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Abstract: The effects of oxidative aging on the static and dynamic properties of nitrile rubber at the
molecular scale were investigated by molecular dynamics simulation. The aged nitrile rubber models
were constructed by introducing hydroxyl groups and carbonyl groups into rubber molecular chains
to mimic oxidative aging. The static and dynamic properties of the unaged and aged nitrile rubber
under different conditions were evaluated by mean square displacement, self-diffusion coefficients,
hydrogen bond, fractional free volume, radial distribution function, cohesive energy density and
solubility parameter. The results show that the elevated temperature intensified significantly the
mobility of rubber molecular chains and fractional free volume, while the compressive strain dis-
played the opposite effect resulting in packing and rearrangement of rubber chains. The introduction
of hydroxyl groups and carbonyl groups enhanced the polarity, intermolecular interactions, the
volume and rigidity of molecular chains, implying weaker mobility of molecular chains as compared
to unaged models. The compressive strain and oxidative aging both decreased the fractional free
volume, which inhibited gaseous and liquid diffusion into the rubber materials, and slowed down
the oxidative aging rate. This study provides insights to better understand the effect of molecular
changes due to oxidative aging on the structural and dynamic properties of rubber materials at the
molecular level.

Keywords: nitrile rubber; oxidative aging; molecule dynamics simulation; hydroxyl groups; car-
bonyl groups

1. Introduction

Nitrile rubber (NBR) has been widely used as seals in sealing structures of hydraulic
systems [1], due to its excellent oil resistance and mechanical properties. However, under
practical service conditions, the rubber seals are often subjected to thermal cycles, oxygen,
chemical media and mechanical stress leading inevitably to deterioration in chemical
structures and mechanical properties [2–5]. With increasing service time, the rubber seals
gradually lose elasticity which can lead to sealing failures and consequent leakage of gases
and liquid [6–9].

The degradation mechanism of NBR under high temperature, chemical medium,
radiation and stress has been widely studied for decades [10–14]. These studies indicate
that the degradation mechanism of NBR includes physical reactions and chemical reactions,
leading to deterioration in physical and mechanical properties [15]. The physical reactions
consist of migration and volatilization of small molecular additives, creep and relaxation of
rubber molecular chains [16,17]. The chemical reactions are made up of oxidation reactions
such as crosslinking reactions, chain scission reactions and formation of oxidation products,
which are mainly responsible for the degradation of NBR [14,18–20]. During the oxidative
aging process, oxidation reactions occur leading to the formation of oxidation products
such as hydroxyl groups, carbonyl groups and hyperoxide [21]. The formation of oxygen-
containing groups enhances the polarity of rubber molecular chains, which seriously affects
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intermolecular interaction between rubber chains, energy distribution, and the mobility and
flexibility of rubber chains, resulting in obvious changes in physical and chemical properties
of NBR [22,23]. Moreover, the formation of polar groups in rubber chains may have positive
or negative effects on diffusion behaviors of oxygen and other chemical species into the
rubber materials, which may promote or inhibit degradation rates [24]. Many researchers
focus on understanding the changes in rubber materials at the molecular level in an
indirect or qualitative way, especially for oxidation products, associated with physical
or mechanical properties by advanced experimental characterization methods, such as
Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS)
and nuclear magnetic resonance spectroscopy (NMR) [25–27]. However, the molecular
changes caused by oxidative aging on the static and dynamic characteristics of NBR at the
molecular level still remain relatively unexplored.

In recent years, molecular dynamics (MD) simulation has been employed as an effec-
tive theoretical tool to comprehend quantitatively the structure–performance relationships
of polymer materials at the molecular scale, especially in modification of polymers and dif-
fusion of small molecules in polymers [28,29]. Although the molecular dynamics simulation
methods were preliminarily applied to estimate the thermal oxidative aging mechanism
of rubber materials [30–32], the chemical reactions such as oxidation products during the
aging process are not fully considered by researchers. For example, Wang et al. [30] found
that rubber at low compressive strain possesses high fractional free volume, molecular
chain movement, and ozone permeability by molecular dynamics simulation. Zhi et al. [31]
studied the heterogeneous oxidative aging and viscoelastic performance of rubber based
on multi-scale simulation. The molecular dynamics simulation was used to investigate the
permeability of oxygen in natural rubber. Hence, the influence of oxidative aging on the
structural and dynamic properties of nitrile rubber requires further investigation.

