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Energy balance plays an important role in the control of reproduction. However, the cellular
and molecular mechanisms connecting the two systems are not well understood especially
in teleosts. The hypothalamus plays a crucial role in the regulation of both energy bal-
ance and reproduction, and contains a number of neuropeptides, including gonadotropin-
releasing hormone (GnRH), orexin, neuropeptide-Y, ghrelin, pituitary adenylate cyclase-
activating polypeptide, α-melanocyte stimulating hormone, melanin-concentrating hor-
mone, cholecystokinin, 26RFamide, nesfatin, kisspeptin, and gonadotropin-inhibitory hor-
mone.These neuropeptides are involved in the control of energy balance and reproduction
either directly or indirectly. On the other hand, synthesis and release of these hypothala-
mic neuropeptides are regulated by metabolic signals from the gut and the adipose tissue.
Furthermore, neurons producing these neuropeptides interact with each other, providing
neuronal basis of the link between energy balance and reproduction. This review summa-
rizes the advances made in our understanding of the physiological roles of the hypothalamic
neuropeptides in energy balance and reproduction in teleosts, and discusses how they
interact with GnRH, kisspeptin, and pituitary gonadotropins to control reproduction in
teleosts.
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INTRODUCTION
A close connection between energy balance and reproduction has
been well documented in mammals (1). Energy balance is main-
tained by a process that controls food consumption, energy expen-
diture, and energy storage. A number of hypothalamic neuropep-
tides including orexin, ghrelin, neuropeptide-Y (NPY), melanin-
concentrating hormone (MCH), pituitary adenylate cyclase-
activating polypeptide (PACAP), proopiomelanocortin (POMC)-
derived peptides, cholecystokinin (CCK), chicken gonadotropin-
releasing hormone-II (cGnRH-II), 26RFamide (26RFa), galanin
(GAL), and cocaine- and amphetamine-regulated transcript
(CART) have been implicated in the regulation of feeding behavior
and energy balance. On the other hand, peripheral hormones such
as leptin and ghrelin provide information about the availability of
stored metabolic foods.

Initiation of reproduction is affected by the amount of body
energy reserves and is responsive to diverse metabolic factors.
The neuroendocrine mechanisms responsible for the association
between energy balance and fertility are represented by metabolic
hormones and neuropeptides that affect the hypothalamic center
controlling the expression and release of gonadotropin-releasing
hormone (GnRH) (2, 3). Therefore, adequate body energy stores
are crucial for full activation of the hypothalamus–pituitary–
gonadal (HPG) axis at puberty and its proper functioning in
adulthood (4). Generally high amount of food supply favor repro-
duction, while low food supply inhibits the reproductive system
(1). During energetic challenges, the physiological mechanisms
that partition energy into various activities tend to favor the
processes for the survival of the individual over the processes for

growth, longevity, and reproduction (5). Therefore, the reproduc-
tive system is suppressed by energetic challenges. At the same time
it is also true that when the reproductive system is highly acti-
vated, animal primates reproduction rather than feeding. Many
factors such as starvation, eating disorders, excessive exercise, cold
exposure, and lactation act on both food intake and reproduction
by increasing hunger and/or food ingestion and by suppressing
reproductive processes (5, 6).

Most feeding-related neuropeptides in mammals have also been
identified in fish species (7), suggesting that the regulatory system
of feeding has been well conserved from fish to mammals. On
the other hand, as the links between energy balance and repro-
duction have been demonstrated in several vertebrates (8), this
might also exist in teleosts. Indeed, seasonal changes in feeding
often coincide with spawning migration and reproduction in fish,
suggesting association between nutrition and reproduction (9).

This review focuses on the role of the neuropeptides that reg-
ulate feeding and energy balance on reproduction in teleosts, and
discusses if the metabolic control of reproduction is conserved
from fish to mammals.

REGULATION OF REPRODUCTION IN TELEOSTS
In teleosts, as in other vertebrates, reproduction is coordinated
by the HPG axis. The hypothalamus produces GnRH, which
regulates the synthesis and release of gonadotropins (GTHs),
follicle-stimulating hormone (FSH), and luteinizing hormone
(LH), from the pituitary. The GTHs act on the gonads to stim-
ulate gonadal development through the secretion of sex steroid
hormones. These steroids, in turn, feedback to the brain and the
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pituitary to complete the HPG axis and to regulate the reproduc-
tive cycle (10, 11). Thus, hypothalamic GnRH is considered as the
key player in the regulation of reproduction in teleosts. Further-
more, recent findings of kisspeptin and gonadotropin-inhibitory
hormone (GnIH) added new players in the reproductive system,
which stimulate and inhibit mostly GnRH neurons, respectively.

GONADOTROPIN-RELEASING HORMONE (GnRH)
In the early 1970s, two research groups simultaneously reported
the isolation of a LH-releasing factor from the hypothalamus of
pigs and sheep (12, 13), and named it LH-releasing hormone
(LHRH). Later, this decapeptide was also found to stimulate FSH
release, and accordingly re-named GnRH. The GnRH isolated
from mammals is also functional in fish, and stimulates the release
of GTH in the carp (14). The first fish GnRH was identified in
salmon, and named as salmon GnRH (sGnRH) (15). To date, 15
different forms of GnRH have been identified in vertebrates (13,
15–25), among them 10 original forms in fish species: salmon,
sea bream, whitefish, medaka, catfish, herring, dogfish, and lam-
prey (lamprey I, II, and III). Most vertebrates possess two, and
some teleosts have three, forms of GnRH in the brain (23, 25–
31). Based on phylogenetic analysis, recent classification defines
the species-specific (hypophysiotropic) form as GnRH1, while the
most evolutionarily conserved chicken GnRH-II as GnRH2 (32).
The third form is GnRH3 (33), which is present only in the brain
of certain teleost species (31, 34).

