

Twenty Novel Disease Group-Specific and 12 New Shared Macrophage Pathways in Eight Groups of 34 Diseases Including 24 Inflammatory Organ Diseases and 10 Types of Tumors

Bin Lai^{1,2†}, Jiwei Wang^{1,3†}, Alexander Fagenson^{1,4‡}, Yu Sun^{1‡}, Jason Saredy^{5‡}, Yifan Lu^{1‡}, Gayani Nanayakkara^{1‡}, William Y. Yang^{1‡}, Daohai Yu^{6‡}, Ying Shao¹, Charles Drummer IV¹, Candice Johnson¹, Fatma Saaoud¹, Ruijing Zhang¹, Qian Yang¹, Keman Xu¹, Kevin Mastascusa¹, Ramon Cueto¹, Hangfei Fu¹, Susu Wu¹, Lizhe Sun¹, Peiqian Zhu², Xuebin Qin^{7,8}, Jun Yu⁵, Daping Fan⁹, Ying H. Shen^{10,11}, Jianxin Sun¹², Thomas Rogers¹, Eric T. Choi^{1,7,8}, Hong Wang⁵ and Xiaofeng Yang^{1,5*}

¹ Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States, ² Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China, ³ Department of Ultrasound, The Second Affiliated Hospital of Nanchang University, Nanchang, China, ⁴ Division of Abdominal Organ Transplantation, Department of Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States, ⁵ Metabolic Disease Research, Cardiovascular Research, & Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States, ⁶ Department of Clinical Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States, ⁷ Division of Vascular and Endovascular Surgery, Department of Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States, ⁸ Tulane National Primate Research Center, School of Medicine, Tulane University, Covington, LA, United States, ⁹ Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, United States, ¹⁰ Cardiothoracic Surgery Research Laboratory, Texas Heart Institute, Houston, TX, United States, ¹¹ Department of Surgery, Baylor College of Medicine, Houston, TX, United States, ¹² Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States

The mechanisms underlying pathophysiological regulation of tissue macrophage (M φ) subsets remain poorly understood. From the expression of 207 M ϕ genes comprising 31 markers for 10 subsets, 45 transcription factors (TFs), 56 immunometabolism enzymes, 23 trained immunity (innate immune memory) enzymes, and 52 other genes in microarray data, we made the following findings. (1) When 34 inflammation diseases and tumor types were grouped into eight categories, there was differential expression of the 31 $M\varphi$ markers and 45 M φ TFs, highlighted by 12 shared and 20 group-specific disease pathways. (2) M φ in lung, liver, spleen, and intestine (LLSI-M φ) express higher M1 M φ markers than lean adipose tissue $M\varphi$ (ATM φ) physiologically. (3) Pro-adipogenic TFs $C/EBP\alpha$ and PPAR_Y and proinflammatory adipokine leptin upregulate the expression of M1 M φ markers. (4) Among 10 immune checkpoint receptors (ICRs), LLSI-M φ and bone marrow (BM) Mφ express higher levels of CD274 (PDL-1) than ATMφ, presumably to counteract the M1 dominant status via its reverse signaling behavior. (5) Among 24 intercellular communication exosome mediators, LLSI- and BM- M ϕ prefer to use RAB27A and STX3 than RAB31 and YKT6, suggesting new inflammatory exosome mediators for propagating inflammation. (6) M φ in peritoneal tissue and LLSI-M φ

OPEN ACCESS

Edited by:

Junji Xing, Houston Methodist Research Institute, United States

Reviewed by:

Bin Li, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, China Mei-Zhen Cui, University of Texas of the Permian Basin, United States

*Correspondence:

Xiaofeng Yang xfyang@temple.edu

[†]These authors have contributed equally to this work

[‡]These authors have contributed equally to this work

Specialty section:

This article was submitted to Molecular Innate Immunity, a section of the journal Frontiers in Immunology

Received: 19 July 2019 Accepted: 21 October 2019 Published: 14 November 2019

Citation:

Lai B, Wang J, Fagenson A, Sun Y, Saredy J, Lu Y, Nanayakkara G, Yang WY, Yu D, Shao Y, Drummer C IV, Johnson C, Saaoud F, Zhang R, Yang Q, Xu K, Mastascusa K, Cueto R, Fu H, Wu S, Sun L, Zhu P, Qin X, Yu J, Fan D, Shen YH, Sun J, Rogers T, Choi ET, Wang H and Yang X (2019) Twenty Novel Disease Group-Specific and 12 New Shared Macrophage Pathways in Eight Groups of 34 Diseases Including 24 Inflammatory Organ Diseases and 10 Types of Tumors. Front. Immunol. 10:2612. doi: 10.3389/fimmu.2019.02612

1

upregulate higher levels of immunometabolism enzymes than does ATM φ . (7) M φ from peritoneum and LLSI-M φ upregulate more trained immunity enzyme genes than does ATM φ . Our results suggest that multiple new mechanisms including the cell surface, intracellular immunometabolism, trained immunity, and TFs may be responsible for disease group-specific and shared pathways. Our findings have provided novel insights on the pathophysiological regulation of tissue M φ , the disease group-specific and shared pathways of M φ , and novel therapeutic targets for cancers and inflammations.

Keywords: macrophages, disease-specific and shared pathways, immune checkpoint receptors, trained immunity, immunometabolism pathways

INTRODUCTION

As we reported previously (1-5), monocytes and macrophages (M ϕ) play significant roles in driving cardiovascular inflammations induced by various metabolic cardiovascular disease-related danger-associated molecular patterns (DAMPs) such as hyperlipidemia, hyperglycemia, hyperhomocysteinemia, and chronic kidney disease. Also, monocyte and Mq differentiation during various metabolic cardiovascular diseases has been characterized (5). In recent years, a complicated relationship between the bone marrow, monocytes/M ϕ , and the development of atherosclerotic plaques has begun to be revealed (6). The roles of $M\phi$ in modulating foam cell formation (7) and inflammation resolution (8) have also been reported. Moreover, several additional developments have been made, including in tissue M\u03c6 characterization, M\u03c6 polarization, subset characterization (9), clonal production, and trained immunity (trained immunity) (10). A recent success on the CANTOS trials with anti-interleukin-1ß (IL-1ß) monoclonal antibody Canakinumab (11) further emphasized the significant roles of inflammatory cytokines in the pathogenesis of metabolic cardiovascular diseases, in which monocytes and Møs secrete cytokines in large numbers and amounts in response to the stimulation of DAMPs or conditional DAMPs that we had reported (12). However, the molecular mechanisms underlying several vital aspects of $M\phi$ remain poorly determined: (1) the expression of M ϕ markers and M ϕ transcription factors, (2) pathways in the regulating roles of $M\varphi$ in various diseases, and (3) the differentiation and transdifferentiation of tissue $M\phi$ subsets.

Macrophages play significant roles in the pathogenesis of various diseases including cardiovascular (13), metabolic (14), infectious (15), respiratory (16), digestive (17), autoimmune (18), and many types of cancers (19, 20). However, three important questions remain: whether $M\phi$ use the same pathways and play the same roles or whether they use disease-specific pathways and play disease-specific roles in addition to the shared roles and pathways; whether 10 M subset markers and newly identified 27 TFs (21) and other 18 M ϕ subset TFs are differentially expressed in tissues; and whether all these newly reported proinflammatory features of $M\phi$ are differentially expressed in various tissues. Addressing these issues will improve our understanding of the disease-specific and shared roles and pathways of $M\varphi$ in the pathogenesis of various diseases and cancers and will lead to the identification of novel therapeutic targets specific to those diseases and cancers.

Determining novel mechanisms underlying macrophage disease-specific and shared pathways first requires an understanding of how macrophages respond to environmental and tissue functional cues from several aspects such as cell surface receptor signaling, cell-cell interaction receptor signaling, cell-cell communication signaling, intracellular immunometabolic pathways, and transcription factors. Macrophages are present in almost all tissues of the body, displaying distinct location-specific phenotypes and gene expression profiles (22). In addition to central roles in innate immunity and as modifiers of the adaptive immune responses, tissue M φ play supportive functions to the tissues they reside in Hoeksema and Glass (13).

Several cell-surface-specific mechanisms could promote macrophage heterogeneity. First, by varying stimuli such as different cytokines or DAMPs to act on M φ cell surface receptors, M φ can be "polarized" into as many as total 10 macrophage subsets including the typical proinflammatory M1 M φ and anti-inflammatory M2 M φ (9). Also, as many as 28 T cell co-stimulation receptors and co-inhibition/immune checkpoint receptors as cell-cell contact signaling receptors may serve as a second cell surface mechanism to shape the antigen-presenting functions of M φ (23). Finally, recent reports showed that exosomes are local and distal cell-cell communication vehicles (24), which may serve as the third cell-surface mechanism.

Abbreviations: TFs, transcription factors; LLSI, lung, liver, spleen, and intestine; Mφ, Macrophages; DAMPs, danger associated molecular patterns; IL-1β, interleukin-1β; ATMφ, adipose tissues Mφ; BM, bone marrow; Treg, regulatory T cell; APC, antigen presenting cell; STAT1, signal transducer and activator of transcription 1; NCBI, National Center for Biotechnology Information; LPS, lipopolysaccharide; IFN-γ, interferon- γ; IL-4, interleukin-4; TGF-β, transforming growth factor- β ; IL-1Ra, IL-1 receptor antagonist; MHO, metabolically healthy obese; KLF, Krüppel-like family; C/EBPα, CCAAT/enhancer-binding protein α; PPARy, peroxisome proliferator-activated receptor y; CXCL10, C-X-C motif chemokine 10; STAB1, stabilin 1; F13A1, coagulation factor XIII A chain; Chil4, chitinase-like 4; ARG1, arginase 1; SFRP5, secreted frizzled-related protein 5; PDL1, programmed death-ligand 1; FoxO, Forkhead box O; PD-L1, programmed death ligand 1; PPP, pentose phosphate pathway; IPA, Ingenuity Pathway Analysis; STX3, syntaxin 3; VAT, visceral adipose tissue; IRF4, interferon regulatory factor 4; MARE, Maf recognition elements; Tfh, follicular T helper cell; PAMP-Rs, pathogen associated molecular pattern receptors; DAMP-Rs, danger associated molecular pattern receptors; irAEs, immune-related adverse effects; mAb, monoclonal antibody; TAMs, tumor associated macrophages.

We also reported that exosomes secreted from immune cells such as macrophages might propagate inflammation from the first inflamed cells to the secondary inflammatory cells (25); exosomes regulate inflammation and immune responses via intercellular exosome communications (26). In addition to cell surface mechanisms, the M1 M φ proinflammatory metabolic pathways and M2 metabolic pathways have been identified (27) as the intracellular mechanisms. Another development is the recognition of innate immune memory (trained immunity) pathways such as increased glycolysis pathway, enhanced acetyl-CoA (activated acetate, cellular acetyl donor) generation, and increased expression of mevalonate pathway enzymes (28, 29), which were "zoomed in" to through extensive metabolic remodeling of 2,722 experimentally elucidated pathways (https://metacyc.org). Recent reports also identified numerous transcription factors involved in Mq differentiation and $M\phi$ subset polarization.

Regardless of significant progress in the field, several important questions remain. The first is whether, under various disease conditions, Mq uses both disease-specific signaling pathways and shared pathways. To determine the molecular mechanisms underlying disease-specific and shared pathways of macrophages, we examined macrophage features from tissue-specific differential expression of M\u03c6 cell surface markers, transcription factors, Mq cell-cell contact signaling receptors (T cell co-stimulation receptors and co-inhibition/immune checkpoint receptors), Mq cell-cell communication vesicle-exosome biogenesis and docking machinery, and Mq intracellular metabolism pathways such as bioenergy metabolism pathways and trained immunity (innate immune memory) pathways. We then narrowed in on the following questions: whether tissues have differential expression of M subset markers and transcription factors, whether tissue $M\phi$ have different inflammatory and trained immunity (innate immune memory) potentials, and whether tissue M\u03c6 have different bioenergy metabolism pathways and trained immunity pathways. To address these issues, we determined the expression of 207 M ϕ genes in several tissues such as lung, liver, intestine, spleen, and bone marrow-derived, including 10 subset markers, 45 transcription factors (TFs), and 127 other regulatory genes by analyzing the microarray experimental data sets that other investigators deposited in the NIH-NCBI GEO DataSets database, as shown in Figure 1. Of note, we pioneered this type of novel experimental data mining analysis in 2004 (30), which has allowed us to generate original findings and novel hypotheses for our experimental projects. The significant differences between our experimental database mining approaches and traditional literature reviews are detailed in Table 1. Based on the expression changes of 31 ten-Mq-subset markers and 45 TFs in eight groups of a total of 34 diseases, including 10 types of cancers, we have identified 20 novel disease group-specific and 12 new shared macrophage pathways. In addition, we also found new signaling and metabolic pathways underlying tissue Mq subset regulation in pathophysiological conditions as novel mechanisms for Mq heterogeneity, which serve as novel therapeutic targets specific to cancers and inflammations.

RESULTS

Expression of 31 M ϕ Markers and 45 M ϕ TFs Is Modulated in Eight Groups of a Total of 34 Diseases, Including 24 Inflammatory Organ Diseases and 10 Types of Cancers; and Both Shared and Disease-Specific Pathways for Each Group of Disease/Tumor Have Been Identified

 $M\phi$ play a key role in the pathogenesis of various diseases. However, two critical questions remain: whether $M\phi$ use the same pathways and play the same roles or whether they use disease-specific pathways and play disease-specific roles in addition to the shared roles and pathways. To improve our understanding of the roles of $M\phi$ in various diseases, we examined the expression of 31 M ϕ subset markers and 45 M ϕ transcription factors (Table 2) in eight groupings of a total of 34 diseases, including four types of autoimmune diseases, four types of cardiovascular diseases, four types of digestive diseases, four types of infectious diseases, four types of metabolic diseases, four types of respiratory diseases, five types of digestive cancers, and five types of other cancers. As shown in Table 3A, some $M\phi$ markers were upregulated in more than 30% of the 34 diseases, including three M1 markers, CXCL11, CXCL10, and CXCL9, 2 M2 markers, CCL18 and IL1RN, and one M4 marker, MMP7, suggesting that these markers may play significant roles in the pathogenesis of the diseases. In addition, the diseases with $M\phi$ markers upregulated in more than 30% of the 34 diseases were of eight types, including #5 myocardial infarction, #6 coronary artery disease, #10 gastritis, #11 Crohn's ileitis, #12 Crohn's colitis, #29 esophageal cancer, #32 ovarian carcinoma, and #34 renal carcinoma, suggesting that these diseases may have significant M\u03c6 marker activities with the pathogenic processes. Moreover, as shown in **Table 3B**, some $M\phi$ transcription factors (TFs) were upregulated in more than 30% of the 34 diseases, including M1 and NME1, suggesting that these TFs play significant roles in the pathogenesis of the diseases. Furthermore, the diseases having M ϕ TFs upregulated in more than 30% among the 34 diseases were of six types, including #6 coronary artery disease, #12 Crohn's colitis, #28 hepatocellular cancer, #29 esophageal cancer, #32 ovarian carcinoma, and #33 lung cancer, suggesting that these diseases have significant $M\phi$ TF activities with the pathogenic processes.

We then determined whether there are disease-specific signaling pathways and shared pathways based on the expression changes of $M\phi$ subset markers and $M\phi$ TFs in eight groups of 34 diseases and tumors. After analyzing the Ingenuity Pathway Analysis results of the top 10 pathways in both upregulated and downregulated $M\phi$ subset markers and $M\phi$ TFs, respectively, we compared all the upregulated pathways, downregulated pathways, and the pathways either upregulated or downregulated in some diseases (upper panel, middle panel, and lower panel of **Tables 3C,D**). As shown in **Table 3C**, we found three disease-specific pathways upregulated and 14

TABLE 1 | A novel research publication type utilizing big-omics experimental database mining analyses leads to original new findings and generates new hypotheses.