In our previous studies, degradation behavior and the mechanism of rubber seals
under actual service conditions such as elevated temperature, hydraulic oil and compres-
sive strain were systematically investigated by accelerated tests [33,34]. It was found that
the chemical reactions during the aging process, especially the oxidation products, pre-
sented significant effects on degradation in physical and mechanical properties of rubber
seals. Thus, this work focuses on the influence of the oxidation products (hydroxyl group
and carbonyl group) on the static and dynamic properties of NBR by using molecular
dynamics simulation. Additionally, the aged NBR models were constructed on the ba-
sis of the oxidative rubber chains modified by oxidation products. After the molecular
dynamics simulations, the influences of oxidative aging of rubber molecular chains on
static and dynamic performances of NBR at different temperatures under uncompressed
and compressed state at molecular scale were investigated by analyzing the mean square
displacement (MSD), self-diffusion coefficients, hydrogen bonds, fractional free volume,
radial distribution function and cohesive energy density.

2. Simulation Models and Methods

To study the effects of oxidative aging on nitrile rubber properties at the molecular
level, unaged and aged nitrile rubber models were constructed by using the Forcite and
Amorphous cell modules of Materials Studio 8.0 softwares, respectively. The COMPASS
(condensed-phase optimized molecule potentials for atomistic simulation studies) force
field was used for describing molecule interactions and intermolecular potential. The COM-
PASS force field is widely suitable for most common organics, small inorganic molecules
and polymers, and can accurately predict the structural and thermophysical condensed
phase properties of the related materials under a wide range of temperature and pres-
sure conditions. The electrostatic and van der Waals forces were calculated by using the
atom-based summation method. The Maxwell−Boltzmann profiles were used to set the
initial velocities. Firstly, the repeating units of butadiene and acrylonitrile were constructed,
respectively, shown in Figure 1. Then, the butadiene and acrylonitrile were copolymerized
to form a nitrile rubber molecule chain with an acrylonitrile content of 35%, containing 50
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repeating units. The chemical structures of the nitrile rubber molecule chain is shown in
Figure 2. Secondly, an amorphous cell of the unaged NBR model was constructed with five
molecule chains.
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Figure 1. The repeating units of butadiene (a) and acrylonitrile (b).

Figure 2. The chemical structure of the nitrile rubber molecule chain.

Previous studies indicated that the oxidation of rubber chains was mainly responsible
for the performance degradation, accompanied by the formation of oxygen-containing
functional groups [11,16,22,33–37]. The hydroxyl group and carbonyl group have been
identified as major functional groups, which were formed during the oxidative aging
process. The formation of these oxidation products can lead to changes in the molecular
structure of the polymer matrix, which further results in degradation of physical and
mechanical properties of rubber materials. Therefore, this study adopted the introduction
of the hydroxyl groups and carbonyl groups in the molecule chains to modify the rubber
chains in specified locations, representing oxidative aging effects. Figure 3 presents the aged
rubber molecule chains modified by hydroxyl groups and carbonyl groups, respectively.
Then, three types of aged NBR model were constructed, respectively, shown in Figure 4. In
this study, the unaged NBR model is defined as “NBR”. The aged NBR model modified
by hydroxyl groups is defined as “OH-NBR”. The aged NBR model modified by carbonyl
groups is defined as “CO-NBR”. The aged NBR model modified by hydroxyl groups and
carbonyl groups together is defined as “OH-CO-NBR”. The degree of polymerization
values, DP, the total number of chains, Nchain, the total number of atoms, Natom, and cell
lengths, for the constructed models are given in Table 1. Although the methods employed in
this work can be used to investigate the effects of hydroxyl groups and carbonyl groups on
nitrile rubber properties, it is still impossible to directly simulate the real thermal-oxidative
aging including oxidation products, crosslinking, and chain scission. Coupled effects of
the oxidation products, crosslinking, and chain scission should be considered in further
studies by introducing aging information.

In our previous publications [33,35], the effects of elevated temperature and compres-
sion deformation on physical and chemical properties of nitrile rubber were investigated.
This study focuses on how the elevated temperature and compression deformation influ-
ence the molecular structure of the aged NBR. A 30% compressive strain was respectively
applied to the unaged and aged NBR models based on the actual compression state in the
experimental study [35]. The compression deformation was applied along the Z-direction.
Additionally, the X-direction and Y-direction were constrained to change shape and size of
NBR models.