Distribution of three different forms of GnRH in the brain was
first reported in a perciform fish, the sea bream (35). GnRH1 neu-
rons are generally present in the region from the ventral forebrain–
preoptic area (POA) to basal hypothalamus, whereas GnRH2
neurons are restricted to the dorsal mesencephalon. GnRH3 neu-
rons are located in the caudal-most olfactory bulb as a ganglion
and along the terminal nerve in most fish species that possess three
GnRH forms (31, 36). On the other hand, in the sea bream and the
European sea bass, the distribution of GnRH1 and GnRH3 cells
overlap in the olfactory bulbs, ventral telencephalon, and POA
(37–40). Similar results were reported in several other fish species
(41–45). In the sea bass brain, GnRH1 neuronal fibers are observed
in the ventral surface of the forebrain, associated with the ventral
telencephalon, POA, and the hypothalamus, whereas GnRH2 and
GnRH3 neuronal fibers show profuse distributions throughout
the brain (40).

The function of GnRH in the central regulation of LH release
has been recognized in all orders of teleosts. Although the assay for
FSH peptide is lacking for most fish species, studies in the rain-
bow trout (46–48) and the Coho salmon (49) show that GnRH
also stimulates FSH release in salmonids. However, the different
patterns of fiber projections of each GnRH form suggest differ-
ent physiological function of each GnRH form in the brain (31).
GnRH1 neurons are generally present in the ventral forebrain–
POA–hypothalamus and send neuronal fibers directly into the
pituitary, which represents its primary role in the stimulation of
GTH secretion. The physiological significance of GnRH1 as a reg-
ulator of GTH secretion and gametogenesis has been established
in several teleosts (28, 50–54).

GnRH2 neurons are exclusively present in the midbrain. The
absence or low levels of GnRH2 peptide in the pituitary has been

demonstrated in several perciformes (50, 51, 55–57) and pleu-
ronectiformes species (28, 58), suggesting that GnRH2 is not
directly involved in GTH secretion. Rather, its wide fiber projection
throughout the brain suggests that GnRH2 has neuromodulatory
functions (30). However, in some fish species including the gold-
fish, GnRH2 seems to act as a hypophysiotropic GnRH together
with GnRH3 (59).

GnRH3 has been shown to control reproductive behaviors in
several fish species. GnRH3 stimulates nest-building behavior in
the male dwarf gourami (60), homing migration in the sock-
eye salmon (61), and aggressive and nest-building behaviors in
the male Nile tilapia (62), which suggests probable neuromodula-
tory roles of GnRH3. The neuromodulatory role of GnRH3 was
confirmed by electrophysiological studies in the retina of gold-
fish (63, 64) and olfactory receptor cells of the mudpuppy (65).
The neuromodulatory function of GnRH3 has also been demon-
strated in the rainbow trout (66, 67) and the dwarf gourami
[reviewed by Oka (68)]. Fish species such as some salmonids
and the zebrafish possess only two forms of GnRH (GnRH2 and
GnRH3). In these species, GnRH3 expressed in the basal forebrain
acts as a hypophysiotropic GnRH (45, 69–71).

KISSPEPTIN
Kisspeptin is a neuropeptide that plays an important role in repro-
duction through the stimulation of GnRH neurons by activating
GPR54 in mammals (72, 73). In teleosts, two kisspeptin genes,
namely kiss1 and kiss2, have been identified in several fish species
(74–77), whereas placental mammals possess only the kiss1 gene.
Similarly, two kisspeptin receptor genes, named kiss1r and kiss2r,
were also identified in several fish species (76, 78), suggesting
two Kiss/Kissr systems in teleosts. However, this situation is not
common among all fish species. Only one kisspeptin gene, kiss2,
and one receptor, kiss2r, are present in some fish species includ-
ing the Senegalese sole (79), orange-spotted grouper (80), grass
puffer (81), and the Atlantic halibut (82), indicating that the kiss1
and kiss1r genes have been lost during evolution in these species
(82). Both kiss1 and kiss2 mRNAs are expressed in the brain and
the gonads in several fish species (74, 76–78, 83). On the other
hand, kisspeptin and kisspeptin receptor are also expressed in
the fish pituitary, suggesting local actions of kisspeptin in the
pituitary (76, 78, 81). In the medaka brain, two populations of
kiss1 neurons are found in the hypothalamus, one in the nucleus
ventral tuberis (nVT) and the nucleus posterioris periventricu-
laris (NPPv) (74, 84), while neurons in the dorsal zone of the
periventricular hypothalamus (Hd) express kiss2. In the zebrafish
all hypothalamic populations express kiss2 mRNA (74). A recent
study showed that zebrafish Kiss2 neuronal fibers are found widely
in the subpallium, POA, ventral and caudal hypothalamus, and the
mesencephalon (85). The fact that all three GnRH neuron types
express kisspeptin receptors in the Nile tilapia (86) suggests that
the role of Kiss2 neurons in the regulation of the HPG axis is via
the activation of the GnRH systems. The kiss1 neurons are exclu-
sively localized in the habenula in the zebrafish (74), and send
fibers only to the ventral part of the interpeduncular nucleus (85,
87). The habenula Kiss1 system is thus implicated in the mod-
ulation of serotonergic system rather than the HPG axis in the
zebrafish (87).
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The role of kisspeptin in the onset of puberty and sexual mat-
uration is conserved among vertebrates including fish. In the
zebrafish, both kiss1 and kiss2 mRNA levels are increased signifi-
cantly at the start of the pubertal phase together with GnRH2 and
GnRH3 mRNAs (74). Significant positive correlation is observed
between the levels of kiss2 mRNA and those of gnrh1 mRNA dur-
ing the spawning period in the grass puffer (81). Kiss2 but not
Kiss1 stimulates GTH synthesis and release in the sea bass and the
zebrafish (74, 75). Administration of Kiss2–10 peptide increases
GnRH1 mRNA levels in the sexually mature female orange-spotted
grouper (80), indicating that Kiss2 most probably plays an impor-
tant role in the regulation of reproductive functions through the
stimulation of GnRH1 secretion.

The information of the interaction between kisspeptin neu-
ronal fibers and GnRH cell bodies had been limited in teleosts due
to the lack of specific antibody to kisspeptins. A recent study using
an antibody to prepro-Kiss2 proved that Kiss2 neuronal fibers
make close contacts with POA GnRH (GnRH3) neurons in the
zebrafish (85), suggesting that Kiss2 directly act on GnRH neurons.
Moreover, kisspeptin receptor expression in the three GnRH neu-
ronal populations (86) in tilapia suggests that kisspeptin directly
stimulates not only GnRH1 neurons to induce LH secretion, but
also GnRH2 and GnRH3 neurons to activate other aspects of the
reproduction such as sexual behavior.