Category	Big-omics database mining	Traditional literature review
Analysis of experimental data (NIH Geo DataSets with microarray experimental data, etc.)	Yes	No
Original new findings	Yes	No
Association research (gene co-expression patterns at the same pathology or stimuli)	Yes	No
Causative research (upstream regulator gene-deficient microarrays,)	Yes	No
Panoramic view at multiple mechanisms and pathways	Yes	Yes
Improvement of our understanding	Yes	Yes
Searchable database requirements and tools	Yes	No
New publication types after-omics and high throughput experimental data generation	Yes	No
Different focuses from original papers	Yes	No
Use of Ingenuity Pathway Analysis (IPA) to analyze experimental data	Yes	No
Bioinformatic prediction	No	No
Future experimental verification	Yes	Yes
Face the low-throughput problems in verifying high-throughput–omics data (also see Yao et al. Nature Immunology, PMID: 31209400)	Yes	No
Summary of previous reports	No	Yes
Example for our database mining paper on IL-35 (highly cited by 173 papers)		PMID: 22438968
Example for traditional literature review: a Nature Immunology review that cited our database mining paper on IL-35		PMID: 22990890
Our experimental papers verifying the findings originated from our database mining paper on IL-35		PMIDs: 26085094; 29371247
Use of multiple NIH databases including PubMed database (https://www.ncbi.nlm.nih.gov/ books/NBK143764/)	Yes	No PubMed database only

Comparisons were made regarding various aspect between this study, with a big-omics experimental database mining approach, and traditional literature reviews.

disease-specific pathways downregulated. As shown in **Table 3D**, we found 16 disease-specific pathways upregulated and 16 disease-specific pathways downregulated. We also compiled a list of pathways that are shared in several groups of diseases and tumors.

As shown in Table 3A, we found that among 21 diseaseupregulated pathways, one pathway communication between innate and adaptive immune cells is shared among eight groups of diseases. We also found that three pathways, namely the role of hypercytokinemia/hyperchemokinemia in the pathogenesis of influenza, agranulocyte adhesion and diapedesis, and granulocyte adhesion and diapedesis, are shared by seven groups of diseases; four pathways, namely differential regulation of cytokine production in M ϕ and T helper cells by IL-17A and IL-17F, IL-10 signaling, the role of cytokines in mediating communication between immune cells, and pathogenesis of multiple sclerosis, are shared by 7 groups of diseases; and one pathway, altered T cell and B cell signaling in rheumatoid arthritis, is shared by five groups of diseases. In contrast, as shown in Table 3B, among 42 disease-downregulated pathways, 22 (52%) pathways are shared by two or more groups of disease, and 20 diseasespecific downregulated pathways may be important for the pathogenesis of the diseases. Furthermore, as shown in Table 3C, 13 Mφ pathways are upregulated and/or downregulated in some disease groups in two different directions, suggesting that some M\u03c6 functional pathways are modulated in diseasespecific manners.

These results suggest that the expression changes of $M\phi$ TFs in eight groups of 34 diseases are more diseasespecific than that of $M\phi$ subset markers, allowing the identification of 20 disease-specific and 12 shared (more than 4 groups of diseases) modulations of M φ TFs pathways in eight groups of 34 diseases. As shown in Table 3E, in detail, we found five upregulated disease-specific pathways in autoimmune diseases, three upregulated disease-specific pathways in cardiovascular diseases, two upregulated diseasespecific pathways in digestive inflammatory diseases, four upregulated disease-specific pathways in infectious diseases, one disease-specific pathway in metabolic disease, one diseasespecific pathway in respiratory disease, one upregulated pathway (shared with autoimmune disease) and one downregulated specific pathway in digestive tumors, and two upregulated disease-specific pathways in other tumors. In addition, we found 12 pathways that are shared by more than four groups of diseases and tumors. These results demonstrate for the first time that the expressions of M\u03c6 TFs are modulated in both disease-specific, and shared signaling pathways; these results provide insights on the roles of $M\phi$ in various diseases and novel therapeutic targets for modulating M\u03c6 TFs and M\u03c6 functions for those diseases and tumors. These results have also demonstrated for the first time that certain "high hierarchical" functional pathways in pathological M ϕ are more important in the pathogenesis of various diseases than other pathways, making them novel pathological Mq-specific therapeutic pathways; disease-specific **TABLE 2** A total of 207 macrophage (Mφ)-related regulator genes in seven representative groups were studied in this paper, including 31 Mφ subset marker genes, 18 Mφ subset transcription factor genes (TF), 27 Mφ general transcription factor genes, 28 T cell co-stimulation and co-inhibition receptor genes, 56 bioenergetics pathway enzyme genes, 23 trained immunity (innate immune memory) pathway genes, and 24 exosome biogenesis/docking mediator genes.

Category	Туре	Gene list	Number	Total number	PMID	Note
Mφ markers (cell surface)	M1	IL1B, TNF, IL6, CXCL11, CXCL10, CXCL9, IL23A, IL12A, IL12B, ARG2	10	43-12 = 31	24998279	Detailed information see
	M2a	MRC1, CD163, STAB1, CCL18, CD200R1, F13A1, IL1RN, ARG1, PDE4DIP, Chil4, Chil3, Retnla	12			Figure S1
	M2b	IL10, IL12B, IL12A	3			
	M2c	MRC1, ARG1	2			
	M2d	TNF, IL12A, IL12B	3			
	M4	MMP7, MRC1, S100A8	3			
	Mox	HMOX1, NFE2L2, TXNRD1, SRXN1	4			
	M(hb)	CD163, MRC1	2			
	Mhem	CD163	2			
	HA-mac	CD163, HLA-DRB1, HLA-DRA	3			
Mφ TFs	M1	HIF1A, RELA, IRF3, STAT1, STAT2	5	19–1 = 18	25228902 25506346 28228760 23640482 25505468 26954942 26972048 25755062 25367649	Detailed information see Figure S2
(41 🛨) (nuclear proteins)	M2a	PPARD, PPARG, KLF4, AKT1	4			
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	M2b	MAPK1 STAT3	2			
	M2c	NEKB1 NEKB2 NB3C1 NEE2	4			
	M2d	N/A	0			
	M4	N/A	0			
	Mox	NB1H3	1			
	M(bb)	ATF1	1			
	Mhem	NB1H3 NB1H2	2			
	HA-mac	Ν/Δ	0			
	General Mø TFs	CREB1, HMGA1, SMAD4, ZNF148, HBP1, CKLF, ZNF281, FOXO3, HEY1, ETS2, HIF1A, STAT4, MELTF, BATF3, NFE2, NFKB1, RIT1, HIVEP1, JUNB, NFX1, FOXN3, STAT3, PWWP3A, MXD4, E2F3, CEBPD, NME1	27	27	24530056	
Co-stimulation and co-inhibition receptors (cell-cell interaction	Co-stimulation receptors	ICOSLG, CD70, TNFSF14, CD40, TNFSF9, TNFSF4, TNFSF15, TNFSF18, TNFSF8, TIMD4, SLAMF1, CD48, SEMA4A, CD58	14	28	23470321 27192563	Detailed information see Figure S3
receptors)	Co-inhibition receptors	LGALS9, NECTIN3, TNFRSF14, PDCD1LG2, CD274, CD276, VTCN1, VSIR, HHLA2, BTNL2	10			
	Dual-function receptors	CD80, CD86, PVR, IL2RB	4			
Bioenergetics pathway enzymes (intracellular metabolism	TCA cycle	CS, ACO1, ACO2, IDH2, IDH3A, OGDH, SUCLA2, SUCLG1, SUCLG2, SDHA, SDHB, FH, MDH2	13	56	23317369 25945836 26024507	Detailed information see Figure S4
I-immunometabolism)	Pentose phosphate pathway	G6PD, PGLS, PGD, RPE, RPI, TALDO1, TKT	7		25594225	
	Glutamine pathway	SLC38A1, SLC38A2, GLS1, GLUD1, GOT2, GPT2, SLC1A5	7			
	Fatty Acid synthesis pathway	FATP, CD36, SLC27A1, SLC27A2, SLC27A3, SLC27A4, SLC27A5, SLC27A6, ACSL1, ACSL3, ACSL4, ACSL5, ACSL6, CPT1A, CPT1B, CPT2	16			

TABLE 2	Continued
	00111111000

Category	Туре	Gene list	Number	Total number	PMID	Note
	Fatty Acid B-oxidation pathway	ACADVL, HADHA, HADHB, ACADS, ACADSB, ACADM, ACADL, ACAD8, ACAD9, ACAD10, ACAD11, ECHS1, HADH	13			
Trained immunity pathway enzymes (intracellular metabolism II-trained immunity)	Glycolysis pathway	GLUT1, HK, GPI, PFK1, ALDOA, TPI1, GAPDH, PGK, PGAM, ENO, PK, LDH, PDH1, MPC1	14	24-1 = 23	24911170 30298120 25594225	Detailed information see Figure S5
	Mevalonate metabolism pathway	ACLY, HMGCS1, HMGCR, MVK, PMVK, MVD, FDPS	7			
	Acetyl-CoA generating enzyme	ACLY, ACSL1, ACSL5	3			
Exosome biogenesis/docking mediators (local and distal cell-cell communication vehicles)	Biogenesis mediators	RAB11A, STX6, ARF6, RAB27A, RAB31, SEC22B, STX18, STX3, VAMP3, YKT6, TSG101, PDCD6IP	12	24	29109687	Detailed information see Figure S6
	Docking mediators	CAV1, CD44, SELE, ADGRE1, LGALS3, LGALS1, ICAM-1, ITGA6, ITGB1, ITGB3, ITGB4, LAMP1	12			
		Total number		207		

 $M\phi$ pathways are also important for the pathogenesis of the diseases and are disease-specific therapeutic targets.

Macrophages (M ϕ) in Lung, Liver, Spleen, and Intestine Express Higher M1 M ϕ Markers Than Lean Adipose Tissue in Physiological Conditions

To determine the novel mechanisms underlying disease-specific and shared macrophage pathways, we and others previously reported that metabolic disease risk factors serve as conditional danger-associated molecular patterns (conditional DAMPs) (12, 31, 32) and induce monocyte/M ϕ differentiation into Ly6Chigh-(1-3) and CD40+ proinflammatory monocytes (4), and accelerate vascular inflammation. Other studies also reported that, under certain experimental conditions such as stimulation with lipopolysaccharide (LPS) and interferon- γ (IFN- γ) for M1 polarization or interleukin-4 (IL-4) for M2 polarization (33), M ϕ can be polarized into multiple subsets including proinflammatory M1 and M4 M ϕ , anti-inflammatory M2, M(Hb), and Mhem M ϕ (34) (Figure 2A). However, whether the different physiological environments present in tissues affect the expression of residential Mø subsets markers and other regulators has not been studied (35). We hypothesized that various tissue environments with tissue differentiation potentials, DAMPs/conditional DAMPs, cytokines, and cellcell contacts induce differential expression patterns of $M\phi$ subset markers.

To examine this hypothesis in a very comprehensive manner, we collected 31 M ϕ markers of 10 M ϕ subsets, as reported in a recent publication (9) (**Table 2**). As summarized in **Figure 2A**, the 10 M ϕ subsets perform various functions in

regulating inflammation, immune responses, anti-oxidant, and tumor promotion (9). We included 10 M φ markers in our analysis, and these markers are differentially expressed in different M φ subsets. Furthermore, we also made a list of the transcription factors (TFs) of 18 M φ subsets, which are critical for the development and maintenance of seven out of 10 M φ subsets (**Table 2**). The data for TFs that are critical for development of M2d, M4, and HA-Mac were not available at the time we conducted the analysis. Moreover, we included an additional 27 M φ TFs that were identified in M φ by RNA-Seq analysis (21).

By examining the expression of these M φ regulators in M φ microarray datasets deposited in the NI-NCBI GEO DataSets database (https://www.ncbi.nlm.nih.gov/gds/), we found that the expression of M1 M ϕ markers is higher in M ϕ that reside in tissues such as lung, liver, spleen, and intestine (LLSI) compared to lean adipose tissue $M\phi$ (ATM ϕ), physiologically (Figure 2B). This suggests that the majority of lung, liver, spleen, and intestine (LLSI) residential M ϕ are M1 M ϕ (Figure 2C); therefore, these tissues have more potential to produce inflammatory responses than adipose tissue. In addition, as shown in Figures 2B,D, we found that: (1) Retnla, CD163, and MRC1 are relatively ATM φspecific markers; (2) STAB1, NFE2L2, and SRXN1 are relatively bone marrow (BM)-specific M φ markers; (3) ARG1 is a relatively specific M ϕ marker for peritoneum, M2a, and M2c; (4) Chil4 is a relatively specific M ϕ marker for lung and M2a; (5) IL1B is a relatively specific $M\phi$ marker for liver and M1; (6) PDE4DIP and HMOX1 are relatively specific M ϕ markers for spleen, M2a, and MOX; and (7) CXCL9 is a relatively specific M φ marker for small intestine and M1. Our results suggest that these M ϕ subset markers modulated in the tissues may play important roles in tissue-specific $M\phi$ functions and subset compositions.

t diseases.
ð
ð
ŝ
ĝ.
б
6
œ
\subseteq
ĕ
<u></u>
Ę
8
E
Φ
ਸ਼
ŝ
ē
S
3
00
₹,
<
2
\subseteq
. <u> </u>
ē
Æ
Ц
e
ğ
5
ō
ğ
Da
5
6
Ť
~
č
.9
ŝ
Ð
ð
ô
e
È
<u> </u>
×
۳
8
₹

φ		A	utoim disea	mune ses	n	Ca	dise	ascul	ar	in	Dige	stive nator	~	-	Infect diseas	ion		<u>a</u> <u>B</u>	etabo iseas∈	ss Ss		Resp dise	irator	~		Dige	stive			Othe	tt	ors		U regu dis	lp- Ilated ease	regu dise	wn- lated ase	
Subsets	Markers	-	0	e	4	2	9	2	8	6	9	÷	12	13	4	15	16	1	18	9 20	21	22	23	24	25	26	27	58	0 0	in o	33	33	34	Numbe	er %	Numt	ber %	
1 M	IL1B	\rightarrow				←	←	\rightarrow		←		←	←	\rightarrow	←	\rightarrow								←					←			\rightarrow		00	23.5	2	20.	0.
	TNF	\rightarrow									~				~		\rightarrow		~				\rightarrow	~			\rightarrow		~		~	\rightarrow		9	17.6	2	14.	2.7
	IL6	\rightarrow				~	~			←		←	←	\rightarrow	←	\rightarrow								~			~					\rightarrow	\rightarrow	00	23.5	2	14.	⊵.
	CXCL11	~				←	~				←	~	←	~		←		~								←	~		↓ ↓	,	~		~	15	44.1	0	0.0	0
	CXCL10	←				←	~				~	←	←			←										←		~	↓ ↓	,			~	12	35.3	0	0.0	0
	CXCL9	←				~	~			←	~	←	←	←											←			~	↓ ↓	,			~	13	38.2	0	0.0	0
	IL23A			~		\rightarrow				←		~	←												\rightarrow		~		↓ ↓	,	~	~	\rightarrow	0	26.5	С	8.0	œ
	IL12A						~																		←				\rightarrow		~	\rightarrow		С	8.8	CI	5.0	0
	IL12B						~									\rightarrow											~		←					с	8.8		2.0	0
	ARG2	\rightarrow		~			~					\rightarrow		\rightarrow			,	\rightarrow									~			\rightarrow		~	\rightarrow	4	11.8	9	17.	ø.
M2a	MRC1			\rightarrow		~	~										,	\rightarrow				~							\rightarrow		~			4	11.8	e	8.0	00
	CD163		←				~	\rightarrow	\rightarrow		~	←	←		~						~	~					\rightarrow	\rightarrow	\rightarrow			\rightarrow	~	6	26.5	9	17.	9.
	STAB1					←	\rightarrow				~				←									←	\rightarrow		\rightarrow		←		~		~	7	20.6	က	8.8	œ
	CCL18	~				~	~				←		←												~	←	\rightarrow	~	~		~	\rightarrow	~	÷	32.4	N	5.9	0
	CD200R1				\rightarrow	\rightarrow	~								\rightarrow		\rightarrow										\rightarrow						~	N	5.9	9	14.	2.7
	F13A1			\rightarrow				~			~			\rightarrow								~			\rightarrow		\rightarrow		\rightarrow		~	\rightarrow		4	11.8	7	20.	9.
	IL1RN	←	←			~	~		←	~		←	←		←				←	\rightarrow				~	\rightarrow	\rightarrow		~	~	,	~	\rightarrow	~	15	44.1	4	11.	œ
	ARG1		←	←		\rightarrow	~					←			←				←			~		~	\rightarrow	\rightarrow								00	23.5	С	8.0	œ
	PDE4DIP			\rightarrow	\rightarrow	~	~					←	←	\rightarrow			,	\rightarrow			~				~		\rightarrow		\rightarrow		\rightarrow			9	17.6	00	23.	ĿQ.
	Chil4																																	0	0.0	0	0.0	0
	Chil3																																	0	0.0	0	0.0	0
	Retnla																																	0	0.0	0	0.0	0
M2b	IL10				\rightarrow	←	~						←	←										←								~	~	7	20.6	-	2.9	0
	IL12B						~																				~		←					С	8.8	0	0.0	0
	IL12A						~																		~				\rightarrow		~	\rightarrow		с	8.8	0	5.9	0
M2c	MRC1			\rightarrow		~	~											\rightarrow				~							\rightarrow		~			4	11.8	С	8.0	œ
	ARG1		←	←		\rightarrow	~					~			~				←			~		~	\rightarrow	\rightarrow								00	23.5	С	80.00	œ
M2d	TNF	\rightarrow									~				←		\rightarrow		←								\rightarrow		←		~	\rightarrow		Q	14.7	4	11.	œ
	IL12A						~																		~				\rightarrow		~	\rightarrow		С	8.8	N	2.0	0
	IL12B						~									\rightarrow											~		←					С	8.8		2.0	0
M4	MMP7					←				←	←	~	←			\rightarrow									~		~	~	~	,	~		\rightarrow	10	29.4	C	5.9	0
	MRC1			\rightarrow		~	~											\rightarrow				~							\rightarrow		~			4	11.8	С	8.8	œ
	S100A8	←		←			\rightarrow				~	←	←						→								~		→ ↓			\rightarrow		7	20.6	4	11.	œ
Mox	HMOX1					~	~			~			\rightarrow		~	←								~	~		\rightarrow		~	,	\rightarrow	\rightarrow	~	6	26.5	4	11.	œ
	NFE2L2					←	~		\rightarrow			\rightarrow		\rightarrow				\rightarrow				~			\rightarrow					\rightarrow	\rightarrow			с	8.8 8	7	20.	ø.
																																					Continue) (pe