For the unaged and aged NBR models, the smart minimizer algorithm was applied to
minimize the amorphous cells at 298.15 K for 1,000,000 steps, until a convergence value of
1.0 × 10−5 Kcal mol−1 Å−1 was reached. Then, the cells were annealed at 0.1 MPa from
600 K to 300 k for 200 ps (picosecond). After that, 200 ps of NPT (constant number of
particles, pressure, and temperature) simulation was conducted at 300 K and 2 GPa, 1 GPa,
0.5 GPa to further relax the rubber chains, respectively. Then, 500 ps of NVT (constant
number of particles, volume, and temperature) simulation was carried out at 300 K. Sub-
sequently, 500 ps of NPT simulation was conducted at 300 K and 101 KPa to obtain the
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stable structure. The simulated densities of the unaged NBR models were obtained and
are given in Table 1. The simulated densities agreed well with the experimental values
(
∣∣ρMD − ρExp

∣∣ < 0.1 g/cm3), which proved the reliability of models [28]. The temperature
and pressure were controlled by the Andersen thermostat [38] and Berendsen barostat [39],
respectively. Finally, a 500 ps NVT product run was carried out at 101 kPa and 298.15 K
(25 ◦C), 343.15 K (70 ◦C), 363.15 K (90 ◦C) and 383.15 K (110 ◦C), respectively, to obtain
finally a stable structure and analyze the thermodynamic properties. These temperatures
were selected on the basis of our previous experimental study [35]. Then, the radial distri-
bution function (RDF), cohesive energy density (CED), the numbers and types of H-bonds,
the fractional free volume (FFV), and radial distribution function (RDF) were estimated by
further analysis of the equilibrated cells.

Figure 3. The aged rubber molecule chains modified by oxidation products: (a) hydroxyl groups;
(b) carbonyl groups; (c) hydroxyl groups and carbonyl groups.

Figure 4. The aged nitrile rubber (NBR) model: (a) aged NBR model modified by hydroxyl groups
(OH-NBR); (b) aged NBR model modified by carbonyl groups (CO-NBR); (c) aged NBR model
modified by hydroxyl groups and carbonyl groups (OH-CO-NBR).
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Table 1. Details of the simulation models.

Simulation Model DP Nchain Natom ρMD (g/cm3) ρExp (g/cm3) Cell Lengths (Å)

NBR model 50 5 2255 1.06 1.02 27.58
OH-NBR model 50 5 2295 1.09 - 27.71
CO-NBR model 50 5 2215 1.12 - 27.45

OH-CO-NBR
model 50 5 2255 1.11 - 27.60

3. Results and Discussion
3.1. Mean Square Displacement (MSD) and Self-Diffusion Coefficients

To find out the effects of temperature, compression deformation and oxidative aging
on the mobility of nitrile rubber molecule chains, the MSDs of rubber molecule chains
in unaged and aged NBR models under different conditions were calculated, as shown
in Figure 5. The results show that the MSDs of rubber chains increased with increasing
simulation time, which is attributed to the motion of molecule chains. Besides, under the
free state, the higher the temperature was, the faster the MSD increased, which indicates that
high temperatures could significantly promote the mobility of chains [40–42]. Furthermore,
the value of MSD under the compression state was obviously lower than that of the chains
under the free state, even at higher temperature, implying that mobility of molecule chains
was greatly restricted under the compression state. For the unaged and aged NBR models,
a similar change tendency in MSD of the uncompressed and compressed samples was
observed, and the value of MSD of the molecule chains in unaged NBR models was greater
than that in aged NBR models. The MSD of the molecule chains in the OH-CO-NBR model
presented the smallest value among the aged NBR models.

To further analyze the influence of hydroxyl groups and carbonyl groups on motion
ability of rubber chains, the MSD was used to estimate self-diffusion coefficients by using
the Einstein equation [30,39,43,44], which is expressed as:

D =
1

6N
lim
t→∞

d
dt

N

∑
i=1

〈
|ri(t + t0)− ri(t0)|2

〉
(1)

where N is the number of molecules, D is the diffusion coefficient of rubber molecule chains,
ri(t0) is the displacement at t0, ri(t + t0) is the displacement at t0 + t, and

MSD(t) =
1
N

N

∑
i=1

〈
|ri(t + t0)− ri(t0)|2

〉
(2)

Table 2 shows the self-diffusion coefficients of rubber chains under different conditions.
The results indicate that self-diffusion coefficients of unaged and aged NBR chains increased
with temperature. Thus, the self-diffusion coefficients of rubber chains in different models
conform to the order: NBR > OH-NBR > CO-NBR > OH-CO-NBR, which indicates that
the mobility of the unaged rubber molecular chains was stronger than that of the aged
rubber chains.