GONADOTROPIN-INHIBITORY HORMONE (GnIH)
GnIH or RFamide-related peptide (RFRP), which has a character-
istic C-terminal LPXRFa motif (X = L or Q), is a hypothalamic
neuropeptide that was originally identified from the quail as a
neuropeptide that inhibits gonadotropin release from the pitu-
itary (88). Extensive studies revealed that GnIH functions at the
level of GnRH neurons and at the level of pituitary gonadotropes
to suppress reproduction in avian and mammalian species [see
reviews in Ref. (89, 90)]. GnIH in the teleost species has been
named LPXRFamide peptide based on the amino acid sequence
of the C-terminal motif. All precursors of teleost GnIH iden-
tified so far encode three GnIH orthologs (LPXRFa-1, -2, and
-3), while only goldfish LPXRFa-3 has been purified as a mature
peptide.

As in birds and in mammals, teleost GnIH neurons are located
in the hypothalamus, in particular in the NPPv, and send neu-
ronal fibers throughout the brain and to the pituitary (91, 92). The
physiological function of teleost GnIH in the control of reproduc-
tion is complicated. In vivo studies using the goldfish show that
GnIH decreases plasma LH levels as in avian and mammalian
species (93, 94). On the other hand, GnIH significantly increases
pituitary levels of mRNAs for LHβ and FSHβ in a reproductive
state-dependent manner in vivo, whereas general suppression of
LHβ and FSHβ mRNA levels is observed in vitro in a study (93).
This differential in vivo effect of GnIH in different seasons can be
explained by the differential action of GnIH on the gonads (95).
GnIH does not affect plasma estradiol levels in the female goldfish,
but increases plasma testosterone levels in the male goldfish (96).
GnIH injections into the female goldfish suppress pituitary LHβ

and FSHβ and hypothalamic GnRH mRNA levels (95). In addi-
tion, GnIH suppresses GnRH-induced increase in LHβ mRNA
levels in vitro (95). Therefore, in the goldfish, the inhibition of the
HPG axis at the level of hypothalamic GnRH neurons and pituitary

gonadotropes appears as an evolutionarily conserved function of
GnIH. On the contrary, goldfish GnIH peptides stimulate the syn-
thesis and release of LH and FSH in cultured pituitary cells of the
grass puffer and the sockeye salmon, respectively (92, 97). There-
fore, as in mammals (98), the stimulatory or inhibitory action
of GnIH in fish is probably species dependent or species-specific
GnIH peptide might be necessary for an inhibitory action.

More recently, it has been shown that medaka LPXRFa-
2 (GnIH-2) peptide decreases the firing frequency of non-
hypophsiotropic terminal nerve GnRH3 neurons in the dwarf
gourami (99). Since GnRH3 controls nest-building, aggression,
and homing migration (60–62), GnIH-2 might negatively regulate
reproductive behaviors.

METABOLIC NEUROPEPTIDES INVOLVED IN REPRODUCTION
A number of hypothalamic neuropeptides have been identified in
fish species (7), and found to be involved in the control of food
intake as well as reproduction (Table 1). To understand the overall
metabolic control of reproduction, the involvement of metabolic
neuropeptides in the regulation of GnRH and GTHs must be
taken into consideration. However, compared to mammals, the
information related to the role of metabolic neuropeptides in the
regulation of reproduction is still limited in fish.

OREXIN
Orexin has two well conserved molecular forms, a 33-amino acid
peptide known as orexin A (OXA) and a 28-amino acid peptide
known as orexin B (OXB) derived from the same precursor [see
review in Ref. (150)]. Orexin was first identified as a ligand of an
orphan receptor, and consequently found to stimulate feeding in
mammals (151). The orexin’s orexigenic action is also observed in
teleosts, including the goldfish and the ornate wrasse (101, 152).

In mammals, orexin is known to stimulate the HPG axis via
GnRH secretion (153–155). In the goldfish, an interaction between
orexin and hypophysiotropic GnRH (GnRH2) has also been pro-
posed. Intracerebroventricular administrations of OXA inhibit
spawning behavior and lower GnRH2 mRNA levels, while treat-
ment with GnRH decreases OXA mRNA levels (102). These results
suggest that, unlike in mammals, orexins might act as inhibitory
agents in the control of GnRH at least in some fish species. In addi-
tion, OXA is detected in the pituitary of the medaka (156) and the
Japanese sea perch (157), whilst OXB is detected in the pituitary of
the Nile tilapia (158), suggesting orexin’s local action at the level
of pituitary. Thus orexin, an orexigenic neuropeptide, inhibits the
HPG axis at the hypothalamus GnRH level and possibly also at the
pituitary level, in fish.

NEUROPEPTIDE-Y (NPY)
NPY which is composed of 36 amino acid residues, was first
identified in the porcine brain (159), and was found to func-
tion as a powerful appetite enhancer in mammals (160). In fish
species, NPY also show powerful orexigenic activity in the gold-
fish (103, 123, 161–164), trout (104), puffer fish (105, 165), and
the zebrafish (106).

Centrally or peripherally injected NPY increases plasma LH
levels in the goldfish, common carp, rainbow trout, and in the
sea bass (107, 109, 111), indicating that NPY stimulates teleost
reproduction as was shown in mammals (166).
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Table 1 | Neuropeptides and their functions in representative fish

species.