8

TABLE 3.	A Continue	q																																						
φ		A	utoin dise	ases	Ð	Ca	urdiov dise;	ascu ases	lar	=. _	Dige	estiv	e ory		dis	eases	د ۵		Met dise	taboli	U		Resp dise	irator	~		Dige	stive			õ	ther t	nmor	ý		L regu dis	lp- Ilated ease	regu disi	wn- llated ease	
Subsets	Markers	-	2	e	4	5	9	7	8	6	9	7	12	1 2	14	15	16	17	18	19	20	3	8	53	54	25	26	27	58	29	8	31	8	ŝ	34	Numbe	er %	Num	ber %	
	TXNRD1					←	←	\rightarrow	\rightarrow					\rightarrow									~				~		~							Ω	14.7	co	80.00	
	SRXN1			←		←	~						~	\rightarrow													~	~		~		←				œ	23.5	-	2.5	0
(qu)M	CD163		←				~	\rightarrow	\rightarrow		~	~	~		~							~	~					\rightarrow	\rightarrow	\rightarrow				\rightarrow	←	6	26.5	9	17.	9.
	MRC1			\rightarrow		←	~											\rightarrow					~							\rightarrow			~			4	11.8	С	 	œ
Mhem	CD163		←				~	\rightarrow	\rightarrow		~	~	~		~							~	~					\rightarrow	\rightarrow	\rightarrow				\rightarrow	~	6	26.5	9	17.	9.
HA-mac	CD163		←				~	\rightarrow	\rightarrow		~	~	~		~							~	~					\rightarrow	\rightarrow	\rightarrow				\rightarrow	~	6	26.5	9	17.	9.
	HLA-DRB1	~					\rightarrow				~		~					~					\rightarrow					\rightarrow					~	\rightarrow	~	9	17.6	4	1	œ
	HLA-DRA	~								~	~		~								\rightarrow							\rightarrow			←		~	\rightarrow	~	7	20.6	С	 00	œ
-dD-	Number	œ	с	ß	0	16	20	-		œ	12	12	16	ς α	00	с	0	N	က	0	0	N	9	0	00	9	ŝ	00	9	÷	œ	-	42	co	12					
regulated gene	%	25.8	9.7	16.1	0.0	51.6	64.5	3.2	3.2	25.8	3 38.7	7 38.	7 51.	6 9.7	7 25.	8 9.7	7 0.C	6.5	9.7	0.C	0.0	6.5	19.4	0.0	25.8	19.4	. 16.1	25.8	19.4	35.5	25.8	3.2	38.7	9.7	38.7					
Down-	Number	4	0	с	с	Ю	с	Ю	с	0	0	CV	-	00	-	4	со	4	0	-	N	0	-	-	0	9	N	10	-	ß	с	с	с	12	4					
regulated gene	%	12.9	0.0	9.7	9.7	9.7	9.7	9.7	9.7	0.0	0.0	.6.E	3.5	25.	8 3.2	2 12.5	9 9.7	12.6	0.0	3.2	6.5	0.0	3.2	3.2	0.0	19.4	6.5	32.3	3.2	16.1	9.7	9.7	9.7	38.7	12.9					
First, som having Mq #32 ovarié disease; 7 16, Tuberc 25, Gastrić Renal carc	e Mø marker: 5 markers upr an carcinoma, 7 Abdominal ¿ 3.ulosis; 17, Ty 3 adenocarcin inoma.	s wen egula and aortic 'pe 2 'oma;	e upru ted in #34 r aneu, diabe 26, F	egula. moru nysm; rysm; tes; 1 fepat	ted ir. e thai carcir. 8, A. 18, Ty ocellu	n moru n 30% noma ortic (pe 1 ilar cɛ	e tha 6 of t (For occlu, diabé	n 30. he 3 ⁴ detai isive (stes; ; 27,	% of 4 dise lied e: disea. 19, A Color	the 3 eases xpres xpres se; 9 se; 9 se; 9 rectat	34 dis s wer ssion 1, Ulc volic	seasc e of data, syndi syndi noca,	ss, inc eight , see , see rome, rome,	typex typex Figu fitis; 1 fitis; 1 ma; 20,	ig thr s, nar s, nar 10, G, 10, G, 78, P€	96 M nely 4 39–S1 astriti: ial Hy increé	1 mai #5 m) 12) 1, s; 11, s; rect rperct	rkers, yocari , Rhe , Crof 'olest ancer,	CXC. dial ir. umatı 'nı's il. terolei ': 29, ı	L 11, Ifarcti oid aı 'eitis; mia; ' Esopl	CXCL CNCL ion, # thritis 12, C 21, C 21, C hagee	10, a 6 cor 6 cor 7 cohn 7 cohn 7 hronii hronii 1 can	nd C onary Syster Syster S coli s coli s cols Cer; 3	XCL9 arter nic lu tructi tructi	1, 2 N y dis pus ∈ 3, Tut ve pu ve pu	12 mé ease, erythe bercu Imoni Adene	arkers #10 #mato lous I ary di pcarc	, CCL gastri sus; denin Menin sease rhome	-18 a. ttis, # 3, Psc gittis (1; 31, 1; 31,	nd IL: 11 Cr niasis niasis coinfe Pulm Prost	1RN, ohn's ohn's t 4, 4 cted onary onary	and c ileitis Asthm With I with I arter ancer	one A 3, #12 na; 5, HIV; 1 rial hy r; 32,	A4 m. 2 Cro. Myo. 14, St perte Ovar	arker, hn's c cardis epsis; ension	MMP7 solitis, solitis, solitis, st 15, C, 15, 23, A rcinom	7. Seco #29 esc trion; 6, hronic I sthma; sthma; aa; 33, i	nd, the pphage Coror Hepatit 24, Pr 24, Pr	diseas al canc ary arte s C vin ieumon ieumon	es er, ie; is; ia;

	cn'
	ň
	ഗ്
	ĥ
	õ
	õ
-	ž.
	U
	4
	ň
1	
	5
	O
	S
	ő
	5
	ಗ
	Ч
	ō
0	υ
	=
	8
	Ξ.
	ה
	₩.
	1
	Õ
	0
	5
	(D)
	۳.
	Q
	ŝ
	Ľ
	O.
	ž
	Q
	g
	+-
	\Box
	ō
	≝
	F
	≓
	7
	2
	2
	٣
	ίυ.
	₽
	_
	g
	₹
	Ψ
	5
	Ψ
	S
	n
	×
	2
	5
	5
	2
	0
	5
	ž
	112
	22
	Ĕ
	Ĕ
1	Ĩ,
I	2/ m(
	1 2/ m(
1	id 27 mi
1	nd 27 m(
-	and 27 m
1	s and 27 ms
1	rs and 2/ m
-	ors and 2/ m
	tors and 2/ m
	ctors and 2/ ma
	actors and 27 ms
	tactors and 27 ms
	n factors and 27 ms
	on factors and 27 ms
	tion factors and 2/ ma
	otion factors and 27 ms
	ription factors and 27 mi
	cription factors and 27 ms
	scription factors and 27 ms
	Ascription factors and 27 million
	anscription factors and 27 ma
	ranscription factors and 27 ma
	transcription factors and 27 ms
	of transcription factors and 2/ ma
	set transcription factors and 27 ms
	set transcription factors and 2/ ma
	lbset transcription factors and 2/ ma
	ubset transcription factors and 2/ ma
	subset transcription factors and 2/ ma
	e subset transcription factors and 2/ m
	ge subset transcription factors and 2/ me
	age subset transcription factors and 2/ ma
	lage subset transcription factors and 2/ mi
	phage subset transcription factors and 2/ ma
	phage subset transcription factors and 2/ mi
	ophage subset transcription factors and 2/ mk
	crophage subset transcription factors and 2/ mi
	acrophage subset transcription factors and 2/ ma
	nacrophage subset transcription factors and 2/ mk
	macrophage subset transcription factors and 2/ ma
	3 macrophage subset transcription factors and 27 million
	18 macrophage subset transcription factors and 27 mc
	18 macrophage subset transcription factors and 2/ macrophage subset transcription factors and 2/ macrophage subset transcription factors and 2/ macrophage subset framework and 2/ macrophage s
	A 18 macrophage subset transcription factors and 2/ me
	of 18 macrophage subset transcription factors and 2/ ma
	s of 18 macrophage subset transcription tactors and 2/ me
	ns of 18 macrophage subset transcription factors and 2/ me
	ons of 18 macrophage subset transcription factors and 2/ me
	ions of 18 macrophage subset transcription factors and 2/ mi
	isions of 18 macrophage subset transcription factors and 27 mil
	issions of 18 macrophage subset transcription factors and 27 me
	essions of 18 macrophage subset transcription factors and 2/ me
	yressions of 18 macrophage subset transcription factors and 27 mc
	(pressions of 18 macrophage subset transcription factors and $2/$ m
	sypressions of 18 macrophage subset transcription factors and $27 \text{ m}_{ m c}$
	expressions of 18 macrophage subset transcription factors and 27 mi
	e expressions of 18 macrophage subset transcription factors and $2/$ m _i
	The expressions of 18 macrophage subset transcription factors and $2/$ m _i
	The expressions of 18 macrophage subset transcription factors and 27 m_{c}
	The expressions of 18 macrophage subset transcription factors and 27 mc
	The expressions of 18 macrophage subset transcription factors and 27 million
	B The expressions of 18 macrophage subset transcription factors and 27 million
	36 The expressions of 18 macrophage subset transcription factors and 27 mc
	3B The expressions of 18 macrophage subset transcription factors and 27 million
	E 3B The expressions of 18 macrophage subset transcription factors and 27 mi
	LE 3B The expressions of 18 macrophage subset transcription factors and 27 million
	3LE 3B The expressions of 18 macrophage subset transcription factors and 27 m_{c}

Frontiers in Immunology | www.frontiersin.org

9		Aut	oimn iseas	es		Carc	diova	scula	F	int	Diges	stive nator;	~		disea	ses		2 0	letabc liseas	es es	-	Respii dise	rator) ases			Dig tu	jestiv. mors	n		0	ther	nmor	(0		Up regula disea	- ited	Dowi regula disea	n- ted se
lbsets	TFs	-	~		4	5	9	2	œ	6	9	÷	엳	13	4	15	16	17	18	9	0	8 -	8	3 24) 5 1	5 26	27	28	29	30	31	ß	33	35	lumber	%	Numbe	sr %
_	HIF1A							\rightarrow		←		→	~	\rightarrow			\rightarrow	\rightarrow				→				→							←	\rightarrow	9	17.6	9	17.
	RELA	\rightarrow												\rightarrow																	~				-	2.9	N	5.0
	IRF3						\rightarrow																								\rightarrow	←	~		N	5.9	N	5.0
	STAT1	←			←		←		\rightarrow	~		←	←	\rightarrow		←	~					÷				~		~	~	←		←	~	~	17	50.0	N	5.0
	STAT2								\rightarrow				~			~	~	~										~	~		←	\rightarrow	←	~	o	26.5	N	5.0
2a	PPARD			←		←	←			←			\rightarrow														\rightarrow	~	~		\rightarrow	←	←		00	23.5	С	80.00
	PPARG	\rightarrow				←	←	\rightarrow	\rightarrow	\rightarrow			\rightarrow	\rightarrow	←					~	4			~	\rightarrow	~		~		\rightarrow			\rightarrow		7	20.6	o	26.
	KLF4	\rightarrow				\rightarrow				\rightarrow			\rightarrow	\rightarrow			\rightarrow								\rightarrow		\rightarrow	~	\rightarrow	\rightarrow		\rightarrow	\rightarrow	\rightarrow	-	2.9	13	38.
	AKT1													\rightarrow																		←			-	2.9	-	2.0
2b	MAPK1	~					←						←	\rightarrow				\rightarrow								~						\rightarrow	\rightarrow	~	9	14.7	4	1.
	STAT3			←			←		\rightarrow	←			←	\rightarrow			~										~		~		\rightarrow	←		\rightarrow	œ	23.5	4	1.
20	NFKB1						←		\rightarrow					\rightarrow																						2.9	N	5.0
	NFKB2	\rightarrow								←			~												\rightarrow			~	~				←	~	9	17.6	N	5.0
	NR3C1			,		\rightarrow	←					\rightarrow	~	\rightarrow				\rightarrow	,	\rightarrow							\rightarrow		\rightarrow	\rightarrow	\rightarrow		\rightarrow	~	ო	8.8	÷	32.4
	NFE2					~	\rightarrow		←				←	\rightarrow			~							~						\rightarrow		←	\rightarrow		9	17.6	4	11.
dr	ATF1						←					\rightarrow	\rightarrow	\rightarrow				\rightarrow							~		\rightarrow					\rightarrow			N	5.9	9	17.0
XC	NR1H3	~											\rightarrow															~		\rightarrow		←		~	4	11.8	N	5.0
mer	NR1H2								~					\rightarrow					←	->	→	→	_`					~							ო	8.8	ო	80. 80.
	NR1H3	~											\rightarrow															~		\rightarrow		←		~	4	11.8	N	5.0
certain	CREB1	~					\rightarrow							\rightarrow			\rightarrow	\rightarrow										~	~			\rightarrow	←		4	11.8	ŝ	14
	HMGA1					←	←		~					\rightarrow					,	\rightarrow					~	~	~	~	~	~		←	←		÷	32.4	N	5.0
	SMAD4					\rightarrow	←	\rightarrow	\rightarrow			~	\rightarrow	\rightarrow			~	\rightarrow						\rightarrow	\rightarrow		\rightarrow	\rightarrow	\rightarrow		\rightarrow	\rightarrow			С	8.8	13	38
	ZNF148							\rightarrow	\rightarrow					\rightarrow				\rightarrow				÷	4			~						\rightarrow	←		С	8.8	Ŋ	14
	HBP1					\rightarrow			\rightarrow					\rightarrow				\rightarrow				÷	_				\rightarrow		\rightarrow			\rightarrow				2.9	7	20.1
	OKLF	~					←		\rightarrow				~	\rightarrow				\rightarrow		\rightarrow					~	~		~		~		←			œ	23.5	4	11.0
	ZNF281						←			←			~	\rightarrow											~			~	~	~	←		←		o	26.5	-	2:0
	FOXO3	\rightarrow						\rightarrow	\rightarrow																			\rightarrow	\rightarrow		\rightarrow				0	0.0	9	17.(
	HEY1					←	←		\rightarrow			~		\rightarrow			\rightarrow			←		\rightarrow	_ `	~	~		\rightarrow		~	\rightarrow	\rightarrow		\rightarrow	~	œ	23.5	œ	23.
	ETS2	\rightarrow				\rightarrow	\rightarrow	\rightarrow	\rightarrow				←	\rightarrow					,	\rightarrow				~		\rightarrow	~	~	~		\rightarrow	\rightarrow	\rightarrow		9	17.6	÷	32.4
	HIF1A					~	\rightarrow		~	←		←	←	\rightarrow			\rightarrow					÷	,			~							←	\rightarrow	œ	23.5	4	1.
	STAT4		\rightarrow										~														\rightarrow							~	N	5.9	0	5.0
	MELTF			\rightarrow		←						\rightarrow	~												~			~	~			~	~		7	20.6	N	5.0
	BATF3											~	~																			←			e	8.8	0	0.0
	NFE2								~				~	\rightarrow			~		←	->	_			~						\rightarrow		←	\rightarrow		9	17.6	4	11.
	NFKR1						~		-					\rightarrow																						6.0		5.0