Table 2. The self-diffusion coefficients of unaged and aged NBR chains under different conditions.

Temperature/K
Self-Diffusion Coefficient (10−7 cm2 s−1)

NBR OH-NBR CO-NBR OH-CO-NBR

298.15 1.83 1.41 1.09 0.94
383.15 4.66 4.14 3.98 2.72

Due to the addition of hydroxyl groups and carbonyl groups to the molecular chains,
the energy and volume space required for the movement of the molecular chains is greater
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than that of the unaged rubber molecular chains, leading to the decrease in mobility.
The decrease in MSD and self-diffusion coefficient of rubber molecular chains caused
by oxidation aging were mainly due to the increase in volume and rigidity of rubber
molecular chains.

Furthermore, the MSDs and self-diffusion coefficients of rubber molecular chains
under the compression state displayed lower value compared to those in the uncompressed
state. However, the MSDs of the compressed rubber molecular chains showed no obvious
changes at low and high temperature, implying that the application of compressive strain
resulted in the packing and rearrangement of molecular chains, and significantly limited
the mobility of rubber molecular chains.

Figure 5. Cont.
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Figure 5. Changes in mean square displacement (MSD) of rubber molecule chains in unaged and
aged NBR models under different conditions: (a) NBR; (b) OH-NBR; (c) CO-NBR; (d) OH-CO-NBR.

3.2. Hydrogen Bond

During the oxidative aging process, the oxidation functional groups that have strong
polarity were formed in the rubber molecular chains. In this study, the hydroxyl groups and
carbonyl groups were introduced in the rubber molecular chain to represent the oxidative
aging of rubber molecular chain. The introduction of the polar groups contributed to
the formation of strong polar interaction including non-bonded interaction and hydrogen
bonds among the oxidized rubber chains, which affected the chain dynamics and structure
properties of the rubber [29]. Therefore, it is necessary to analyze the influence of the type
and number of hydrogen bonds in the rubber models.

Figure 6 shows the types of H-bond in the aged rubber model. The first H-bond (A) or
O–H...N (Figure 6a), was formed between the hydroxyl group and the nitrile group. The
second H-bond (B) or O–H...O (Figure 6b), was formed between the hydroxyl group and
the hydroxyl group. The third H-bond (C) or O–H...O (Figure 6c), was formed between the
hydroxyl group and the carbonyl group. By further analysis, it was found that the H-bonds
occurred only in the OH-NBR model and OH-CO-NBR model, shown in Figures 7 and 8.
Meanwhile, Table 3 shows the types and number of H-bonds in aged NBR models. The
results show that the number of H-bonds (A) in the uncompressed OH-NBR model and
OH-CO-NBR model decreased with increasing temperature, but presented the opposite
trend in the compressed state. Additionally, the number of H-bonds (B) in the OH-NBR
model and OH-CO-NBR model displayed no obvious changes with temperature. The
H-bond (C) only existed in OH-CO-NBR model. Moreover, the number of H-bonds (C) in
the uncompressed OH-CO-NBR model showed a slight increase with temperature. These
phenomena illustrate that the elevated temperature destroyed the H-bond (A) and H-bond
(B) in the uncompressed state. This is mainly because the elevated temperature promoted
the mobility of molecular chains and increased the chain space, until the intermolecular
distance could no longer meet the conditions to form the hydrogen bond. However, the
high temperature promoted the formation of the H-bond (A) under the compression state
due to the sufficient energy supplied by elevated temperature. However, at 298.15 K, the
number of H-bonds (A) in the compressed state was less than that in the uncompressed
state. The results demonstrate that compressive strain destroyed the hydrogen bonds
and limited the formation of new hydrogen bond, due to the lower mobility of rubber
molecular chains under the coupled effect of lower temperature and compressive strain,
which was explained by the results of the MSD and self-diffusion coefficient of rubber
molecular chains. However, at 383.15 K, the changes in the number of H-bonds (A) showed
an adverse trend, implying that the coupled influence of compressive strain and elevated
temperature facilitates the formation of H-bond (A). Nevertheless, the results of the MSD
and self-diffusion coefficient of rubber molecular chains at 383.15 K in the compressed state
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displayed a lower mobility of rubber molecular chains. Thus, the increase in the number of
H-bonds (A) was attributed to the fast motion of local segments and side groups caused
by the high temperature. The formation of H-bonds strengthened the interaction force
between molecular chains, and further restricted the movement of rubber molecular chains.