Neuropeptide Species Function Reference

Orexin Goldfish Increase food intake (100)

Ornate wrasse Increase food intake (101)

Goldfish Inhibit spawning

behavior, decrease

GnRH2 mRNA level

(102)

NPY Goldfish Increase food intake (103)

Rainbow trout Increase food intake (104)

Puffer fish Increase food intake (105)

Zebrafish Increase food intake (106)

Goldfish Stimulate GnRH and

LH release

(107, 108)

Common carp Increase plasma LH

level

(109)

Sea bream Stimulate GnRH

release

(110)

Sea bass Increase plasma LH

level

(111)

PACAP Goldfish Decrease food

intake

(112)

Goldfish Stimulate LH release (113, 114)

Tilapia Stimulate GTH

subunit mRNA

expression

(115)

Blue gourami Stimulate FSHβ

mRNA expression

(116, 117)

GnRH2 Goldfish Decrease food

intake

(102, 118)

Zebrafish Decrease food

intake

(119)

Goldfish Stimulate LH release (120)

26RFa Mouse Increase food intake (121)

Goldfish Increase plasma LH

level

(122)

Galanin Goldfish Increase food intake (123)

Tench Increase food intake (124)

(Rat) Stimulate GnRH

release

(125)

MCH Goldfish Decrease food

intake

(126)

Goldfish Stimulate LH release (127)

α-MSH Goldfish Decrease food

intake

(128)

(Continued)

Neuropeptide Species Function Reference

Rainbow trout Decrease food

intake

(129)

(Mouse) Stimulate GnRH

neurons

(130)

CART Goldfish Decrease food

intake

(131, 132)

(Rat) Stimulate GnRH

release

(133, 134)

CCK Goldfish Decrease food

intake

(135)

Goldfish Stimulate LH release (136)

Nesfatin-1 Goldfish Decrease food

intake

(137, 138)

Goldfish Decrease plasma LH

level

(139)

Leptin Goldfish Decrease food

intake

(140)

Rainbow trout Decrease food

intake

(141)

Sea bass Stimulate LH release (142)

Rainbow trout Stimulate LH release (143)

Ghrelin Goldfish Increase food intake (144–146)

Rainbow trout Decrease food

intake

(147)

Goldfish Stimulate LH release (148)

Common carp Stimulate LH release (149)

In the brown trout (167) and the rainbow trout (168), NPY
neuronal fibers project to the areas where hypophysiotropic GnRH
neurons exist, particularly in the ventral telencephalon, POA, and
in the basal hypothalamus. Furthermore, double immunolabeling
reveals close appositions of NPY fibers with GnRH cells in the
POA of the ayu (Plecoglossus altivelis) (169) and the Siberian stur-
geon (170), suggesting the direct action of NPY in the regulation
of GnRH neurons. Indeed, NPY stimulates GnRH release in vitro
in the goldfish (108) and in the sea bream (110).

Neuropeptide-Y also regulates the HPG axis at the level of pitu-
itary. In vitro treatment with NPY stimulates LH release from
pituitary cells in the goldfish (107) and increases LHβ and GTHα,
but not FSHβ mRNA levels in the tilapia pituitary (115). In addi-
tion, NPY fibers make close appositions on LH cells in the catfish
pituitary (171).

These findings provide strong support for the stimulatory role
of NPY in fish reproduction at the levels of hypothalamic GnRH
and pituitary LH cells.
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26RFamide (QRFP)
26RFamide is a 26-amino acid peptide, and was first isolated from
the frog brain (121). In teleosts, 26RFa has been identified only
in the goldfish (172). The 26RFa gene is highly expressed in the
hypothalamus, and relatively less in the optic tectum-thalamus
and in the testis (122). 26RFa and its mammalian homolog QRFP
act as an orexigenic hormone in birds, mice (121, 172–174), and
probably in fish (122).

The role of 26RFa has been implicated in the integration of
metabolism and reproduction in vertebrates, including fish [see
review in Ref. (89)]. In mammals, 26RFa stimulates LH and FSH
release in rats in vivo and in vitro (pituitary culture) (175). In
teleost, intraperitoneal injections of 26RFa significantly increase
plasma LH levels in the goldfish (122). On the other hand, in vitro
treatment with 26RFa shows no effects on LH release from pitu-
itary cells. These facts indicate that 26RFa might act on the
stimulation of the HPG axis through GnRH1 release in fish.

GALANIN (GAL)
GAL is a 29-amino acid peptide, expressed in the central ner-
vous system and in the intestine. GAL stimulates feeding in
the goldfish (123) and the doctor fish tench (124), indicating
that GAL acts as an orexigenic hormone in fish as in mammals
(176, 177).

Involvement of GAL in the control of HPG axis is evidenced
in mammals. In rodents and humans, GAL neuronal fibers make
close appositions with GnRH1 neurons (178–180), and GnRH
neurons express a GAL receptor Gal-R1 in the rat (181). In fact,
GAL stimulates in vitro GnRH release in rats (125). These data
indicate that GAL is involved in the control of reproduction at the
level of GnRH neurons.

In fish, there are no studies that demonstrated the role of GAL
in the control of reproduction. However, close appositions of GAL
fibers with gonadotropes in the proximal pars distalis (PPD) are
seen in the sea bass (182). Similarly, fiber projections of GAL neu-
rons in the PPD are observed in the rainbow trout (183), sea bream
(184), and Senegalese sole (185), while no GAL fibers are observed
in the pituitary of the Siberian sturgeon (170). Therefore, GAL
might modulate the HPG axis at the pituitary level at least in some
fish species.

GnRH2
As mentioned before, among the different forms of GnRH, neu-
ronal fibers of GnRH2 (also known as chicken GnRH-II) are
widely distributed in the vertebrate brain. In an insectivore, the
musk shrew, GnRH2 stimulates sexual behavior and seduces food
intake (186, 187), indicating that GnRH2 plays a role in connecting
reproductive function and feeding regulation.

In fish species, the suppressive effect of GnRH2 on feeding has
also been confirmed. Food consumption is significantly decreased
by intracerebroventricular injections of GnRH2 but not GnRH3
in a dose dependent manner in the goldfish (102, 118) and the
zebrafish (119).

GnRH2 also has effects on sexual behavior of fish. In the gold-
fish,GnRH2 stimulates reproductive behavior (188). Furthermore,
there is a strong positive correlation between spawning behav-
ior and GnRH2 gene expression (189), suggesting stimulatory

role of GnRH2 in reproductive behavior. GnRH2 is also detected
in the goldfish pituitary (190) and induces LH release in vitro
(120). Positive correlation between the pituitary GnRH2 levels
and gonadal development is also observed in the striped bass (51),
suggesting that it also have a hypophysiotropic role in some fish
species. In the grass puffer, the amount of GnRH2 mRNA is slightly
higher in the post-spawning females compared to spawning female
(191). Therefore, GnRH2 may have different physiological roles
depending on the physiological conditions of the fish.