TABLE 3E	Continue	q																																					
Φ		Auto dis	ease	a s		Cardi di	iovas sease	cular		Di Infla	igesti amme	ive atory		년 년	fectic	u s		Me	taboli	a c	, we have a second seco	espira liseas	ttory ies			Dige	stive lors			đ	er tur	nors		-	Up- egulat disea:	be ed	Dowr regular disea	ו- se dd	I
Subsets	TFs	-	8	e	4				~ ~	- 6	10	÷	1	3 1	4	5 1(-1:	7 15	3 19	20	21	22	23	24	25	26	27	28	59	30	3	8	с С	4 Nu	mber	%	Numbe	r %	1
	RIT1			←		L L	L			L _				_			$ \rightarrow$					←				←	\rightarrow	←								23.5	2	14.7	
	HIVEP1					Ť	4						,	\rightarrow						\rightarrow		←													0	5.9	N	5.9	
	JUNB	\rightarrow							←				~	\rightarrow		\rightarrow	. `		\rightarrow	~						\rightarrow		←		\rightarrow			\rightarrow		4	11.8	7	20.6	
	NFX1	\rightarrow				÷	4	,	\rightarrow			←	,	\rightarrow		~	,					~													4	11.8	с	8.8	
	FOXN3						7	_`	\rightarrow		,	\rightarrow	→	\rightarrow		→	← - `								\rightarrow		\rightarrow		\rightarrow	\rightarrow		\rightarrow				2.9	12	35.3	
	STAT3			~				,	~- →	4			, ~	\rightarrow		~	→ ✓		\rightarrow								~		~		\rightarrow	←	7	_	7	20.6	9	17.6	
	PWWP3A																																		0	0.0	0	0.0	
	MXD4						-		\rightarrow										~								\rightarrow			\rightarrow			\rightarrow		-	2.9	2	14.7	
	E2F3					~	4	,	\rightarrow			←	~			~	,								~	~	~	←	~	~	~	←	←		13	38.2	-	2.9	
	CEBPD	\rightarrow										←	←				\rightarrow			\rightarrow								\rightarrow			\rightarrow		\rightarrow		N	5.9	9	17.6	
	NME1				~	Ţ	- -	_`	\rightarrow			←	←	\rightarrow			\rightarrow								~		←		←	~	←	←	←		12	35.3	4	11.8	
-d	Number	2	0	4	5	-1	8	, C	4		-	ნ	8	 C	~	2 2	0	-	N	N	0	7	0	4	œ	0	ß	17	13	9	5	13	9	N					
regulated gene	%	12.2 (3.0.0	9.8 2	.4 16	.5 43	0 6 8	6 0	.8 17	.1 2	4 2	2.0 4	3.9 0	0.4	9.	.9 17	1 4.	6 5'	4 4.5	9.4.9	0.0	17.1	0.0	9.8	19.5	22.0	12.2	41.5	31.7	14.6 1	2.2 3	1.7 46	6.3 26	80					
Down-	Number	0	-		1	4	*	~	00) c		4	00	8	0) 6	12	0	9	С	0	N	0	-	ŝ	N	1	с	9	0	10	10	ν m						
regulated gene	%	20.0	2.2	2.2 2	2 13	ю С	9 17	.8 4(0.0 4.	4.	0.0	3.9 1	7.8 62	2.2 0	0	.0 13	.3 26	.7 0.(0 13.	3 6.7	0.0	4.4	0.0	2.2	11.1	4.4	24.4	6.7	13.3	20.0 2	2.2 2	2.2	0 0.0	0					
First, some in more thé expression disease; 9, 19, Metabc Colorectal é	My transcri, m 30% amc data, see tt, Ulcerative c lic syndrom, idenocarcinc	otion fai ing the e Figur olitis; 11 e); 20, F	ctors 34 di 35 di es S 3, Ga amilie	(TFs) I (TFs) I (TFs) I (T 3-S1) (T 3-S1) (T 3-S1) (TFs) (TFs) (Treation)	were i s wer s wer s wer (6). 1, 11, C ∋rchoi	upreg e of : Rheu Trohn ester	julate julate six ty, umatu 's ilei olem. 29, Es	d in r oes, vid ar tis; 1. tis; 21	nore name thritis 2, Crc , Chr	than . than . 1/y #6 2, 2 2, 2 2, 2 2, 1 2, 2 2, 1 2, 1	30% 30% Systei Systei coliti obstr obstr er; 30	of the of the mic lu is; 15 'uctivu 2, Bre	 34 c 34 c arten arten arten tubu tubu tubu puln buln ast A. 	liseas v dise erythe erculc nonar denoc	es, in ase, mato, vus M y dise zarcin	cludir #12 (sus; ; tening ase; oma;	ng M1 Drohn 3, Psc ittis cc 22, P	TF S 's col briasis pinfec 'ulmor	ittis, # ittis, # ittis, # ited w nary & ite cai	and t 28 he sthm: sthm: ith Hi ith Hi iterial	hree (patoc a; 5, 1 V; 14, I hype 32, O	other cellula Myocc , Sep; srtens variar	M ₄ T. Ir can ardial sis; 1: ion; 2 ion; 2	Fs, né cer, # infarc 5, Ch 3, As	amely 29 es tion; ronic thma, thma,	HMG Sophe 6, Cc 6, Cc Hepa ; 24, Lunc	A1, E geal (ronar ronar tritis C Pneur	2F3, cance y arte virus nonia	and N r, #32 ry dis ; 16, ; 25, u	IME1. ? ovar ease; Tuber Gastri al car	Seco Seco an ca 7, Ab 7, Ab 7, Ab culosi culosi	nd, tť arcino, domii s; 17, nocar	le dise ma, a nal ao Type cinom	ases nd #3 rtic an 2 dia na; 26,	having 3 lung eurysr betes; Hepa	1 M4 TH cance n; 8, A 18, Ty tocellu	^E s upre ar (For a ortic ou pe 1 di lar can	igulatec detailec cclusive abetes, cer, 27,	10000

	በφ markers	Disease type	Autoimmune diseases	Cardiovascular diseases	Digestive inflammatory disease	Infection disease	Metabolic diseases	Respiratory disease	Digestive tumors	Other tumors
Up-regulated pathways in eight group of diseases	Hematopoiesis from Pluripotent Stem Cells	-		~						
	IL-17 Signaling	-								~
	Acute Phase Response Signaling							~		
	Glucocorticoid Receptor Signaling ×	0				~		~		
	IL-17A Signaling in Gastric Cells★	С	~			~				~
	Pathogenesis of Multiple Sclerosis	9	~	\leftarrow		~	~		~	~
	Agranulocyte Adhesion and Diapedesis	7	~	\leftarrow	\leftarrow	~	~		~	~
	Granulocyte Adhesion and Diapedesis	7	~	\leftarrow	~	~	~		~	~
	N(†)		4	4	N	Ŋ	m	0	ო	IJ
Down-regulated pathways in eight group of diseases	Role of Pattern Recognition Receptors in Recognition of Bacteria and Viruses		\rightarrow							
	TREM1 Signaling	Ļ	\rightarrow							
	IL-12 Signaling and Production in Macrophages \star	۲		\rightarrow						
	Role of BRCA1 in DNA Damage Response*	۲			\rightarrow					
	Sirtuin Signaling Pathway★				\rightarrow					
	Unfolded protein response \star	-			\rightarrow					
	Extrinsic Prothrombin Activation Pathway	-				\rightarrow				
	NRF2-Mediated Oxidative Stress Response★	-				\rightarrow				
	Thioredoxin Pathway	-				\rightarrow				
	Vitamin-C Transport					\rightarrow				
	Production of Nitric Oxide and Reactive Oxygen Species in Macrophages	-					\rightarrow			
	Aryl Hydrocarbon Receptor Signaling									\rightarrow
	Atherosclerosis Signaling	۲								\rightarrow
	Xenobiotic Metabolism Signaling	۲								\rightarrow
	Allograft Rejection Signaling	0						\rightarrow	\rightarrow	
	Calclum-induced T Lymphocyte Apoptosis	0						\rightarrow	\rightarrow	
	OX40 Signaling Pathway	0						\rightarrow	\rightarrow	
	T Helper Cell Differentiation	2						\rightarrow	\rightarrow	
	Role of IL-17A in Psoriasis	0		\rightarrow			\rightarrow			
	CD40 Signaling★	0			\rightarrow		\rightarrow			
	Arginine Degradaion VI(Arginase 2 Pathway)	თ			\rightarrow	\rightarrow	\rightarrow			
	Antigen Presentation Pathway	ო		\rightarrow				\rightarrow	\rightarrow	
	Autoimmune Thyroid Disease Signaling	С		\rightarrow				\rightarrow	\rightarrow	

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Pathways modulated by	Mφ markers	Disease type	Autoimmune diseases	Cardiovascular diseases	Digestive inflammatory disease	Infection disease	Metabolic diseases	Respiratory disease	Digestive tumors	Other tumors
Mur7 Signaling in TurnPhoolets 3 4 <th< td=""><td></td><td>B Cell Development</td><td>ო</td><td></td><td>\rightarrow</td><td></td><td></td><td></td><td>\rightarrow</td><td>\rightarrow</td><td></td></th<>		B Cell Development	ო		\rightarrow				\rightarrow	\rightarrow	
Curline Biosynthesis Curline Methodism Curl		Nur77 Signaling in T Lymphocytes	с		\rightarrow				\rightarrow	\rightarrow	
Une Cycle		Citrulline Biosynthesis	ო			\rightarrow	\rightarrow	\rightarrow			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Urea Cycle	ო			\rightarrow	\rightarrow	\rightarrow			
$\label{eq:relation} \eqref{eq:relation} \eqr$		Superpathway of Citrulline Metabolism	Ю			\rightarrow	\rightarrow	\rightarrow			
N(J) 1 2 6 9 9 8 8 8 Durating and regulated pathwaye in lepate Floroset/Hepatic State Cell Activation 2 4 1		Arginine Degradation I (Arginase Pathway)	С			\rightarrow	\rightarrow	\rightarrow			
Dual-regulated pathways in Hearld Flbrosis/Hearld Statiate Cell Activation eight groups of diseases 2 ↓ Role of IL-17F in Allergic Inflammatory Airway Diseases* 2 ↓ ↑ Role of IL-17F in Allergic Inflammatory Airway Diseases* 2 ↓ ↑ Denotified Cell Maturations* 3 ↓ ↑ ↑ Denotified Cell Maturation* 3 ↓ ↑ ↑ ↑ Denotified Cell Maturation* 3 ↓ ↑ ↑ ↑ ↑ Denotified Cell Sub // L-17A and IL-17F 0 1 ↑		N(ț)		0	Q	Ø	Ø	ω	ω	ω	ю
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Dual-regulated pathways i eight groups of diseases	 Hepatic Fibrosis/Hepatic Stellate Cell Activation 	0	\rightarrow							\leftarrow
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Role of IL-17F in Allergic Inflammatory Airway Diseases★	N							~	\rightarrow
$ \begin{array}{ccccc} Differential Regulation of Cytokine Production in Intestinal Epithelia Colls by IL-17A and IL-17F. Epithelia Colls by IL-17A and IL-17F. Epithelia Colls by IL-17A and IL-17F. Epithelia Coll Sylar Cytokine Production in Macrophages and T Helper Calls by IL-17A and IL-17F. Epithelia Coll Sylar Cytokine Production in Macrophages and T Helper Calls by IL-17A and IL-17F. Epithelia Coll Sylar Cytokine Production in Macrophages and T Helper Calls by IL-17A and IL-17F. Neuroinflammation Signaling Pathway 6 6 4 4 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1$		Dendritic Cell Maturation +	ო	~	\rightarrow	~					
UKHXR Activation 3 UKHXR Activation 3 Altered T Cell and B Cell Signaling in Rheumatoid Arthritis 5 1,1 1 1,1 1,1 Infriendial Regulation of Cytokine Production in Macrophages and Theiper Cells by IL-17F 6 1,1 1,1 1,1 1,1 Macrophages and Theiper Cells by IL-17A 6 1,1 1,1 1,1 1,1 1,1 1,1 Macrophages and Theiper Cells by IL-17A and IL-17F 7 1,1		Differential Regulation of Cytokine Production in Intestinal Epithelial Cells by IL-17A and IL-17F	ი	\rightarrow					~		~
Attered T Cell and B Cell Signaling in Flueumatoid Arthritis5 $1, 1$ $1, 1$ $1, 1$ $1, 1$ $1, 1$ $1, 1$ Differential Regulation of Cytokine Production in Macrophages and T Heiper Cells by IL-17A and IL-17F6 $1, 1$ $1, 1$ $1, 1$ $1, 1$ $1, 1$ Neuroinflammation Signaling Pathway6 $1, 1$ $1, 1$ $1, 1$ $1, 1$ $1, 1$ $1, 1$ $1, 1$ Neuroinflammation Signaling Pathway6 $1, 1$ $1, 1$ $1, 1$ $1, 1$ $1, 1$ $1, 1$ $1, 1$ $1, 1$ Neuroinflammation Signaling7 $1, 1$ $1, 1$ $1, 1$ $1, 1$ $1, 1$ $1, 1$ $1, 1$ $1, 1$ $1, 1$ Role of Cytokines in Mediating Communication between Immune Cells7 $1, 1$ <td></td> <td>LXR/RXR Activation</td> <td>ო</td> <td></td> <td></td> <td></td> <td></td> <td>\rightarrow</td> <td></td> <td>~</td> <td>\rightarrow</td>		LXR/RXR Activation	ო					\rightarrow		~	\rightarrow
$ \begin{array}{cccc} \mbox{Differential Regulation of Cytokine Production in Macrophages and T Heiper Cells by IL-17F and IL-17F Marcophages and T Heiper Cells by IL-17A and IL-17F Marcophages and T Heiper Cells by IL-17A and IL-17F Marcophages and T Heiper Cells by IL-17A and IL-17F Marcophages and T Heiper Cells by IL-17A and IL-17F Marcophages and T Heiper Cells \mbox{Complexense Signaling Pathway} 6 \mbox{Centre} & $		Altered T Cell and B Cell Signaling in Rheumatoid Arthritis	Ŋ	${\leftarrow}$	$\stackrel{\rightarrow}{\leftarrow}$	~		~	${\leftarrow}$		
Neuroinflammation Signaling Caraft-vsHost Disease Signaling Graft-vsHost Disease Signaling 6 4 1 <t< td=""><td></td><td>Differential Regulation of Cytokine Production in Macrophages and T Heiper Cells by IL-17A and IL-17F</td><td>9</td><td>\rightarrow</td><td>~</td><td>~</td><td></td><td>~</td><td></td><td>~</td><td>$\stackrel{\rightarrow}{\leftarrow}$</td></t<>		Differential Regulation of Cytokine Production in Macrophages and T Heiper Cells by IL-17A and IL-17F	9	\rightarrow	~	~		~		~	$\stackrel{\rightarrow}{\leftarrow}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Neuroinflammation Signaling Pathway	9	\rightarrow			$\stackrel{\rightarrow}{\leftarrow}$	~	~	\rightarrow	$\stackrel{\rightarrow}{\leftarrow}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Graft-vsHost Disease Signaling	7	~	\rightarrow	~		~	$\stackrel{\rightarrow}{\leftarrow}$	\rightarrow	\rightarrow
Role of Cytokines in Mediating Communication between 7 7 1 7		IL-10 Signaling	7	\rightarrow	~	$\stackrel{\rightarrow}{\leftarrow}$	\leftarrow	$\stackrel{\rightarrow}{\leftarrow}$	~	~	
Communication between lineate and Adaptive limmure 8 1, 1		Role of Cytokines in Mediating Communication between Immune Cells	2	$\stackrel{\rightarrow}{\leftarrow}$	$\stackrel{\rightarrow}{\leftarrow}$	~	~		~	~	\rightarrow
Role of Hypercytokinemia/Hyperchemokinemia in the 8 1		Communication between Innate and Adaptive Immune Cells	ŝ	$\stackrel{\rightarrow}{\leftarrow}$	~	~	~	~	~	~	~
N(†) 3 4 7 4 6 6 7 N(t) 5 2 0 0 1 0 2		Role of Hypercytokinemia/Hyperchemokinemia in the Pathogenesis of Influenza	ŝ	~	~	~	\leftarrow	~	~	\leftarrow	\rightarrow
N(4) 5 2 0 0 1 0 2		$N(\uparrow)$		S	4	7	4	9	9	7	e
		N(†)		5	0	0	0	-	0	0	5
N(†↓) 3 2 1 1 1 2 0		N(↑↓)		0	5	-	-	-	2	0	0