Figure 6. The types of H-bond in the aged rubber model: (a) H-bond (A) or O–H...N; (b) H-bond (B)

or O–H...O (–OH); (c) H-bond (C) or O–H...O (–CO).

Figure 7. Two types of H-bond in OH-NBR model.

Figure 8. Three types of H-bond in OH-CO-NBR model.
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Table 3. The types and number of H-bonds in aged NBR models.

Type of Hydrogen Bond

OH-NBR OH-CO-NBR

Uncompresssed Compressed Uncompresssed Compressed

298.15 K 383.15 K 298.15 K 383.15 K 298.15 K 383.15 K 298.15 K 383.15 K

A 26 20 22 26 18 13 14 16
B 6 4 5 5 2 2 2 2
C 0 0 0 0 2 5 2 2

3.3. Fractional Free Volume (FFV)

Fractional free volume (FFV) can be defined as the fraction of the volume not occupied
by the polymer, which is often used to estimate the available space for free movement of
rubber chain and the efficiency of rubber chain packing. The FFV can be calculated by the
following equation:

FFV = 1− V0

VS
(3)

where the occupied volume V0 = 1.3 Vw, Vw is the van der Waals’s volume, and vs. is the
specific volume.

Figure 9 shows the Connolly volume morphology in the uncompressed and com-
pressed states. The blue and gray regions represent the free volume and the occupied
volume, respectively. Figure 10 presents the FFV of the unaged and aged NBR models in
the uncompressed and compressed states. The FFV of rubber models all increased with
increase in temperature, and the free volume fraction of rubber in the uncompressed state
presented a bigger value than that in the compressed state. Furthermore, the FFV of the
unaged NBR models was greater than that of the aged NBR models. Additionally, the FFV
value of the aged models conforms to the order: FFVOH-NBR > FFVCO-NBR > FFVOH-CO-NBR.

Figure 9. The Connolly volume morphology of NBR model in the uncompressed (a) and compressed
(b) states, respectively (the blue and gray regions represent the free volume and the occupied
volume, respectively).

The volume of rubber models is mainly composed of the volume of the rubber chain
and the free volume caused by thermal movement of rubber chain. With increase of tem-
perature, the conformational entropy increased and chain segments motioned significantly,
leading to an increase of FFV [30]. Additionally, the application of compressive strain
limited the thermal movement of the rubber molecular chains, resulting in efficient molecu-
lar packing and a decrease of FFV. When the hydroxyl groups and carbonyl groups were
introduced in the rubber molecular chains, these polar groups contributed to the formation
of strong polar interactions among molecule chains. Moreover, the introduction of the
polar groups increased the rigidity of rubber chains, and promoted tight packing of rubber
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molecular chains, which led to decrease in FFV. These results indicate that the compressive
strain and oxidation functional groups both have a negative influence on the changes
of FFV.

Figure 10. The fractional free volume (FFV) of the unaged and aged NBR models in the uncompressed
(a) and compressed (b) state.

3.4. Radial Distribution Function (RDF)

The radial distribution function (RDF) is defined as the probability of finding another
atom at a distance from a specific atom, which can be used to estimate the interactions
between the components and static properties of a rubber model. The RDF can be calculated
by the following equation [29]:

g(r) =
1

ρB

1
NA

NB

∑
i

NA

∑
j

δ
(
rij − r

)
4πr2 (4)

where r is the distance, rij is the coordinate of the atom; NA and NB are the numbers of atom
A and B; ρB is the average density of the atom B at a given distance r as a center of atom A.