PITUITARY ADENYLATE CYCLASE-ACTIVATING POLYPEPTIDE (PACAP)
PACAP was first isolated from the rat hypothalamus (192). PACAP
is an anorexigenic factor in various vertebrates, including rodents
(193), chicks (194, 195), and fish (196). To date, the role of PACAP
in feeding has been studied only in one fish species, the goldfish.

PACAP increases plasma LH levels in vivo in the goldfish (197).
In vitro studies showed that the stimulatory effect of PACAP on LH
release is exerted at the level of the pituitary (113, 114). PACAP also
stimulates the levels of GTH subunit mRNAs and FSHβ mRNA in
the pituitary of tilapia (115) and in the female blue gourami (116,
117), respectively. Dense projection of PACAP nerve terminals is
seen in the pars distalis of the pituitary, where gonadotropes are
localized, in the goldfish (198) and in the European eel (199). The
expression of PACAP receptor in the pituitary is also observed in
the goldfish (197). Therefore, PACAP stimulates GTH secretion in
fish pituitary.

MELANIN-CONCENTRATING HORMONE (MCH)
MCH is a cyclic peptide, originally isolated from the pituitary of
the chum salmon as a hormone involved in body color change
(200). In the winter and barfin flounders, fasting stimulates hypo-
thalamic expression of MCH (201, 202), suggesting that MCH acts
as an orexigenic hormone as in mammals (203, 204). However,
MCH acts as an anorexigenic hormone in the goldfish (105, 126,
205, 206). Therefore, like ghrelin, MCH acts as an orexigenic and
anorexigenic neuropeptide depending on the fish species, although
its orexigenic action in fish has to be confirmed.

In mammals, MCH modulates LH secretion in an estradiol-
dependent manner [see a review in Ref. (207)]. The close apposi-
tions between MCH fibers and hypothalamic GnRH neurons (208,
209) and the expression of MCH receptors in GnRH neurons (209)
suggest the direct action of MCH on GnRH neurons in mammals.
MCH also acts at the pituitary level to modulate the release of LH
(210). In teleosts, an in vitro study showed that salmon MCH stim-
ulates the release of LH in a dose response manner from dispersed
pituitary cells in the goldfish, suggesting a direct action of MCH
on LH cells (127). Whether MCH acts on GnRH neurons in fish
as in mammals remains unknown.

α-MELANOCYTE STIMULATING HORMONE (α-MSH)
α-MSH is one of melanocortins and derived from a precursor
peptide encoded by the POMC gene (211). Among melanocortins
and their receptors, α-MSH and melanocortin receptor 4 (MC4R)
are involved in the control of food intake in vertebrates including
fish. α-MSH or MC4R agonist inhibits food intake in the goldfish
(128, 212) and in the rainbow trout (129), suggesting that the α-
MSH/MC4R system play a role in the anorexigenic regulation of
feeding in fish as in mammals.
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Although the α-MSH/MC4R system is known to play a stim-
ulatory role in reproduction at the level of GnRH neurons in
mammals [see a review in Ref. (130)], available information is
limited in teleost. Projection of α-MSH fibers in the PPD of the
pituitary and differential expression of POMC gene between sex-
ually inactive and active fish in the zebrafish suggests that some
of POMC-derived products are involved in the stimulation of fish
reproduction (213).

COCAINE- AND AMPHETAMINE-REGULATED TRANSCRIPT (CART)
CART is an anorexigenic neuropeptide originally isolated from
the rat brain (160, 214). In fish, CART might also act as anorex-
igenic hormone in the goldfish (131), winter flounder (215), cod
(216), channel catfish (217), zebrafish (218), and in the Atlantic
salmon (219).

In mammals, CART is involved in the control of GnRH neu-
rons. CART stimulates GnRH pulsatile release in rats (133, 134).
The existence of close appositions between CART fibers and hypo-
thalamic GnRH neurons in the Siberian hamster suggests the effect
of CART on GnRH neuronal activity is a direct action (220).

In the catfish, the projections of CART fibers are observed in
the PPD of the pituitary (221). CART is also expressed in LH
cells of the catfish pituitary but only during sexual maturation
period (222), suggesting its local function in the sexual maturation
process. However, it should be noted that while similar expression
of CART in LH cells is observed in the rat pituitary, CART inhibits
the release of prolactin but not GTHs (223). Thus, the role of
CART in the fish pituitary has to be examined.

CHOLECYSTOKININ (CCK)
CCK is found in the brain and in the gastrointestinal tract of var-
ious vertebrates. It has multiple biologically active forms, among
which CCK-8 is the most abundant form in the brain (224). As in
mammals, CCK has many physiological roles in fish, but functions
primarily in the control of food intake as a satiety indicator (135).

In mammals, CCK decreases the pulse interval of GnRH release
in goats (225). Furthermore, CCK implants into the POA, where
GnRH neurons are located, increase the plasma levels of LH in rats
(226). These data suggest that CCK acts at the levels of GnRH and
stimulates reproduction. In fish, on the other hand, CCK seems
to acts on the pituitary. An immunohistochemical study showed
that CCK neurons innervate into the PPD of the pituitary and that
CCK stimulates LH release in vitro in the goldfish (136).

NESFATIN-1
Nesfatin-1, a nucleobindin-2 (NUCB2) encoded unmodified pep-
tide, was first characterized in rats (227), and was shown to have
anorexigenic actions in the goldfish (137, 138).

The number of studies about the function of nesfatin-1 in the
control of reproduction is still limited. However, recent studies
showed that nesfatin-1 acts as an inhibitory signal in the control of
fish reproduction. Although nesfatin-1 plays a stimulatory role in
LH secretion in rats (228), an intraperitoneal injection of nesfatin-
1 decreases plasma levels of LH in the goldfish (139). At the same
time, nesfatin-1 down regulates expression of GnRH, LHβ, and
FSHβ genes, suggesting that the inhibitory action of nesfatin-1
takes place at the levels of GnRH neurons. Whether nesfatin-1
also functions at the level of the pituitary remains unclear.