TABLE 3C | Continued

Pathways modulated by	M _{\$\phi} TFs	Disease type	Autoimmune diseases	Cardiovascular diseases	Digestive inflammatory disease	Infection disease	Metabolic diseases	Respiratory disease	Digestive tumors	Other tumors
Up-regulated pathways in	Role of JAK1 and JAK3 in yc Cytokine Signaling	÷	← ·							
eigi II. yi uub ui uibeases	CNTF Signaling	. -	← 1							
	Thrombopoietin Signaling	, -	~							
	EGF Signaling	. -	÷							
	GM-CSF Signaling	.	~							
	IL-17A Signaling in Gastric Cells★			~						
	NRF2-Mediated Oxidative Stress Response +	-		~						
	Parkinson's Signaling	-		~						
	Cyclins and Cell Cycle Regulation	F				~				
	Cell Cycle Regulation by BTG Family Proteins	-				~				
	Estrogen-Mediated S-phase Entry	-				~				
	Role of CHK Proteins in Cell Cycle Checkpoint Control	-				~				
	Notch Signaling	-					~			
	Adrenomedullin Signaling Pathway	-						~		
	IL-15 Production	-								~
	Role of PKR in Interferon Induction and Antiviral Response									~
	Interferon Signaling	2				~				
	Oncostatin M Signaling	2	~						~	
	Tec Kinase Signaling	0			~					\leftarrow
	Dendritic Cell Maturation★	ო			\leftarrow				←	~
	Role of JAK family kinases in IL-6-type Cytokine Signaling	4	~		~			~	←	
	IL-22 Signaling	Ð	\leftarrow	~	~			~	\leftarrow	
	N(†)		ω	4	4	Ω	7	ო	4	4
Down-regulated pathways	ERK5 Signaling	.		\rightarrow						
in eight group of diseases	HGF Signaling	F		\rightarrow						
	FGF Signaling	-		\rightarrow						
	IGF-1 Signaling	-		\rightarrow						
	VDR/RXR Activation	-			\rightarrow					
	FXR/RXR Activation	-			\rightarrow					
	Apelin Endothelial Signaling Pathway	-				\rightarrow				
	Estrogen-Dependent Breast Cancer Signaling	-				\rightarrow				
	ILK Signaling	-				\rightarrow				
	NGF Signaling	-				\rightarrow				
	Prostate Cancer Signaling	-				_				

Frontiers in Immunology | www.frontiersin.org

Pathways modulated by	MφTFs	Disease type	Autoimmune diseases	Cardiovascular diseases	Digestive inflammatory disease	Infection disease	Metabolic diseases	Respiratory disease	Digestive tumors	Other tumors
	Factors Promoting Cardiogenesis in Vertebrates	-						→		
	HIPPO Signaling	-						\rightarrow		
	Regulation of IL-2 Expression in Activated and Anergic T	-						\rightarrow		
	Lynnpriocytes T/F & Sianaling	Ŧ						_		
	rai -p aignainnig Cancer Drug Resistance Bv Drug Efflux							÷	\rightarrow	
	BMP Signaling Pathway	0					\rightarrow	\rightarrow	•	
	Role of IL-17F in Allergic Inflammatory Airway Diseases*	2				\rightarrow	\rightarrow			
	PXR/RXR Activation	2	\rightarrow						\rightarrow	
	Sumoylation Pathway	2						\rightarrow	\rightarrow	
	Antiprolifierative Role of TOB in T Cell Signaling	ო						\rightarrow	\rightarrow	\rightarrow
	Cardiomyocyte Differentiation via BMP Receptors	ო						\rightarrow	\rightarrow	\rightarrow
	Glucocorticoid Receptor Signaling ×	4		\rightarrow			\rightarrow		\rightarrow	\rightarrow
	MIF-mediated Glucocorticoid Regulation	4	\rightarrow			\rightarrow	\rightarrow		\rightarrow	
	N(†)		N	Q	N	7	4	œ	7	e
Dual-regulated pathways ir eight group of diseases	r Adipogenesis Pathway	5						~		\rightarrow
	Cell Cycle: G1/S Checkpoint Regulation	2				~		\rightarrow		
	Chronic Myeloid Leukemia Signaling	2						\rightarrow		~
	PEDF Signaling	2	\rightarrow				~			
	Role of BRCA1 in DNA Damage Response \star	2			\rightarrow	~				
	Th17 Activation Pathway	2	\rightarrow		\leftarrow					
	Thyroid Cancer Signaling	2			\rightarrow		~			
	Activation of IRF by Cytosolic Pattern Recognition	ი		\rightarrow		\leftarrow	~			
	Receptors									
	CD40 Signaling★	ო		~	\rightarrow		\rightarrow			
	IL-12 Signaling and Production in Macrophages \star	ო	\rightarrow					~		←
	LPS-Stimulated MAPK Signaling	ო		\leftarrow		\rightarrow	\rightarrow			
	PPAR Signaling	ო	\rightarrow	~	\rightarrow					
	IL-17A Signaling in Fibroblasts	4	\rightarrow		~		\rightarrow		\rightarrow	
	iNOS Signaling	4		~		\rightarrow			←	←
	Osteoarthritis Pathway	4	\rightarrow					~	\rightarrow	\rightarrow
	Pancreatic Adenocarcinoma Signaling	4			~		\rightarrow		~	~
	PI3K Signaling in B Lymphocytes	4		~		\rightarrow	\rightarrow			\rightarrow
	Polyamine Regulation in Colon Cancer	4			\rightarrow		~	~		\rightarrow
	Sirtuin Signaling Pathway★	4	\rightarrow		\rightarrow			~	←	\rightarrow
										Continued)

TABLE 3D | Continued

Pathways modulated by M ϕ TFs	Disease	Autoimmune	Cardiovascular	Digestive	Infection	Metabolic	Respiratory	Digestive	Other
	type	diseases	diseases	inflammatory disease	disease	diseases	disease	tumors	tumors
Unfolded Protein Response 🖈	4			→		~		→	\rightarrow
FLT3 Signaling in Hematopoietic Progenitor Cells	IJ	~	\rightarrow	~		~		~	
ERK/MAPK Signaling	9	~	${\leftarrow}$	\rightarrow		\rightarrow	~		\rightarrow
JAK/Stat Signaling	7	\rightarrow	\rightarrow	~	~	~		~	←
Role of JAK1, JAK2 and TYK2 in Interferon Signaling	7		\rightarrow	~	~	\leftarrow	~	~	~
N(↑)		5	ى ا	9	ю	ω	7	ø	9
(†)N		ω	4	Ø	Ю	9	2	ო	7
$N(\uparrow \uparrow)$		0	-	0	0	0	0	0	0

TABLE 3E | Twenty <u>new disease group-specific and 12 shared (more than 4 groups of diseases)</u> $M\phi$ reprogramming pathways have been identified in eight groups of 34 diseases and tumors.

A. Specific pathways of diseases)	(upregulated except #; unique for each group
Autoimmune diseases	Role of JAK1 and JAK3 in γc Cytokine Signaling
	CNTF Signaling
	Thrombopoietin Signaling
	EGF Signaling
	GM-CSF Signaling
Cardiovascular diseases	IL-17A Signaling*
	NRF2-Mediated Oxidative Stress Response
	Parkinson's Signaling
Digestive inflammatory disease	VDR/RXR Activation#
	FXR/RXR Activation#
nfection disease	Cyclins and Cell Cycle Regulation
	Cell Cycle Regulation by BTG Family Proteins
	Estrogen-mediated S-phase Entry
	Role of CHK Proteins in Cell Cycle Checkpoint
	Control
Vetabolic diseases	Notch Signaling
Respiratory disease	Adrenomedullin signaling pathway
Digestive tumors	Oncostatin M Signaling
	Cancer Drug Resistance By Drug Efflux (#, downregulated)
Other tumors	IL-15 Production
	Role of PKR in Interferon Induction and Response
3. Shared pathways (u	upregulated and shared by more than four major
Altered T Cell and B Cel	I Signaling in Autoimmune Disease
Differential Regulation of Cells by IL-17A and IL-1	Cytokine Production in Macrophages and T Heiper 7F
Neuroinflammation	
Signaling Pathway	
Graft-vsHost	
Disease Signaling	
IL-10 Signaling	
Role of Cytokines in Me	diating Communication between Immune Cells
Communication betwee	n Innate and Adaptive Immune Cells
Role of Hypercytokinem	ia/Hyperchemokinemia in the Pathogenesis of Disease
FLT3 Signaling in Hemat	opoietic Progenitor Cells
ERK/MAPK Signaling	
JAK/Stat Signaling	
Role of JAK1, JAK2 and	I TYK2 in Interferon Signaling

*Some of the pathway names were simplified to avoid potential confusion.

Pro-adipogenic Transcription Factors C/EBP α and PPAR γ , and Proinflammatory Adipokine Leptin Upregulate the Expression of M1 M ϕ Markers

Adipose tissue releases more than 50 hormones, cytokines, and chemokines, collectively called adipokines, which regulate several physiological processes concerning energy, glucose metabolism, and immunity in an autocrine, paracrine, or systemic manner as well as several pathological processes including proinflammatory or anti-inflammatory processes, thereby contributing to insulin

resistance and other inflammations (36). Adipose tissue from lean individuals releases anti-inflammatory adipokines such as adiponectin, transforming growth factor-β (TGF-β), IL-10, IL-4, IL-13, IL-1 receptor antagonist (IL-1Ra), and apelin. In contrast, obese adipose tissue secretes proinflammatory cytokines such as tumor necrosis factor- α (TNF- α), IL-6, leptin, visfatin, resistin, angiotensin II, and plasminogen activator inhibitor 1 (37). About one-third of obese adults and 10% of non-obese adults are metabolically healthy obese (MHO) (38, 39). A series of reports suggest that patients with metabolically healthy obesity (MHO) have significantly higher rates of type II diabetes (40), metabolic syndrome (41), and chronic kidney disease (42) than metabolically healthy lean individuals. The molecular mechanisms underlying the pathogenesis of MHO remained poorly determined. In the search for master regulators responsible for MHO with the features of being pro-inflammatory/proatherogenic but anti-adipogenic, we reported that microRNA-155 (miR155) and, potentially, microRNA-221 are such master regulators for MHO(44). Deficiencies in those master regulators such as miR155 in an atherogenic apolipoprotein E (ApoE)-/- background led to the establishment of MHO in mice, significantly improving our understanding of the molecular mechanisms underlying MHO (43). Our recent findings further suggest that elevated adipokine resistin and leptin in a miR155^{-/-}/ApoE^{-/-} MHO model fed a high-fat diet for 12 weeks may serve as a driver for the newly termed "second wave of inflammation status" in the MHO model (44). Along the same line, the issue of whether proinflammatory adipokines secreted by obese adipose tissues promote the expression of M1 M ϕ markers and other proinflammatory regulators remained poorly defined.

We hypothesize that proinflammatory cytokine interferon- γ (IFN- γ) and lipopolysaccharide (LPS) upregulate M1 markers and regulators but not M2 (45). To test this hypothesis, we examined the expression of M φ markers and M φ TFs involved in M1 and M2 M φ polarization. As shown in **Table 4A**, when we examined the TF expression in the M φ polarization from human CD14+ monocytes, we made the following important findings: (a) M1 polarization promotes the expression of the M φ TFs for M1 and surprisingly also for M2c (IL-10 polarization); (b) the Krüppel-like family of transcription factor 4 (KLF4) was upregulated explicitly during M2a polarization (IL-4 polarization); and (c) four proinflammatory TFs (STAT1, STAT2, STAT3, and NF-kB) are more upregulated in M1 than in M2 polarization, suggesting their importance in promoting M1 M φ polarization (46).

In addition, as shown in **Table 4B**, we also determined whether pro-adipogenic TFs, proinflammatory, and antiinflammatory adipokines can regulate M φ subset marker expression. The results showed the following. (1) pro-adipogenic TFs CCAAT/enhancer-binding protein α (C/EBP α) and peroxisome proliferator-activated receptor γ (PPAR γ) promote the expression of M1 markers interleukin-1 β (IL-1 β), tumor necrosis factor- α (TNF- α), and C-X-C motif chemokine 10 (CXCL10), suggesting that during adipogenesis, pro-adipogenic TF-mediated signaling mechanisms have the potential to promote M1 subset polarization. Of note, previous reports found that C/EBP α (47) and PPAR γ (48) promote M2 polarization.

One of our explanations is that pro-adipogenic TFs C/EBPa and PPARy may tend to promote M2 in lean adipose tissues but that, in hypertrophic obese adipose tissues, these TFs may promote polarization of proinflammatory M1. Further detailed transcriptomic studies will be required to address this discrepancy. (2) C/EBP α suppresses the expression of the M2a markers stabilin 1 (STAB1), coagulation factor XIII A chain (F13A1), chitinase-like 4 (Chil4), and Chil3. (3) C/EBPB also suppresses the expression of the M2a marker arginase 1 (ARG1). (4) Deficiencies in anti-inflammatory adopkines such as secreted frizzled-related protein 5 (SFRP5) and adiponectin do not change the expression markers of all 10 types of Møs, suggesting that the anti-inflammatory regulation of these adipokines acts via M φ composition modulation-independence mechanisms. (5) Proinflammatory adipokine leptin promotes M1 marker gene expression and inhibits the marker expressions of M2 and other Mφ subsets.

Tissue Mφ From Lung, Liver, Spleen, Intestine, and Bone Marrow (BM) Express Higher Levels of T Cell Co-inhibition Receptor CD274 (PDL-1) Among 10 Co-inhibition Receptors Than That of Lean Adipose Tissues

Since Mqs are prototypic professional antigen-presenting cells (APCs) that modulate CD4+ T cell activation by providing T cell activation signal #1 and co-stimulation/co-inhibition-based signal #2(50), we also examined the expression of 28 T cell costimulation and co-inhibition (immune checkpoint) receptors (23), including 14 co-stimulation receptors, 10 co-inhibition receptors, and 4 dual-functional (both co-stimulation and coinhibition) receptors in tissue $M\phi$ (Figure 3A), as we reported previously (49). As shown in **Figure 3A**, we found that: (i) the $M\phi$ from LLSI express co-inhibition receptor CD274 (programmed death-ligand 1, PDL1) in much higher levels than ATM and (ii) the M ϕ from peritoneum and ATM ϕ express lower levels of CD274 than BM Mq. It has been reported that CD274 has significant reverse signaling activities (50). Antitumor immune response-enhancing transcription factor Forkhead box O (FoxO) inhibits CD274 expression (51), suggesting that CD274 expression may be responsible via reverse signaling for hiding immune response-enhancing features of tumor cells. Also, CD274 signals via conserved intracellular sequence motif "RMLDVEKC" inhibit JAK1-induced STAT3 activation and overcome interferon-mediated cytotoxicity (50). To correlate with the reported findings, our results suggest that: (i) peripheral tissue M ϕ , including LLSI M ϕ , express higher levels of T cell co-inhibition receptor CD274 than ATM ϕ , to contribute to the establishment of immune tolerance at physiological conditions; and (ii) since our data suggested that LLSI tissue M φ are more proinflammatory than other M ϕ , higher expression of CD274 in LLSI M ϕ suggests that the high homeostatic and antiinflammatory functions of CD274 (programmed death-ligand 1, PD-L1) via its reverse signaling in M ϕ (52) may counteract the tissue M φ proinflammatory status (Figure 3B) in addition to CD274 inhibition of T cell activation via PD-1 (programmed

FIGURE 2 | (A) Macrophages (M ϕ) can be polarized into 10 (potentially more) different subsets, and the markers and main functions of 10 M ϕ subsets are different (PMID: 24998279; 25319333; 25973901). M1, M4, and Mox are proinflammatory while the rest of the M ϕ subsets are anti-inflammatory. **(B) Mechanism I:** The 10 macrophage (M ϕ) subset markers (30) are differentially expressed in macrophages from various tissues, and lung, liver, spleen, and small intestine upregulate more M1 M ϕ markers than M2 M ϕ markers in the physiologic condition in comparison to lean ATM ϕ . (1) Retnla, CD163, and MRC1 are relatively adipose tissue-specific M ϕ (ATM ϕ) markers; (2) STAB1, NFE2L2, and SRXN1 are relatively bone marrow-specific M ϕ markers; (3) ARG1 is a relatively specific M ϕ marker for lung, IL1B is a relatively specific M ϕ marker for lung, IL1B is a relatively specific M ϕ marker for spleen, and CXCL9 is a relatively specific M ϕ marker for small intestine. **(C)** M ϕ subset markers are differentially expressed in various tissues. **(D)** Tissue M ϕ have different compositions of M ϕ subset markers. (1) The genes of macrophage subtypes such as Mhb, Mhem, and HA-mac are relatively adipose tissue-specific. (2) The genes of Mox are bone marrow macrophage-specific. (3) Retnla is a M2a subset marker in peripheral tissues. (4) ILIB and CXCL9 are specific marker for small intestine M1 macrophages.

cell death protein 1, CD279) binding-mediated forward signaling (53, 54).