Figures 11–15 show the RDFs of carbon atoms (C–C) in the unaged and aged NBR
models under different conditions, respectively. The peaks at 1.10 Å, 1.33 Å and 1.53 Å
can be assigned to the bond length of C–H, C=C and C–C, respectively [31,39]. The peak
at 0.94 Å belongs to the bond length of O–H. Besides, when the distance is beyond 3.5 Å,
no obvious peaks appear, implying that the models present long range disorder and the
models are consistent with amorphous structure, which confirms the effectiveness of the
constructed models. Additionally, the peak value of RDF decreased slightly with increase
of temperature, indicating that the elevated temperature resulted in stronger mobility,
an increase in flexibility and a decrease in the order of rubber chains. Furthermore, the
peak value of RDF in the compressed state displayed a smaller value than that in the
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uncompressed state, implying that the compressive strain led to an increase in disorder
and chain stacking. When the hydroxyl groups and carbonyl groups were used to modify
the rubber molecular chains, it was found that the peak value of RDF showed a slight
decrease in aged rubber models. This is mainly because the introduction of hydroxyl
groups and carbonyl groups increased the intermolecular forces between molecular chains,
and decreased the segment motion and flexibility of molecular chains.

Figure 11. The molecule-molecule radial distribution functions (RDFs) of carbon atoms (C–C) in the
NBR model in the uncompressed (a) and compressed (b) states.

Figure 12. Cont.
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Figure 12. The radial distribution functions (RDFs) of carbon atoms (C–C) in the OH-NBR model in
the uncompressed (a) and compressed (b) states.

Figure 13. The radial distribution functions (RDFs) of carbon atoms (C–C) in the CO-NBR model in
the uncompressed (a) and compressed (b) states.
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Figure 14. The radial distribution functions (RDFs) of carbon atoms (C–C) in the OH-CO-NBR model
in the uncompressed (a) and compressed (b) states.

Figure 15. Cont.
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Figure 15. The radial distribution functions (RDFs) of carbon atoms (C–C) in the unaged and aged
NBR model at 298.15K in the uncompressed (a) and compressed (b) states.

3.5. Cohesive Energy Density (CED) and Solubility Parameter (δ)

As defined by Hildebrand and Scott [45], cohesive energy density (CED) can be used
to characterize the strength of attractive interactions representing intermolecular force
including van der Waals force and Coulomb force, and the solubility parameter (δ) is
simply the square root of the cohesive energy density (CED).

Table 4 shows the cohesive energy density and solubility parameters of different oxidative
aging models. The results indicate that the CED and solubility parameters of the aged model
were higher than those of the unaged model, due to the stronger intermolecular interaction
among molecular chains caused by the polar groups. Moreover, the CED and solubility
parameters of the aged models conform to the order: OH-CO-NBR > OH-NBR > CO-NBR,
due to the effect of strong polar interaction and the hydrogen bonds. When compressive
strain was applied to the unaged and aged models, it was found that the CED of the
rubber model in the compressed state was lower than that of the rubber model in the
uncompressed state, implying that compressive strain weakened the intermolecular force.
This is mainly because the compressive strain destroyed the strong polar interaction and
hydrogen bond among the rubber molecular chains.

Table 4. The cohesive energy density (CED) and solubility parameters of the unaged and aged
NBR models.

Compression Set Rubber Model NBR OH-NBR CO-NBR OH-CO-NBR

0
CED (108 J/cm−3) 3.07 3.52 3.38 3.62
δ (J/cm−3)1/2 17.51 18.77 18.41 19.02

30%
CED (108 J/cm−3) 2.41 2.96 2.67 2.84
δ (J/cm−3)1/2 15.53 17.20 16.35 16.85

4. Conclusions

Aged NBR models were constructed by the introduction of hydroxyl groups and
carbonyl groups in rubber molecular chains to investigate the influence of oxidative aging
on the static and dynamic characteristics of nitrile rubber using MD simulation. The
following conclusions can be drawn:

1. The MSD and RDF results show that elevated temperature promoted significantly the
mobility of rubber chains, while the compressive strain displayed the opposite effect.
The introduction of hydroxyl groups and carbonyl groups weakened the mobility of
rubber molecular chains due to increases in polarity, intermolecular force, volume
and rigidity of rubber chains.

2. Hydrogen bonding analysis results demonstrate that the interaction forces including
the strong polar interaction and hydrogen bond among chains were intensified due to
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the introduction of hydroxyl groups and carbonyl groups. In the uncompressed state,
high temperature destroyed the formation of H-bonds (A) or O–H...N. The increase
in cohesive energy density of the aged NBR models also reflected the formation of
interaction forces.

3. The fractional free volume results indicate that the fractional free volume increased
with increasing temperature, whereas the compressive strain and the introduction of
oxidation functional groups decreased the fractional free volume.
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