PERIPHERAL HORMONES INVOLVED IN FEEDING,
METABOLISM, AND REPRODUCTION
LEPTIN
Leptin is primarily produced by adipocytes of the white adipose
tissue (229), and secreted into the blood circulation in propor-
tion to the mass of body fat. The change in plasma leptin levels
is detected by the hypothalamus and thereby it acts as a periph-
eral factor that signals nutritional status to the CNS [see review
by Crown et al. (230)]. In teleosts including the goldfish and the
rainbow trout, leptin functions as a peripheral signal to inhibit
food intake (140, 141, 231, 232) as in mammals (233).

In mammals, leptin stimulates the HPG axis by promoting the
synthesis and release of GnRH from the hypothalamus, and LH
and FSH from the pituitary (234–236). In teleosts, leptin also stim-
ulates the reproductive axis. Leptin increases in vitro LH release
from the pituitary culture in the sea bass (142) and the rainbow
trout (143). However, it should be noted that the stimulating effect
of leptin on LH release is observed only on the pituitary samples
from the fish in maturational stages. Furthermore, leptin expres-
sion levels increase with the onset of sexual maturation in the
Arctic char (237) and the Atlantic salmon (238). Therefore, the
role of leptin in sexual maturation seems to be conserved among
vertebrate species.

GHRELIN
As in mammals, ghrelin is highly expressed in the stomach and
moderately in the brain (144, 239, 240), and is involved in appetite
stimulation, energy balance, feeding, and metabolism [see reviews
in Ref. (241, 242)]. Interestingly, the role of ghrelin in fish dif-
fers in different fish species. It acts as an orexigenic hormone in
the goldfish (144–146) and probably in the sea bass (243) and the
zebrafish (244). On the other hand, ghrelin acts as an anorexigenic
hormone in the rainbow trout (147) and probably in the burbot
(245, 246). The opposite effects of ghrelin on food intake can be
explained by species-specific neural pathways mediating the effect
of ghrelin (247). The variations in the role of ghrelin in feeding
may reflect different regulatory mechanisms of feeding in different
teleost species.

In fish species, ghrelin acts as a stimulatory factor in the repro-
duction, although ghrelin inhibits the HPG axis in mammals
[reviewed by Tena-Sempere (248)]. Intracerebroventricular injec-
tion of ghrelin increases plasma LH levels in the goldfish (148),
indicating its stimulatory action on the HPG axis. The increase
of plasma LH levels is, however, small and slow compared to the
increase of plasma GH levels. This suggests that the stimulatory
effect of ghrelin on plasma LH levels is not through the action
of ghrelin on hypothalamic GnRH. Actually, the highest levels of
ghrelin receptor mRNA are observed in the sea bream and gold-
fish pituitary (249, 250). In vitro treatment with ghrelin stimulates
LH release in the goldfish (148, 250) and in the common carp
(149), while pituitary levels of mRNA for LHβ subunit is also
increased. As no reports show fiber projections of hypothalamic
ghrelin neurons into the pituitary in fish, ghrelin released from
stomach/intestine might play a role in the LH secretion from the
pituitary. Therefore, ghrelin might act as a stimulatory peripheral
factor in reproduction at the level of pituitary, whereas its action
on GnRH neurons is uncertain.
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INTERACTIONS BETWEEN METABOLIC NEUROPEPTIDES
AND THE REPRODUCTIVE SYSTEM IN THE CONTROL OF
REPRODUCTION
As shown in the above section, many metabolic neuropeptides are
involved in the control of reproduction at the level of hypothal-
amic GnRH neurons and at the level of pituitary gonadotropes
(Figure 1). Among these metabolic neuropeptides, NPY and
nesfatin-1 function as inhibitory factors on GnRH neurons, while
orexin stimulates GnRH neurons. It is interesting that NPY and
orexin, which possess orexigenic activity, act on the reproductive
system in an opposite manner in the goldfish. It suggests that dif-
ferent metabolic neuropeptides might play a role in the control of
reproduction under different physiological conditions. It should
be noted, however, that the inhibitory role of orexin on spawning
behavior and GnRH gene expression might be the result of orexin
action on non-hypophysiotropic GnRH system. In the goldfish
brain, hypophysiotropic GnRH type is expressed not only in the
hypothalamic population but also in the olfactory bulb and mid-
brain populations (190). Therefore, the inhibitory effect of orexin
on the HPG axis need to be confirmed although it is clear that
orexin has suppressive role in some aspects of reproduction.

At the pituitary level, it is evident that many metabolic neu-
ropeptides including NPY, MCH, GnRH2, PACAP, and CCK stim-
ulate LH secretion. In addition, peripheral metabolic signals such
as ghrelin and leptin also stimulate LH secretion at the pituitary.
The fact that most central neuropeptides and peripheral metabolic
signals regulate the reproductive system indicates fundamental
interaction between energy balance and reproduction, which is
evolutionarily conserved from fish to mammal. However, both
orexigenic and anorexigenic metabolic signals act as stimulatory
factors in the reproductive system in fish. In mammals, feeding and
reproduction are two alternatives in general. Therefore, orexigenic
factors inhibit reproduction and anorexigenic factors stimulate
reproduction [see review in Ref. (251)]. In fish species, on the
other hand, a central orexigenic neuropeptide NPY and a periph-
eral orexigenic peptide ghrelin inhibit LH secretion in the goldfish
and other species (Table 1). This indicates that metabolic regula-
tion of the reproductive system in teleost is different from that in
mammals, at least in some species.

Fish species have a variety of feeding and reproductive behav-
iors. For example, most salmonids and the winter flounder
undergo a period of fasting just before the spawning season as a
part of their normal physiology (252), whereas the goldfish do not
have such fasting period. The halt of food intake during final mat-
uration might require the differential usage of metabolic signals
in these species.