Tissue M ϕ From Lung, Liver, Spleen, Intestine, and Bone Marrow Prefer to Use RAB27A and STX3 Than RAB31 and YKT6 in Mediating Exosome Biogenesis and Docking, Suggesting New Inflammatory Exosome Markers and a New Inflammatory Exosome Status

In addition to the above-discussed cell surface mechanisms such as $M\phi$ markers and cell-cell interaction (co-stimulation and co-inhibition/immune checkpoint) receptors, as cell-cell communication mechanisms of $M\phi$ and other cell types,

exosomes can transport and deliver a large cargo of proteins, lipids, and nucleic acids and can modify cell and organ function. In addition to their key role as vehicles of intercellular communication, exosomes are increasingly recognized as biomarkers and prognosticators of disease (55). We reported that exosomes might modulate inflammation and immune responses (26) and propagate inflammation (25). We also examined the expression levels of 12 exosome biogenesis mediators and 12 exosome docking mediators in the tissue M φ s (**Figure 4A**). The results in **Figure 4A** showed that M φ from peritoneum, lung, liver, spleen, and small intestine prefer to use RAB27A and syntaxin 3 (STX3) than RAB31 and YKT6 in mediating exosome biogenesis and docking and that adipose tissue M φ s use more Rab31, YKT6, and LGALS1 in mediating exosome biogenesis and docking. Of note, it has been reported that **TABLE 4A | Mechanism II:** M1 polarization promotes the expressions of M1and M2c-transcription factors (TFs; NFkB1, NFkB2, and NR3C1) but inhibits the expression of M2a TF PPARg; M2 polarization specifically upregulates M2a TF KLF4, and M1 macrophages (M ϕ) express higher levels of TFs, STAT1, STAT2, STAT3, and NF-kB than M0 M ϕ .

	GEO ID		GSE	85346	
	Comparision	M1 vs. M0	M2a vs. M0	M2b vs. M0	M2c vs. M0
M1 TFs	HIF1A	2.247			
	RELA	5.401			
	IRF3	2.132			
	STAT1	9.433		3.077	
	STAT2	3.353		1.787	
M2a TFs	PPARD				
	PPARG	-14.550		-1.988	
	KLF4		4.123		
	AKT1				
M2b TFs	MAPK1				
	STAT3	5.058			1.699
M2c TFs	NFKB1	4.065		1.787	
	NFKB2	8.639			
	NR3C1	2.439			
	NFE2				
Mox TFs	NR1H3				
M(hb) TFs	ATF1				
Mhem TFs	NR1H3				
	NR1H2				
	Up	9/18	1/18	3/18	1/18
	Down	1/18	0/18	1/18	0/18

RAB27A-dependent exosome production inhibits chronic inflammation and enables acute response to inflammatory stimuli (56) and that microRNA-30c-2-3p regulates RAB31 and functions as an oncogene in gastric cancer tumorigenesis and development by interacting with glioma-associated oncogene homolog 1(57). The results suggest that the differences in exosome biogenesis and docking in tissue M φ s may be related to their proinflammatory functional status (**Figure 4B**) as we reported previously (26), that Rab GTPases not only regulate the pathogenesis of cancer and neurodegenerative diseases (58) but may also regulate inflammation functions of M φ exosomes, and that syntaxin 3-identified homozygous likely deleterious variant (59) may regulate inflammatory M φ exosomes.

Levels of Immunometabolism Pathway Enzymes Are Higher in $M\phi$ in Peritoneal, Lung, Liver, Spleen, and Intestine Than in Adipose Tissue $M\phi$

Since M φ bioenergetics metabolism, as an immunometabolism pathway (60), regulates their polarizations (61), we hypothesized that tissue M φ s from different tissues would have various metabolic pathway enzyme genes expressed at different levels. To test this hypothesis, we collected 59 metabolic enzymes involved in six metabolic pathways including the tricarboxylic acid (TCA) cycle (13 enzymes), pentose phosphate pathway (Warburg-Limpam-Dickens cycle and phosphogluconate shunt, 7 enzymes), glutamine pathway (7 enzymes) (62), fatty acid pathway (16 enzymes), fatty acid B-oxidation pathway (63) (13

enzymes), and fatty acid C pathway (9 enzymes), as shown in Table 1. Of note, six genes overlapped in different bioenergetics metabolic pathways. Comparing the M\u03c6 from peritoneal and LLSI tissues with that of adipose tissues (Figure 5A), we found that 2 out of 13 TCA cycle enzymes, 2 out of seven pentose phosphate pathway enzymes, one out of seven glutamine pathway enzymes, 7 out of 16 enzymes in the fatty acid pathway, 5 out of 13 regulators in the fatty acid β -oxidation pathway, and 3 out of 9 fatty acid C pathway enzymes were upregulated. We also found that 1 out of 13 TCA cycle enzymes, 1 out of seven pentose phosphate pathway enzymes, four out of seven glutamine pathway enzymes, and 2 out of 16 enzymes in the fatty acid pathway were downregulated. In addition, comparing the M ϕ from peritoneal, intestine, and adipose tissue with that of bone marrow, we found that 1 out of 13 TCA cycle enzymes, 1 out of seven pentose phosphate pathway (PPP) enzymes, 2 out of seven glutamine pathway enzymes, 2 out of 16 enzymes in the fatty acid pathway, and 2 out of 13 regulators in the fatty acid β-oxidation pathway were upregulated and that 5 out of 13 TCA cycle enzymes, 1 out of seven pentose phosphate pathway enzymes, three out of seven glutamine pathway enzymes, 4 out of 16 enzymes in the fatty acid pathway, 5 out of 13 enzymes in the fatty acid β -oxidation pathway and 3 out of 9 fatty acid C pathway enzymes were downregulated. These results suggest that $M\phi$ in peritoneal, lung, liver, spleen, and intestine may upregulate bioenergetics pathway enzyme expression more than in $M\phi$ in adipose tissue $M\phi$, where expression of the enzymes in the PPP pathway and the three fatty acid pathways increased and expression of glutamine pathway enzymes decreased. Surprisingly, BMderived $M\phi$ expresses higher bioenergetics pathway enzymes than that of $M\phi$ in peritoneum, intestine, and adipose tissues. As shown in Figure 5B, our Ingenuity Pathway Analysis (IPA) showed that: (1) comparing all the differences among tissue $M\phi$ from peritoneal, lung liver, spleen, intestine, adipose tissue, and bone marrow, type II diabetes signaling is shared; (2) the fatty acid activation pathway is also shared among three groups: (a) upregulated genes in peripheral tissue M ϕ vs. ATM ϕ ; (b) upregulated genes in peripheral tissue M ϕ vs. BM M ϕ ; and (c) downregulated genes in peripheral tissue M ϕ vs. BM M ϕ ; and (3) the fatty acid β -oxidation pathway is among the top pathways shared by two groups of upregulated genes in $M\varphi$ in peritoneal, lung, liver, spleen, and intestine vs. ATM ϕ and downregulated genes in M ϕ in peritoneal, intestine and ATM ϕ vs. BM M ϕ .

Expression of Trained Immunity (Innate Immune Memory)-Related Metabolic Genes Is Higher in $M\phi$ From Peritoneum, Lung, Liver, and Spleen Than in ATM ϕ , and the Expression of Trained Immunity-Related Metabolic Genes Is Higher in $M\phi$ From Peritoneum, Small Intestine and Adipose Tissues Than in Bone Marrow $M\phi$

One of the major differences between the adaptive immune system and innate immune systems is that the cells in the

TABLE 4B | Proadipogenic transcription factors C/EBPa and PPARg promote the expression of M1 macrophage markers, C/EBPa and C/EBPb inhibit the expressions of M2 macrophage markers, and higher expressions of Mhb, Mhem, and HA-mac subtype markers in adipose tissues may result from stimulation in adipose tissue environments rather than that in adipogenesis.

		Adipose tr	anscription fa	ctors deficient	Anti-inflamn	natory adopkine deficient	Proinflan	nmatory ad	ipokine deficient
	GEO ID	GSE55760	GSE59585	GSE14004	GSE37514	GSE50183	GSE66073	GSE46320	GSE27017
	Comparision	C/EBPa KD	C/EBPb KO	PPARg siRNA	SFRP5 KO	adiponectin deficient	APJ ko	PAI-1 KO	Leptin deficiency
M1 markers	IL1B	-1.641							2.204
	TNF	-1.651							
	IL6			2.703					-9.353
	CXCL11								
	CXCL10			-1.801					-15.123
	CXCL9								-2.723
	IL23A								
	IL12A								
	IL12B								
	ARG2								1.612
M2a markers	MRC1								7.143
	CD163								
	STAB1	1.534							8.693
	CCL18								
	CD200R1								12.597
	F13A1	3.694					3.926		2.446
	IL1RN								3.095
	ARG1		1.582						3.675
	PDE4DIP			-13.880					
	Chil4	12.446							
	Chil3	11.791							2.351
	Retnla								-16.512
M2b markers	IL10						-1.822		
	IL12B								
	IL12A								
M2c markers	MRC1								7.143
	ARG1		1.582						3.675
M2d markers	TNF	-1.651							
	IL12A								
	IL12B								
M4 markers	MMP7								
	MRC1								7.143
	S100A8	5.599		-9.351					2.345
Mox markers	HMOX1								2.025
	NFE2L2	1.647		-2.126					
	TXNRD1								
	SRXN1								
M(hb) markers	CD163								
	MRC1								7.143
Mhem markers	CD163								
HA-mac markers	CD163								
	HLA-DRB1								
	HLA-DRA								
	Up	6/31	1/31	1/31	0/31	0/31	1/31	0/31	11/31
	Down	2/31	0/31	4/31	0/31	0/31	1/31	0/31	4/31

FIGURE 3 | **Mechanism III:** The macrophages (Mφ) from lung, liver, spleen, and intestine have differences in the expressions of T cell co-stimulation receptors, co-inhibition/immune checkpoint receptors, and dual-function receptors in comparison to that of ATMφ. (**A**) First, Mφ from lung, liver, spleen and intestine express CD274 much higher than adipose tissue macrophages; second, the Mφ from peritoneum and adipose tissue express lower levels of CD274 than that of bone marrow, suggesting that decreased expression of CD274 is a remarkable feature of adipose tissue macrophages; third, lung Mφ upregulates the expression of TNFSF9, SEMA4A (co-stimulation), and PDCD1GL2 in comparison to lean ATMφ; and fourth, liver Mφ upregulates TIMD4 (co-stimulation) and CD86 (dual) in comparison to lean ATMφ. (**B**) The proposed model of **A**.

FIGURE 4 | (A) Mechanism IV. Tissue macrophages (M ϕ) have differences in the expression of several mediators for exosome biogenesis and docking. First, M ϕ from peritoneum, lung, liver (STX3), spleen, and small intestine prefer to use RAB27A and STX3 than RAB31 and YKT6 in mediating exosome biogenesis and CD44 for docking in comparison to lean ATM ϕ . In addition, M ϕ from lung also upregulates STX6 (biogenesis), CAV1, and LGALS3 (docking) comparing to lean ATM ϕ . Moreover, M ϕ from peritoneum and intestine upregulate ITGA6 for docking in comparison to lean ATM ϕ . **(B)** M ϕ from peritoneum, lung, liver (STX3), spleen, and small intestine prefer to use RAB27A and STX6 (biogenesis), CAV1, and LGALS3 (docking) comparing to lean ATM ϕ . Moreover, M ϕ from peritoneum and intestine upregulate ITGA6 for docking in comparison to lean ATM ϕ . **(B)** M ϕ from peritoneum, lung, liver (STX3), spleen, and small intestine prefer to use RAB27A and STX3 rather than RAB31 and YKT6 in mediating exosome biogenesis and CD44 for docking, presumably to make exosomes more effective in propagating inflammation than adipose tissue macrophages. As cell-cell communication vehicles, exosomes propagate inflammation from first inflammatory cells to secondary inflammatory cells [see also **Figure 5** of our previous report for more evidence and the experimental data of others (PMID: 27842563)].

adaptive immune system such as T cells have an antigenspecific memory function (64). However, recently it became clear that innate immune cells also have trained immunity

Adipose tissue macrophage (ATMφ)

> (innate immune memory) functions in the form of increases in three key metabolic pathways: glycolysis, acetyl-CoA synthesis, and the mevalonate pathway (65). Thus, in addition to the

4									
	Discoveration wetheres	Up-regulated enzymes				Down-regulated enzymes			
	bioenergetics pathways	Gene	Number	A%	B%	Gene	Number	A%	B%
	TCA cycle	SUCLA2,MDH2	2	15.4	3.6	IDH2	1	7.7	1.8
Peritoneum.	Pentose phosphate pathway	PGLS,TKT	2	28.6	3.6	RPE	1	14.3	1.8
Lung, Liver ,Spleen, and	Glutamine pathway	GOT2	1	14.3	1.8	SLC38A2,GLUD1,GPT2,SLC ² A5	4	57.1	7.1
,Spleen, and intestine vs. Adipose	Fatty Acid Synthesis Pathway	SLC27A2,SLC27A3,SLC27A5,SLC27A6,ACSL1,ACSL5,CPT2.	7	43.8	12.5	CD36,SLC27A1	2	12.5	3.6
	Fatty Acid B-oxidation pathway	ACADVL,HADHA,HADHB,ACA DL,ECHS1.	5	38.5	8.9	1	0	0.0	0.0
	TCA cycle	IDH2	1	7.7	1.8	CS,SUCLA2,SUCLG1,SDHB, MDH2	5	38.5	8.9
Peritoneum,	Pentose phosphate pathway	RPE	1	14.3	1.8	ТКТ	1	14.3	1.8
Intestine, and Adipose vs. Bone	Glutamine pathway	GLUD1,GPT2	2	28.6	3.6	SLC38A2,GOT2,SLC1A5	3	42.9	5.4
marrow	Fatty Acid Synthesis Pathway	CD36,SLC27A2	2	12.5	3.6	SLC27A1,ACSL1,ACSL4,ACS L5	4	25.0	7.1
	Fatty Acid B-oxidation pathway	ACADVL,ACAD10	2	15.4	3.6	ACADM,ACADL,ACAD8,ACA D9,ECHS1	5	38.5	8.9

*A%, the ratios of changed gene numbers over the specific pathway gene numbers; *B%, the ratios of changed gene numbers over the total 56 genes.

pathway) than adipose tissues, with a significantly increased pentose phosphate pathway, three significantly increased fatty acid-related pathways, and a decreased glutamine pathway, and the macrophages from bone marrow express higher bioenergetics pathway enzymes than peritoneum, intestine, and adipose tissues (For detailed expression data, see **Figure S7**). (**B**) Ingenuity Pathway Analysis of bioenergetics/immunometabolism pathway markers.

bioenergetics metabolic pathway analysis, we further examined whether tissue M φ have differences in the expression of trained immunity pathway enzymes. We hypothesize that the expression of trained immunity pathway enzyme genes in M φ from peripheral tissues such as lung, liver, spleen, and intestine is higher in than that of ATM φ . As shown in **Table 1**, we found that 24 enzymes are involved in three pathways of trained immunity functions including 14 enzymes in glycolysis, three enzymes in acetyl-CoA generation, and 7 enzymes in the mevalonate pathway (28, 66). As shown in **Figure 6A**, M φ in peritoneal, lung, liver, spleen, and intestine upregulate higher levels of 11 out of 24 enzymes in trained immunity pathways in comparison to ATM φ . In addition, M φ in peritoneal and intestine and ATM φ upregulate 2 out of 24 enzymes and downregulate 14 out of 24 enzymes in comparison to BM M φ . The Ingenuity Pathway Analysis showed, as seen in **Figure 6B**, that the top two pathways involved in upregulation of trained immunity enzymes in M φ are LPS/IL-1-mediated inhibition of RXR function and stearate biosynthesis I. The top pathway shared by peripheral M φ and ATM φ upregulation enzymes is acetyl-CoA biosynthesis III. The two pathways among the top three pathways shared by peripheral M φ and BM M φ are the superpathway of cholesterol biosynthesis and mevalonate pathway I.

than $M\phi$ from bone marrow. **(C)** The expression changes of 19 new enzymes involved in intracellular immunometabolism pathways (IMPs) and trained immunity pathways (TIPs) of M1 M ϕ and 6 new enzymes involved in IMPs and TIPs of M2 M ϕ may be the mechanisms underlying the higher M1 M ϕ proinflammatory status of lung, liver, spleen, and intestine and the disease group-specific pathways and shared disease pathways (PMIDs:28381829; 27396447;26694790; 30679807; 28396078). The green boxes are bioenergetics pathways (**Figure 5A**), and the <u>blue boxes</u> are trained immunity pathways (**A**). SLC1A5, GLUT1, LDH, PDH, ACLY, and CPT1A are mentioned in previous studies. However, IDH is found to decrease in M1, but not sure in M2. *25 others (bolded and underlined) are not found in the reviews listed above.

