comp. Time (s)

10 100 0.0291 5 4.768
10 120 0.0338 5 6.984
10 140 0.0379 6 7.883
10 160 0.0534 7 9.111
10 180 0.0549 7 10.254
10 200 0.0588 7 13.532
20 100 0.0277 8 6.777
20 120 0.0279 8 7.19
20 140 0.0388 10 10.657
20 160 0.0397 10 12.097
20 180 0.0444 11 14.541
20 200 0.0487 11 17.234
30 100 0.0276 11 8.675
30 120 0.0295 12 9.892
30 140 0.0387 13 12.01
30 160 0.0455 13 13.542
30 180 0.0487 14 13.987
30 200 0.0499 14 16.001
40 100 0.0243 16 10.278
40 120 0.0377 16 13.985
40 140 0.0487 16 14.146
40 160 0.0489 20 15.675
40 180 0.0502 20 16.999
40 200 0.0548 22 19.333

The results of the average localization error have also been compared with three recent
optimization-based approaches, as shown in References [29,32,37]. The comparison results are
shown in Figure 10. The results emphasize that our proposed approach reduces the average error
for localization of unknown nodes. We have observed that with the increasing number of anchor
nodes, the proposed algorithm and the work in Reference [37] have a marginal difference of average
localization error. However, the advantage of the proposed algorithm lies with the number of iterations
for obtaining the global optimum, as shown in Figure 11. The optimization algorithms consider the
number of iterations in searching the global optima as an important performance metric. We have
compared the number of iterations executed by varying the number of anchor nodes and unknown
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nodes. Figure 11 shows the results of comparison, which signify that our proposed algorithm is faster
in providing the global optimum value with a lower number of iterations of the optimization process.
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Figure 10. Average localization error comparison.

The objective of the proposed algorithm is to elongate the network lifetime. Therefore, we have
also evaluated the performance of the proposed algorithm in terms of residual energy. The proposed
algorithm uses a linear energy model. The overall residual energy of the proposed optimized CDS
depends on the constituents, i.e., the dominator anchor nodes. We have considered a timeline, say t1
to t2, for this energy consumption measurement. Residual energy in time t is defined by omitting
consumed energy in 4t from the initial battery power in t−4t. Thus, the energy consumption is
determined in4t. Therefore, the residual energy equation is given as:

Eres =
∑
|D|
j=1 Einit(t−4t)j − Econsmp(t−4t)j

|D| (18)

Erespercentage(%) =
Eres

Einit
× 100 (19)

With the minimum usage of message exchange between anchor nodes and unknown nodes and
the handing over the optimization and localization tasks on BS, our proposed approach significantly
improves the residual energy of the overall network scenario. Figure 12 describes the result for the
network lifetime comparison. The data are represented by varying the anchor nodes from 10 to 40.
The data are plotted for a number of unknown nodes vs. the percentage of residual energy. In all the
circumstances as shown in Figure 12, the percentage of residual energy for our proposed algorithm is
higher than the other algorithms in comparison. Moreover, it shows an effective point for our proposed
algorithm: With the increasing number of anchor nodes, the energy residual amount also increases.
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This signifies that the load is balanced and distributed, for which overall residual energy increases.
Furthermore, we have analyzed the complexity of algorithms, which are compared in Table 4, where
m is the number of anchor nodes used for localization and n is the number of unknown nodes.
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Figure 11. Comparison of iteration numbers with varying anchor nodes and unknown nodes.
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Figure 12. Residual energy comparison.

Table 4. Complexity comparison.

Algorithms Complexity

De S Ao et al. [29] O(m2 + n)
Zeng et al. [32] O(mn + n)

Gulshan et al. [37] O(mn + log2n)
Proposed Algorithm O(nm logn)

8. Conclusions

In the present study, a novel algorithm is proposed to optimize anchor nodes in CDS. In this
case, the algorithm used random mobility for both the anchor as well as unknown nodes and BS
was considered to perform the major tasks, such as optimization of CDS, localization with optimized
CDS, etc. The vector-based swarm method used for optimization process converges to the global
optima rather than the local optima. By keeping anchor nodes and unknown nodes to a minimum
working level, traffic overload in the network and message-processing functions are substantially
reduced. The localization process is executed with a transformation matrix of nonlinear equations
and applying the standard least-square method. The simulated results were compared with recent
algorithms. The accuracy and network lifetime are approximately 30% and 67%, respectively, better
than the other compared approaches. This algorithm can be used in a dynamic environment, as it
converges to the global optimum solution with a lower number of iterations. Additionally, the method
is scalable and works with different network sizes, which makes it adaptable to various applications.
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