Recently, kisspeptin has been proposed as a mediator of meta-
bolic signals in the mammalian reproductive system, in particular
on GnRH neurons [see reviews in Ref. (89, 253)]. In mice
(254) and in the sheep (255), kisspeptin neurons in the arcu-
ate nucleus possess leptin receptors, suggesting direct action of
leptin on kisspeptin neurons. Furthermore, kisspeptin neurons
receive innervations from other neurons that express leptin recep-
tor (255). These facts suggest that leptin controls GnRH neurons
through kisspeptin neurons via direct and indirect actions. Fur-
thermore, kisspeptin neurons receive fiber projections from NPY
and POMC neurons in mammals (255, 256). Therefore kisspeptin

FIGURE 1 | Effects of central and peripheral metabolic hormones on
the reproductive system. The hypothalamus–pituitary axis receives many
stimulatory and inhibitory inputs from central metabolic neuropeptide
neurons and peripheral metabolic signals to control the reproductive
system according to the energy status. The hormones indicated with blue
circles are orexigenic hormones, while those with orange squares are
anorexigenic ones. Red lines indicate stimulatory action and blue lines
indicate inhibitory action. Most anorexigenic hormones stimulate
gonadotropin secretion at the pituitary level. In the goldfish, NPY and
ghrelin, which act as orexigenic hormones, also stimulate the reproductive
system at the brain and pituitary levels. It should be noted that this figure is
drew primarily based on the information obtained from the goldfish.
Function of each metabolic hormone might differ in different species [e.g.,
Ghrelin functions as an anorexigenic factor in the rainbow trout (147) and
GnIH stimulates GTH subunit mRNA expression in the puffer fish (97) and
the sockeye salmon (92).]. CCK, cholecystokinin; GnIH,
gonadotropin-inhibitory hormone; GnRH, gonadotropin-releasing hormone;
MCH, melanin-concentrating hormone; NPY, neuropeptide-Y; PACAP,
pituitary adenylate cyclase-activating polypeptide.

neurons might play an important role in the integration of
metabolic signals to control the reproductive system. In teleost,
fasting induces a significant increase in kiss2 mRNA levels in the
hypothalamus, as well as an increase in LHβ and FSHβ mRNA
levels in the pituitary in the Senegalese sole (Solea senegalensis)
(257), suggesting negative correlation between energy balance and
reproduction. However, to our knowledge, there is no informa-
tion available regarding direct evidence of metabolic regulation of
kisspeptin neurons in fish.
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In addition to its primary role in reproduction,GnIH stimulates
food intake in chickens (258) and in rats (259, 260), suggest-
ing its potential role to switch from reproduction to feeding.
Close appositions of GnIH fibers with NPY, orexin, MCH, and
POMC neurons in the sheep (261) indicate the involvement of
several feeding regulatory pathways. However, there are no studies
reporting metabolic regulation of GnIH neurons in vertebrates.
On the other hand, GnIH is known to be regulated by stress,
photoperiod, and gonadal steroids to suppress the reproductive
system (89). Therefore, GnIH neurons might have a role in the
modulation of feeding according to the environmental factors in
mammals. Whether GnIH plays a similar role in teleosts requires
more studies.

INTERACTIONS AMONG NEUROPEPTIDES TO CONTROL
FEEDING
To monitor the amount of energy stock, central metabolic neu-
ropeptide neurons receive peripheral signals including leptin and
ghrelin. For example, in mammals leptin receptor is expressed
in many metabolic neuropeptide neurons including orexin, NPY,
GAL, MCH, POMC, CART, and CCK neurons [see reviews in Ref.
(262, 263)]. In fish species, leptin also affects several central neu-
ropeptide neurons. Administration of leptin reduces NPY mRNA
levels in the goldfish (140), grass carp (264), and in the rainbow
trout (141, 265). On the other hand, leptin increases the mRNA
levels of CCK and POMC, which are anorexigenic neuropeptides,
in the goldfish (140) and the rainbow trout (141, 265), respec-
tively. A recent study showed that leptin receptor knockout medaka
exhibit higher levels of NPY mRNA before and after feeding and
lower levels of POMC mRNA levels after feeding together with
increased food intake (266). Therefore leptin’s anorexigenic effect
might be mediated by these neuropeptides.

Double immunostaining revealed interactions among orexi-
genic/anorexigenic neuropeptide neurons in teleosts, in particular
in the goldfish (Figure 2). Among anorexigenic neuropeptide neu-
rons, MCH neuronal fibers project to α-MSH neurons (206) and
α-MSH neuronal fibers project to CRH neurons (267). Further-
more, a study using antagonists against α-MSH receptor and CRH
receptor showed that anorexigenic action of MCH is mediated by
α-MSH and CRH (268). In addition, GnRH2 mediates anorexi-
genic effect of α-MSH and CRH (269). These results suggest that
the MCH–α-MSH–CRH–GnRH2 pathway suppresses food intake
in the goldfish, although it is not known whether CRH directly
acts on GnRH2 neurons.

Among orexigenic neuropeptide neurons, NPY and orexin neu-
rons make reciprocal connections in fish as in mammals. NPY neu-
ronal fibers make close appositions with orexin neurons, whereas
orexin neuronal fibers make close appositions with NPY neurons
in the NPPv in the goldfish (270). Furthermore, co-injections of
OXA and NPY result in food intake higher than that observed
in fish treated with NPY alone (132). These results indicate that
orexins and NPY induce orexigenic actions by mutual signaling
pathways in the CNS in teleost. Probably the reciprocal interac-
tion between NPY and orexin functions as a positive-feedback
system to maintain food intake.

Moreover, the orexigenic and the anorexigenic circuits are also
connected with each other. α-MSH neuronal fibers make close

FIGURE 2 | Interaction between the orexigenic circuit and anorexigenic
circuit and among neurons in each circuit in the goldfish. Hormones in
the orexigenic circuit are shown in blue and those in the anorexigenic circuit
are shown in orange. The orexigenic and anorexigenic circuits are
connected each other via inhibitory neuronal fiber projections to form an
on-off switch. Reciprocal interaction is observed especially between
neurons in the orexigenic circuit. Arrows with dotted lines indicate the
interactions that have not been confirmed whether direct or indirect. The
complex interaction among metabolic neuropeptides suggests that a
change in one metabolic signal can affect the reproductive system through
the action via other metabolic neuropeptides. Note that in the goldfish
ghrelin secreted in the brain also function as an orexigenic signal. α-MSH,
alpha-melanocyte stimulating hormone; CRH, corticotropin-releasing
hormone; GAL, galanin; GnRH, gonadotropin-releasing hormone; MCH,
melanin-concentrating hormone; NPY, neuropeptide-Y; OXA, orexin A;
PACAP, pituitary adenylate cyclase-activating polypeptide.

appositions with NPY neurons, whereas NPY neuronal fibers
project to α-MSH neurons in the goldfish (271). In addition, MCH
neuronal fibers make close appositions with NPY neurons (272).
These inhibitory inputs between the orexigenic and anorexigenic
neurons might function as an on/off switch to decide whether eat
or not eat by activating only one of the two circuits.