Figure 6C summarizes the findings from Figure 5A (in the green boxes) and Figure 6A (in the blue boxes) into a new map related to the M ϕ metabolic pathways identified in M1 and M2. We found that the 19 new enzyme expression changes (with *, bolded, and underlined) involved in immunometabolism pathways and trained immunity pathways may be the mechanisms underlying the higher M1 proinflammatory status of lung, liver, spleen, and intestine. Also, we found that six new enzyme changes in M2-related pathways may also be the mechanisms underlying the higher M2 anti-inflammatory status of adipose tissue M ϕ as well as the disease group-specific pathways and shared disease pathways.

DISCUSSION

Macrophages play a key role in the pathogenesis of various diseases including cardiovascular diseases (13), metabolic diseases (14), infectious diseases (15), respiratory diseases (16), digestive diseases (17), autoimmune diseases (18), and many

types of cancers (19, 20). However, it remained unclear whether M q use the same pathways and play the same roles or use diseasespecific pathways and play disease-specific roles in addition to the shared roles and pathways. To address this question and also to identify the potential mechanisms underlying this issue, we performed a novel type of big-omics database mining analysis, which we pioneered in 2004 (30). We have made the following significant findings. (1) The expression of 31 M ϕ markers and 45 Mφ TFs are modulated in eight groups comprising a total of 34 diseases including 10 types of cancers, and both shared and disease-specific pathways for each group of disease/tumor have been identified. To identify the potential mechanisms underlying the Mφ heterogeneity related to disease-group-specific pathways, we examined several novel aspects of M φ . (2) The expression of M1 M ϕ markers is higher in M ϕ in lung, liver, spleen, and intestine compared to in lean adipose tissue Mq in physiological conditions. (3) Pro-adipogenic transcription factors C/EBPa and PPARy and proinflammatory adipokine leptin upregulate the expression of M1 M\u03c6 markers. Our results correlated

well with a recent report implicating a pleiotropic protein prohibitin in regulating adipose-immunometabolism (67). (4) Immunologically peripheral tissue M φ from lung, liver, spleen, intestine, and bone marrow express higher levels of T cell coinhibition/immune checkpoint receptor CD274 (programmed death-ligand 1, PDL-1) among ten co-inhibition receptors than that of lean adipose tissues, presumably to counteract the M1 dominant status via its reverse signaling and high homeostatic and anti-inflammatory functions (52). Our results reveal a new mechanism underlying the toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies (68). (5) Tissue M φ from lung, liver, spleen, intestine, and bone marrow prefer to use RAB27A and STX3 than RAB31 and YKT6 in mediating exosome biogenesis and docking, suggesting new inflammatory exosome markers and a new inflammatory exosome status for propagating inflammation from inflamed cells to secondary inflammatory cells as we reported previously (25). Our results correlated well with recent findings that inflammation leads to distinct populations of extracellular vesicles (69). (6) To address why M φ in peripheral tissues have a higher M1 status than those in adipose tissues, we found that M φ in peritoneal, lung, liver, spleen, and intestine upregulate higher levels of immunometabolism pathway enzymes than adipose tissue M φ (ATM φ). (7) To address the potential mechanism underlying the higher M1 proinflammatory status of M φ in peripheral tissues, we found that M φ from peritoneum, lung,

liver, and spleen upregulate more trained immunity (innate immune memory)-related metabolic genes than that of adipose tissues and that the macrophages from peritoneum, small intestine, and adipose tissues upregulate more trained immunity-related metabolic genes than bone marrow macrophages. Taken together, our results suggest that multiple mechanisms such as those at the <u>cell surface</u> including M1 M φ markers, cell-cell contact receptors, cell-cell communication exosomes, <u>intracellular</u> immunometabolism and trained immunity, and M φ <u>nuclear</u> transcription factors may be responsible for the disease group-specific pathways and shared pathways that we found in eight groups of 34 diseases.

Since CD274 reverse signaling works via its interaction with CD279 (PD1) expressed in CD4+ T cells, CD8+ T cells, B cells, macrophages, and dendritic cells (70), these analyses emphasize the following. (1) CD279+ T cells (both CD4+ and CD8+) and B cells have significant innate immune functions in controlling CD274+ M\u03c6 proinflammatory status and maintaining tissue homeostasis in addition to having antigen-specific adaptive immune functions. (2) T cell co-stimulation and co-inhibition receptors serve as prototypic cell surface receptor-mediated cell-cell contact signaling in addition to classical signaling pathways from cytokine receptors, growth factor receptors, pathogen-associated molecular pattern receptors (PAMP-Rs), danger-associated molecular pattern receptors (DAMP-Rs), and conditional DAMP-Rs, as we reported previously (12). (3) Our results suggest a potential molecular mechanism underlying the clinical finding that elevated immune-related adverse effects (irAEs) of systematically injected anti-PD-L1 monoclonal antibody (mAb) (Durvalumab) in patients with cancers (71). Blocking CD274 reverse signaling could activate all the CD274+ tissue macrophages and contribute to elevated immune-related adverse effects (irAEs). (4) Since CD279 is also expressed in tumor-associated macrophages (TAMs) (72), our results also suggest a possibility that CD279-CD274 interaction on TAMs may suppress the anti-tumor functions of TAMs via reverse signaling.

To summarize our findings, we have proposed a new working model with three connected parts. Figure 7A illustrates the first part: based on the expression levels of two groups of 31 $M\phi$ subset markers (9) and 45 $M\phi$ transcription factors in the eight groups of 34 diseases (also see Table 2), we have identified for the first time 20 novel M ϕ disease group-specific pathways and 12 disease-shared pathways (shared in more than four major disease groups). These results have demonstrated two aspects for the first time. First, the pathogenesis of various diseases and tumors significantly modulates Mq signaling pathways in disease group-specific and shared manners. Figure 7B illustrates the second: the potential tissue mechanisms underlying the above-mentioned M ϕ heterogeneity in diseased conditions. Based on the differential expression of regulators including M1 markers, M1 TFs, co-stimulation and co-inhibition/immune checkpoint receptors, cell-cell communication exosome biogenesis machinery, M1 bioenergetic enzymes, and trained immunity enzymes, we proposed a new concept of tissue M1 M status. We found that first, M s in liver, small intestine, and bone marrow-derived $M\phi$ have the highest macrophage inflammation potential and, second,

adipose tissue from lean animals and surprisingly spleen have low $M\varphi$ inflammation potential. Of note, white adipose tissue hypertrophy recruits significant numbers of inflammatory cells including M ϕ (73). The new data have demonstrated that various tissue M\u03c6 have significant differences in M1 proinflammatory status, which could be controlled by high expression of a co-inhibition receptor such as CD274 (PDL1)-initiated anti-inflammatory reverse signaling. It is noteworthy that each tissue has its own composition of embryonically derived and adult-derived M ϕ , but it is unclear whether the M ϕ of distinct origins are functionally interchangeable or have unique roles at steady state (74). These issues can be examined in the future when new microarray/RNA-sequencing (RNA-Seq) data are available. Figure 7C illustrates the third part of the model: three novel major cell/molecular mechanisms underlying the above-mentioned M\u03c6 heterogeneity in diseased conditions. The six novel cell and molecular mechanisms include three cell surface mechanisms (Mq subset markers with potential of signaling, cell-cell interaction receptors (co-stimulation and co-inhibition/immune checkpoint receptors), and inflammationmodulating cell-cell communication exosomes), two new metabolism mechanisms (the immunometabolism/bioenergistic and trained immunity metabolic pathways), and, finally, nuclear transcription factors. Taken together, the new tissue, cell, and molecular mechanisms may contribute to the novel $M\phi$ signaling heterogeneity in diseased conditions that we have found.

We acknowledge that carefully designed *in-vitro* and *in-vivo* experimental models will be needed to verify all the results we report here. These experimental models will enable the consolidation of the M φ disease group-specific pathways in various pathological conditions. However, the big data mining analyses that we pioneered in 2004 (30) have provided significant insights into the M φ disease group-specific and shared pathways and heterogeneity, homeostasis, and functions of M φ in various diseases and cancers/tumors and have also identified novel therapeutic targets for treating cancers/tumors and inflammation, tissue regeneration, and tissue repair.

MATERIALS AND METHODS

Expression Profile of Mφ Subset Markers, Exosome Biogenesis Mediators, Exosome Docking Mediators, Bioenergic Pathway Enzymes, T Cell Co-stimulation and Co-inhibition Receptors, and Mφ Transcription Factors in Mφs

Microarray datasets were collected from the National Institutes of Health (NIH)-National Center for Biotechnology Information (NCBI) GEO DataSets (https://www.ncbi.nlm.nih.gov/gds/) databases and analyzed with GEO2R (https://www.ncbi.nlm. nih.gov/geo/geo2r/). The numbers of 11 GEO datasets in non-diseased conditions are as follows: GSE56711, GSE85346, GSE55760, GSE59585, GSE14004, GSE37514, GSE50183, GSE66073, GSE46320, GSE27017, and GSE56711. The numbers of 32 GEO datasets in diseased conditions are as follows: GSE55235, GSE81622, GSE27335, GSE57376, GSE46451, GSE27411, GSE16879, GSE29507, GSE48080, GSE65517, GSE40224, GSE19339, GSE23561, GSE57691, GSE23561, GSE6088, GSE55100, GSE25724, GSE65204, GSE37768, GSE53408, GSE48080, GSE45670, GSE79973, GSE74656, GSE41657, GSE16515, GSE75037, GSE70951, GSE46602, GSE36668, and GSE75038. The number of the GEO dataset in gene knock-out mice is as follows: GSE40493.

As shown in **Figure 1**, 207 regulator genes in seven groups were studied in this paper, including 31 M ϕ subset marker genes, 18 M ϕ subset transcription factor genes (TF), 27 M ϕ general transcription factor genes (21), 28 T cell co-stimulation and co-inhibition receptor genes, bioenergetics pathway enzymes genes and trained immunity pathway gene numbers are totally 80. The logic flow and rationale are explained in **Figure 1** and **Table 2**. We also analyzed the expression of four house-keeping genes for all of the GEO datasets used. The house-keeping gene list was extracted from a related report (74).

Genes with a more than 1.5-fold expression change were defined as the upregulated genes, while genes with an expression change of less than 1.5-fold were defined as downregulated genes.

Ingenuity Pathway Analysis

We utilized Ingenuity Pathway Analysis (IPA, Ingenuity Systems, http://pages.ingenuity.com/rs/ingenuity/images/IPA_data_

sheet.pdf) to characterize clinical relevance and molecular and cellular functions related to the genes identified in our microarray analysis. The differentially expressed genes were identified and uploaded into IPA for analysis. The core and

REFERENCES

- 1. Zhang D, Fang P, Jiang X, Nelson J, Moore JK, Kruger WD, et al. Severe hyperhomocysteinemia promotes bone marrowderived and resident inflammatory monocyte differentiation and atherosclerosis in LDLr/CBS-deficient mice. *Circ Res.* (2012) 111:37–49. doi: 10.1161/CIRCRESAHA.112.269472
- Zhang D, Jiang X, Fang P, Yan Y, Song J, Gupta S, et al. Hyperhomocysteinemia promotes inflammatory monocyte generation and accelerates atherosclerosis in transgenic cystathionine beta-synthase-deficient mice. *Circulation*. (2009) 120:1893–902. doi: 10.1161/CIRCULATIONAHA.109.866889
- Fang P, Zhang D, Cheng Z, Yan C, Jiang X, Kruger WD, et al. Hyperhomocysteinemia potentiates hyperglycemia-induced inflammatory monocyte differentiation and atherosclerosis. *Diabetes*. (2014) 63:4275–90. doi: 10.2337/db14-0809
- Yang J, Fang P, Yu D, Zhang L, Zhang D, Jiang X, et al. Chronic kidney disease induces inflammatory CD40+ monocyte differentiation via homocysteine elevation and DNA hypomethylation. *Circ Res.* (2016) 119:1226–41. doi: 10.1161/CIRCRESAHA.116.308750
- Yang J, Zhang L, Yu C, Yang XF, Wang H. Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases. *Biomark Res.* (2014) 2:1. doi: 10.1186/2050-7771-2-1
- Fayad ZA, Swirski FK, Calcagno C, Robbins CS, Mulder W, Kovacic JC. Monocyte and macrophage dynamics in the cardiovascular system: JACC macrophage in CVD series (Part 3). J Am Coll Cardiol. (2018) 72:2198–212. doi: 10.1016/j.jacc.2018.08.2150
- Maguire EM, Pearce SWA, Xiao Q. Foam cell formation: a new target for fighting atherosclerosis and cardiovascular disease. *Vascul Pharmacol.* (2018) 112:54–71. doi: 10.1016/j.vph.2018.08.002

pathways analysis was used to identify molecular and cellular pathways, as we reported previously (25, 75, 76).

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data can be found here: https://4dgenome.research.chop.edu, https://www.ncbi.nlm.nih.gov/gds/.

AUTHOR CONTRIBUTIONS

BL and JW carried out the data gathering and data analysis and prepared tables and figures. AF, YSu, JSa, YL, GN, WY, DY, YSh, CD, CJ, FS, RZ, QY, KX, KM, RC, HF, SW, LS, PZ, XQ, JY, DF, YHS, JSu, TR, EC, and HW aided with analysis of the data. XY supervised the experimental design, data analysis, and manuscript writing. All authors read and approved the final manuscript.