Studies using antagonists against of the receptors for metabolic
neuropeptides further provided possible interaction among cen-
tral metabolic neuropeptides in the goldfish. For example, GAL
mediates the orexigenic action of orexin, and orexin mediates the
orexigenic action of GAL (123). GAL also mediates NPY’s action
on food intake and vice versa (123). Besides, orexin mediates cen-
tral action of ghrelin in food intake and central ghrelin mediates
the action of orexin (273). Furthermore, NPY mediates the orex-
igenic action of ghrelin (274). These results indicate complex
neuronal interactions especially among central orexigenic neu-
ropeptides. This complex neuronal network suggests that many
central neuropeptide neurons function in a coordinated man-
ner to regulate food intake. To fully understand the whole circuit
that controls food intake, further information on the neuronal
interaction among central metabolic neuropeptides have to be
obtained.
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In addition to the evident neuronal interactions in the gold-
fish, more combinations of neuronal interactions were reported
in other fish species. In the masu salmon (275) and the Siberian
sturgeon (170), NPY and GAL neurons make reciprocal connec-
tions. In the medaka, orexin and MCH neurons send neuronal
fibers to each other (156). In the barfin flounder, reciprocal con-
nection between orexin and MCH neurons and between α-MSH
and MCH neurons was reported (156). In the rainbow trout,
CRH mediates the anorexigenic action of ghrelin (147). These
facts suggest that the interaction among central metabolic neu-
ropeptides is really complicated. Therefore, more fiber projection
studies together with the localization of the neuropeptide recep-
tors are necessary to understand proper relationships among these
neuropeptides that consist of the regulatory circuits of food intake.

PERSPECTIVES
DIRECT INTERACTIONS AMONG CENTRAL METABOLIC
NEUROPEPTIDES AND REPRODUCTIVE SYSTEM
Significant amount of information about the relationship among
orexigenic and anorexigenic neuropeptides have been accumu-
lated, particularly in the goldfish. However, the knowledge of direct
interactions among these neurons is still not enough to draw a
complete diagram of the neuronal circuit to control food intake
and reproduction in fish. In particular, metabolic regulation of
kisspeptin and GnRH neurons are still unknown, while it is sug-
gested from mammalian studies. Further fiber projection studies
using double immunostaining and localization of the neuropep-
tide receptors in certain neuronal cell bodies need to be performed.

SPECIES DIFFERENCES
There are many differences in the regulatory mechanism of food
intake and reproduction not only between mammals and fish but
also between fish species. The significant difference between fish
species might be the result of the adaptation to a wide range of
feeding habits and reproductive strategies. Therefore we have to
be careful to combine data obtained from different species.

SEX AND MATURATIONAL STAGES
Several studies reported that the responses of the reproductive
system to metabolic signals differ depending on the sex and the
stage of sexual maturation. In fact, gonadal steroids modulate the
effect of NPY on GnRH and LH release in the goldfish (276). Each
study should use a particular sex and maturational stage to make
comparison easy.

NUTRITIONAL CONDITIONS
Animals might change the metabolic control of reproduction
according to the available energy stock. For example, short term
food limitation attenuates sexual motivation, while remaining
energy stock still maintains activity of the HPG axis. On the other
hand, long term food limitation depletes the energy stock and
stops the HPG axis to prioritize the energy supply to the survival.
Thus, feeding conditions and the timing of experiment might be
important to obtain comparable data.

ENDOCANNABINOID SYSTEM
The endocannabinoid system is involved in a variety of physi-
ology including pain-sensation, mood, and memory. Importantly,

both energy balance and reproduction are modulated by the endo-
cannabinoid system. Endocannabinoids modulate several hypo-
thalamic metabolic neuropeptides in mammals [see reviews in
Ref. (277, 278)]. The endocannabinoid system also regulates food
intake in fish (279, 280). In mammalian and non-mammalian
vertebrates, the endocannabinoid system regulates hypothalamic
GnRH neurons and pituitary LH cells directly and indirectly [see
reviews in Ref. (281, 282)]. Interrelation among these systems
might be an additional mechanism underlying the interaction
between mood, stress, appetite, and reproduction.

CONCLUSION
In summary, the cellular and molecular basis for the integration
of feeding and reproduction involves a complex interaction of the
reproductive system with metabolic neuropeptides and periph-
eral fuels. The metabolic neuropeptides, particularly orexin, NPY,
PACAP, MCH, nesfatin, GnRH2, and CCK play an important role
in the reproduction by either regulating GnRH neurons in the
hypothalamus or by stimulating gonadotropes in the pituitary.
Peripheral metabolic signals such as ghrelin and leptin also act
on the pituitary to stimulate LH secretion. It should be, how-
ever, noted that compared to mammals, fishes show a great variety
of feeding and reproductive habits. The variations of metabolic
control of reproduction in different teleost species may reflect dif-
ferent requirement of energy status for reproduction in different
species. Compared to mammals, fish represent a vast phylogenetic
group, which shows a significant level of diversity with regards to
morphology, ecology, behavior, and genomes (283). Thus, species
differences in the neuroendocrine control of reproduction have to
be taken into consideration in teleosts. In addition, more detailed
studies about the interconnections among metabolic neuropep-
tide neurons, effects of sexual maturation, and nutritional condi-
tions will provide more precise figure of the metabolic control of
reproduction. Furthermore, differential control of multiple GnRH
neuronal population by the neuropeptides and metabolic signals
should be examined to elucidate their roles in different aspects of
metabolic control of reproduction.
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