FUNDING

This work was supported by Fellowships at the Second Affiliate Hospital; Nanchang University to BL and JW.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fimmu. 2019.02612/full#supplementary-material

- Moore KJ, Koplev S, Fisher EA, Tabas I, Bjorkegren JLM, Doran AC, et al. Macrophage trafficking, inflammatory resolution, and genomics in atherosclerosis: JACC macrophage in CVD series (Part 2). J Am Coll Cardiol. (2018) 72:2181–97. doi: 10.1016/j.jacc.2018.08.2147
- De Paoli F, Staels B, Chinetti-Gbaguidi G. Macrophage phenotypes and their modulation in atherosclerosis. *Circ J.* (2014) 78:1775–81. doi: 10.1253/circj.CJ-14-0621
- Nahrendorf M. Myeloid cell contributions to cardiovascular health and disease. Nat Med. (2018) 24:711–20. doi: 10.1038/s41591-018-0 064-0
- Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. *N Engl J Med.* (2017) 377:1119–31. doi: 10.1056/NEJMoa1707914
- Wang X, Li YF, Nanayakkara G, Shao Y, Liang B, Cole L, et al. Lysophospholipid receptors, as novel conditional danger receptors and homeostatic receptors modulate inflammation-novel paradigm and therapeutic potential. *J Cardiovasc Transl Res.* (2016) 9:343–59. doi: 10.1007/s12265-016-9700-6
- Hoeksema MA, Glass CK. Nature and nurture of tissue-specific macrophage phenotypes. *Atherosclerosis.* (2019) 281:159–67. doi: 10.1016/j.atherosclerosis.2018.10.005
- Que X, Hung MY, Yeang C, Gonen A, Prohaska TA, Sun X, et al. Oxidized phospholipids are proinflammatory and proatherogenic in hypercholesterolaemic mice. *Nature*. (2018) 558:301–6. doi: 10.1038/s41586-018-0198-8
- Lin B, Dutta B, Fraser IDC. Systematic investigation of multi-TLR sensing identifies regulators of sustained gene activation in macrophages. *Cell Syst.* (2017) 5:25–37 e3. doi: 10.1016/j.cels.2017.06.014
- 16. Mehta M, Deeksha, Sharma N, Vyas M, Khurana N, Maurya PK, et al. Interactions with the macrophages: an emerging targeted approach using

novel drug delivery systems in respiratory diseases. *Chem Biol Interact.* (2019) 304:10–9. doi: 10.1016/j.cbi.2019.02.021

- Li Z, Weinman SA. Regulation of hepatic inflammation via macrophage cell death. *Semin Liver Dis.* (2018) 38:340–50. doi: 10.1055/s-0038-1670674
- Pan F, Tang W, Zhou Z, Gilkeson G, Lang R, Jiang W. Intestinal macrophages in mucosal immunity and their role in systemic lupus erythematosus disease. *Lupus*. (2018) 27:1898–902. doi: 10.1177/0961203318797417
- Cai J, Qi Q, Qian X, Han J, Zhu X, Zhang Q, et al. The role of PD-1/PD-L1 axis and macrophage in the progression and treatment of cancer. *J Cancer Res Clin Oncol.* (2019) 145:1377–85. doi: 10.1007/s00432-019-02879-2
- Haroche J, Cohen-Aubart F, Rollins BJ, Donadieu J, Charlotte F, Idbaih A, et al. Histiocytoses: emerging neoplasia behind inflammation. *Lancet Oncol.* (2017) 18:e113–25. doi: 10.1016/S1470-2045(17)30031-1
- Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W, Quester I, et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. *Immunity*. (2014) 40:274–88. doi: 10.1016/j.immuni.2014.01.006
- Haldar M, Murphy KM. Origin, development, and homeostasis of tissue-resident macrophages. *Immunol Rev.* (2014) 262:25–35. doi: 10.1111/imr.12215
- Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and coinhibition. *Nat Rev Immunol.* (2013) 13:227–42. doi: 10.1038/nri3405
- Shi Y, Wang Y, Li Q, Liu K, Hou J, Shao C, et al. Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases. *Nat Rev Nephrol.* (2018) 14:493–507. doi: 10.1038/s41581-018-0023-5
- 25. Wang L, Fu H, Nanayakkara G, Li Y, Shao Y, Johnson C, et al. Novel extracellular and nuclear caspase-1 and inflammasomes propagate inflammation and regulate gene expression: a comprehensive database mining study. J Hematol Oncol. (2016) 9:122. doi: 10.1186/s13045-016-0351-5
- 26. Yang Q, Nanayakkara GK, Drummer C, Sun Y, Johnson C, Cueto R, et al. Low-Intensity ultrasound-induced anti-inflammatory effects are mediated by several new mechanisms including gene induction, immunosuppressor cell promotion, and enhancement of exosome biogenesis and docking. *Front Physiol.* (2017) 8:818. doi: 10.3389/fphys.2017.00818
- Van den Bossche J, O'Neill LA, Menon D. Macrophage immunometabolism: where are we (going)? *Trends Immunol.* (2017) 38:395–406. doi: 10.1016/j.it.2017.03.001
- Bekkering S, Arts RJW, Novakovic B, Kourtzelis I, van der Heijden C, Li Y, et al. Metabolic induction of trained immunity through the mevalonate pathway. *Cell.* (2018) 172:135–46 e9. doi: 10.1016/j.cell.2017.11.025
- Dominguez-Andres J, Netea MG. Long-term reprogramming of the innate immune system. J Leukoc Biol. (2019) 105:329–38. doi: 10.1002/JLB.MR0318-104R
- Ng B, Yang F, Huston DP, Yan Y, Yang Y, Xiong Z, et al. Increased noncanonical splicing of autoantigen transcripts provides the structural basis for expression of untolerized epitopes. *J Allergy Clin Immunol.* (2004) 114:1463–70. doi: 10.1016/j.jaci.2004.09.006
- 31. Shao Y, Nanayakkara G, Cheng J, Cueto R, Yang WY, Park JY, et al. Lysophospholipids and their receptors serve as conditional DAMPs and DAMP receptors in tissue oxidative and inflammatory injury. *Antioxid Redox Signal.* (2018) 28:973–86. doi: 10.1089/ars.2017.7069
- Yin Y, Pastrana JL, Li X, Huang X, Mallilankaraman K, Choi ET, et al. Inflammasomes: sensors of metabolic stresses for vascular inflammation. *Front Biosci.* (2013) 18:638–49. doi: 10.2741/4127
- Gautier EL, Yvan-Charvet L. Understanding macrophage diversity at the ontogenic and transcriptomic levels. *Immunol Rev.* (2014) 262:85–95. doi: 10.1111/imr.12231
- Abdolmaleki F, Gheibi Hayat SM, Bianconi V, Johnston TP, Sahebkar A. Atherosclerosis and immunity: a perspective. *Trends Cardiovasc Med.* (2018) 29:363–71. doi: 10.1016/j.tcm.2018.09.017
- Juban G, Chazaud B. Metabolic regulation of macrophages during tissue repair: insights from skeletal muscle regeneration. *FEBS Lett.* (2017) 591:3007–21. doi: 10.1002/1873-3468.12703
- Waki H, Tontonoz P. Endocrine functions of adipose tissue. Annu Rev Pathol. (2007) 2:31–56. doi: 10.1146/annurev.pathol.2.010506.091859
- 37. Makki K, Froguel P, Wolowczuk I. Adipose tissue in obesityrelated inflammation and insulin resistance: cells, cytokines, and

chemokines. ISRN Inflamm. (2013) 2013:139239. doi: 10.1155/2013/1 39239

- Ortega FB, Lavie CJ, Blair SN. Obesity and cardiovascular disease. *Circ Res.* (2016) 118:1752–70. doi: 10.1161/CIRCRESAHA.115.3 06883
- Primeau V, Coderre L, Karelis AD, Brochu M, Lavoie ME, Messier V, et al. Characterizing the profile of obese patients who are metabolically healthy. *Int J Obes.* (2011) 35:971–81. doi: 10.1038/ijo.2010.216
- Bell JA, Kivimaki M, Hamer M. Metabolically healthy obesity and risk of incident type 2 diabetes: a meta-analysis of prospective cohort studies. *Obes Rev.* (2014) 15:504–15. doi: 10.1111/obr.12157
- Hwang LC, Bai CH, Sun CA, Chen CJ. Prevalence of metabolically healthy obesity and its impacts on incidences of hypertension, diabetes and the metabolic syndrome in Taiwan. *Asia Pac J Clin Nutr.* (2012) 21:227–33.
- Chang Y, Ryu S, Choi Y, Zhang Y, Cho J, Kwon MJ, et al. Metabolically healthy obesity and development of chronic kidney disease: a cohort study. *Ann Intern Med.* (2016) 164:305–12. doi: 10.7326/M15-1323
- 43. Virtue A, Johnson C, Lopez-Pastrana J, Shao Y, Fu H, Li X, et al. MicroRNA-155 deficiency leads to decreased atherosclerosis, increased white adipose tissue obesity, and non-alcoholic fatty liver disease: A NOVEL MOUSE MODEL OF OBESITY PARADOX. J Biol Chem. (2017) 292:1267–87. doi: 10.1074/jbc.M116.739839
- 44. Johnson C, Drummer, D IV, Virtue, A, Gao, T, Wu, S, Hernandez, M, et al. Increased expression of resistin in microRNA-155-Deficient white adipose tissues may be a possible driver of metabolically healthy obesity transition to classical obesity. *Front Physiol.* (2018) 9:1297. doi: 10.3389/fphys.2018.01297
- Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. *F1000Prime Rep.* (2014) 6:13. doi: 10.12703/P6-13
- Fujiwara Y, Hizukuri Y, Yamashiro K, Makita N, Ohnishi K, Takeya M, et al. Guanylate-binding protein 5 is a marker of interferon-gamma-induced classically activated macrophages. *Clin Transl Immunol.* (2016) 5:e111. doi: 10.1038/cti.2016.59
- Ruffell D, Mourkioti F, Gambardella A, Kirstetter P, Lopez RG, Rosenthal N, et al. A CREB-C/EBPbeta cascade induces M2 macrophage-specific gene expression and promotes muscle injury repair. *Proc Natl Acad Sci USA*. (2009) 106:17475–80. doi: 10.1073/pnas.0908641106
- Lumeng CN, Saltiel AR. Inflammatory links between obesity and metabolic disease. J Clin Invest. (2011) 121:2111–7. doi: 10.1172/JCI57132
- Shen H, Wu N, Nanayakkara G, Fu H, Yang Q, Yang WY, et al. Cosignaling receptors regulate T-cell plasticity and immune tolerance. *Front Biosci.* (2019) 24:96–132. doi: 10.2741/4710
- Gato-Canas M, Zuazo M, Arasanz H, Ibanez-Vea M, Lorenzo L, Fernandez-Hinojal G, et al. PDL1 signals through conserved sequence motifs to overcome interferon-mediated cytotoxicity. *Cell Rep.* (2017) 20:1818–29. doi: 10.1016/j.celrep.2017.07.075
- Deng Y, Wang F, Hughes T, Yu J. FOXOs in cancer immunity: knowns and unknowns. *Semin Cancer Biol.* (2018) 50:53–64. doi: 10.1016/j.semcancer.2018.01.005
- Choi DC, Tremblay D, Iancu-Rubin C, Mascarenhas J. Programmed cell death-1 pathway inhibition in myeloid malignancies: implications for myeloproliferative neoplasms. *Ann Hematol.* (2017) 96:919–27. doi: 10.1007/s00277-016-2915-4
- Schildberg FA, Klein SR, Freeman GJ, Sharpe AH. Coinhibitory pathways in the B7-CD28 ligand-receptor family. *Immunity*. (2016) 44:955–72. doi: 10.1016/j.immuni.2016.05.002
- Fang X, Chen C, Xia F, Yu Z, Zhang Y, Zhang F, et al. CD274 promotes cell cycle entry of leukemia-initiating cells through JNK/Cyclin D2 signaling. J Hematol Oncol. (2016) 9:124. doi: 10.1186/s13045-016-0350-6
- 55. Kourembanas S. Exosomes: vehicles of intercellular signaling, biomarkers, and vectors of cell therapy. *Annu Rev Physiol.* (2015) 77:13–27. doi: 10.1146/annurev-physiol-021014-071641
- Alexander M, Ramstead AG, Bauer KM, Lee SH, Runtsch MC, Wallace J, et al. Rab27-dependent exosome production inhibits chronic inflammation and enables acute responses to inflammatory stimuli. *J Immunol.* (2017) 199:3559–70. doi: 10.4049/jimmunol.1700904
- 57. Tang CT, Liang Q, Yang L, Lin XL, Wu S, Chen Y, et al. RAB31 Targeted by MiR-30c-2-3p regulates the GL11 signaling pathway, affecting

gastric cancer cell proliferation and apoptosis. Front Oncol. (2018) 8:554.

- doi: 10.3389/fonc.2018.00554
 58. Banworth MJ, Li G. Consequences of Rab GTPase dysfunction in genetic or acquired human diseases. *Small GTPases*. (2018) 9:158–81. doi: 10.1080/21541248.2017.1397833
- Maddirevula S, Alzahrani F, Al-Owain M, Al Muhaizea MA, Kayyali HR, AlHashem A, et al. Autozygome and high throughput confirmation of disease genes candidacy. *Genet Med.* (2019) 21:736–42. doi: 10.1038/s41436-018-0138-x
- Russell DG, Huang L, VanderVen BC. Immunometabolism at the interface between macrophages and pathogens. *Nat Rev Immunol.* (2019) 19:291–304. doi: 10.1038/s41577-019-0124-9
- Hobson-Gutierrez SA, Carmona-Fontaine C. The metabolic axis of macrophage and immune cell polarization. *Dis Model Mech.* (2018) 11:dmm034462. doi: 10.1242/dmm.034462
- Shanware NP, Mullen AR, DeBerardinis RJ, Abraham RT. Glutamine: pleiotropic roles in tumor growth and stress resistance. J Mol Med. (2011) 89:229–36. doi: 10.1007/s00109-011-0731-9
- Houten SM, Violante S, Ventura FV, Wanders RJ. The biochemistry and physiology of mitochondrial fatty acid beta-oxidation and its genetic disorders. *Annu Rev Physiol.* (2016) 78:23–44. doi: 10.1146/annurev-physiol-021115-105045
- Boraschi D, Italiani P. Innate immune memory: time for adopting a correct terminology. *Front Immunol.* (2018) 9:799. doi: 10.3389/fimmu.2018.00799
- Mourits VP, Wijkmans JC, Joosten LA, Netea MG. Trained immunity as a novel therapeutic strategy. *Curr Opin Pharmacol.* (2018) 41:52–8. doi: 10.1016/j.coph.2018.04.007
- Dominguez-Andres J, Joosten LA, Netea MG. Induction of innate immune memory: the role of cellular metabolism. *Curr Opin Immunol.* (2018) 56:10–6. doi: 10.1016/j.coi.2018.09.001
- Ande SR, Nguyen KH, Padilla-Meier GP, Nyomba BL, Mishra S. Expression of a mutant prohibitin from the aP2 gene promoter leads to obesity-linked tumor development in insulin resistance-dependent manner. *Oncogene*. (2016) 35:4459–70. doi: 10.1038/onc.2015.501
- Naidoo J, Page DB, Li BT, Connell LC, Schindler K, Lacouture ME, et al. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. *Ann Oncol.* (2015) 26:2375–91. doi: 10.1093/annonc/mdv383
- 69. Yang Y, Boza-Serrano A, Dunning CJR, Clausen BH, Lambertsen KL, Deierborg T. Inflammation leads to distinct populations of

extracellular vesicles from microglia. J Neuroinflammation. (2018) 15:168. doi: 10.1186/s12974-018-1204-7

- Bally AP, Austin JW, Boss JM. Genetic and epigenetic regulation of PD-1 expression. J Immunol. (2016) 196:2431–7. doi: 10.4049/jimmunol.15 02643
- Song W, Shen L, Wang Y, Liu Q, Goodwin TJ, Li J, et al. Synergistic and low adverse effect cancer immunotherapy by immunogenic chemotherapy and locally expressed PD-L1 trap. *Nat Commun.* (2018) 9:2237. doi: 10.1038/s41467-018-04605-x
- Gordon SR, Maute RL, Dulken BW, Hutter G, George BM, McCracken MN, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. *Nature*. (2017) 545:495–9. doi: 10.1038/nature22396
- Boutens L, Stienstra R. Adipose tissue macrophages: going off track during obesity. *Diabetologia*. (2016) 59:879–94. doi: 10.1007/s00125-016-3904-9
- Epelman S, Lavine KJ, Randolph GJ. Origin and functions of tissue macrophages. *Immunity*. (2014) 41:21–35. doi: 10.1016/j.immuni.2014. 06.013
- Eisenberg E, Levanon EY. Human housekeeping genes, revisited. *Trends Genet.* (2013) 29:569–74. doi: 10.1016/j.tig.2013. 05.010
- Li YF, Nanayakkara G, Sun Y, Li X, Wang L, Cueto R, et al. Analyses of caspase-1-regulated transcriptomes in various tissues lead to identification of novel IL-1beta-, IL-18- and sirtuin-1-independent pathways. *J Hematol Oncol.* (2017) 10:40. doi: 10.1186/s13045-017-0406-2

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Lai, Wang, Fagenson, Sun, Saredy, Lu, Nanayakkara, Yang, Yu, Shao, Drummer, Johnson, Saaoud, Zhang, Yang, Xu, Mastascusa, Cueto, Fu, Wu, Sun, Zhu, Qin, Yu, Fan, Shen, Sun, Rogers, Choi, Wang and Yang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.