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Abstract

With the maturation of metabolomics science and proliferation of biobanks, clinical metabolic 

profiling is an increasingly opportunistic frontier for advancing translational clinical research. 

Automated Machine Learning (AutoML) approaches provide exciting opportunity to guide feature 

selection in agnostic metabolic profiling endeavors, where potentially thousands of independent 

data points must be evaluated. In previous research, AutoML using high-dimensional data of 

varying types has been demonstrably robust, outperforming traditional approaches. However, 

considerations for application in clinical metabolic profiling remain to be evaluated. Particularly, 

regarding the robustness of AutoML to identify and adjust for common clinical confounders. In 

this study, we present a focused case study regarding AutoML considerations for using the Tree-

Based Optimization Tool (TPOT) in metabolic profiling of exposure to metformin in a biobank 

cohort. First, we propose a tandem rank-accuracy measure to guide agnostic feature selection and 

corresponding threshold determination in clinical metabolic profiling endeavors. Second, while 

AutoML, using default parameters, demonstrated potential to lack sensitivity to low-effect 

confounding clinical covariates, we demonstrated residual training and adjustment of metabolite 

features as an easily applicable approach to ensure AutoML adjustment for potential confounding 

characteristics. Finally, we present increased homocysteine with long-term exposure to metformin 

as a potentially novel, non-replicated metabolite association suggested by TPOT; an association 

not identified in parallel clinical metabolic profiling endeavors. While warranting independent 
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replication, our tandem rank-accuracy measure suggests homocysteine to be the metabolite feature 

with largest effect, and corresponding priority for further translational clinical research. Residual 

training and adjustment for a potential confounding effect by BMI only slightly modified the 

suggested association. Increased homocysteine is thought to be associated with vitamin B12 

deficiency – evaluation for potential clinical relevance is suggested. While considerations for 

clinical metabolic profiling are recommended, including adjustment approaches for clinical 

confounders, AutoML presents an exciting tool to enhance clinical metabolic profiling and 

advance translational research endeavors.
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1. Background

1.1. Introduction to metabolomics and study motivation

Metabolomics, the study of organic chemical signatures within a specimen, has been 

increasingly deployed in clinical research applications. Characterization of perturbations to 

the metabolome (a.k.a. phenome) hold great promise to elucidate novel biomedical insights 

and potential disease mechanisms. While many ‘omics perspectives provide unique 

molecular insights, the phenome reflects biological perturbation closest to clinical phenotype 

manifestation. With the proliferation of biobanks [1] – where consenting patients voluntarily 

donate a wide-array of biologic specimens (e.g. blood, urine, saliva) to be systematically 

stored and utilized for research – opportunities for secondary research applications, 

including metabolomics, using primary specimens abound [2]. As both the science of 

metabolomics advances and scale of biobanks increase, clinical metabolic profiling holds 

increasing promise to identify novel biological insights regarding disease state, drug 

response, and clinical heterogeneity [3].

Metabolic profiling is a multi-step process that 1) initiates with analytical chemistry 

measurement {e.g. liquid chromatography (LC), mass spectrometry (MS), Nuclear magnetic 

resonance spectroscopy (NMR)}, including deployment of tandem techniques such as 

LC/MS, of organic compounds contained within a biological specimen; 2) algorithmic 

association of raw measurements with known discrete metabolites; 3) establishment of 

relative metabolite concentrations; and 4) concluding with statistical generation of a profile 

of metabolites (i.e. metabolic profile) perturbed within the phenome given an exposure of 

interest. Metabolic profiling of both disease [4] and drug exposures [5] have successfully 

identified distinct signatures. While some of these features have been shown to remain stable 

over time [6], some metabolites and physiologic states are known to rapidly fluctuate [7]. 

Further, some metabolites are known to be lipid soluble, with measured concentrations 

noticeable altered in patients with elevated BMI [8] – a biological rationale for potential 

confounding by BMI in clinical metabolic profiling. For agnostic untargeted metabolic 

profiling, thousands of metabolites are identified, whereas for targeted metabolic profiling, 

only a small group of metabolites are selected a priori based on hypothesized biological 
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relevance. With untargeted metabolic profiling, distinct analytical challenges remain as 

thousands of potentially unique features are ascertained, frequently exceeding the number of 

samples analyzed. Augmenting the metabolic profile with other ‘omics perspectives only 

further enhances this complexity. Regardless of selected approach and application, great 

opportunity exists for semi-automated machine learning approaches to assist in agnostic 

selection and inclusion of features in metabolic profiling endeavors. Our current application 

is focused within the later part of the targeted metabolic profiling process, characterizing 

long-term exposure to the drug metformin as a monotherapy within a human biobank cohort.

1.2. Automated Machine Learning and TPOT

Machine Learning (ML) approaches hold great opportunity to enhance metabolic profiling 

endeavors. Tree-based optimization tool (TPOT), our specific tool of interest, is an 

Automated Machine Learning (AutoML) tool with recent demonstrable success. 

Specifically, TPOT has been observed to automatically optimize ML pipelines that match or 

exceed the performance of traditional supervised approaches [9, 10, 11] while requiring 

minimal adjustments to default parameters. The mixture of data types deployed in human 

metabolic profiling and expansive feature space are ideally suited for enhancement with 

AutoML approaches. In genomics applications [9], TPOT has delivered promising predictive 

performance while being demonstrably robust to mixed datatypes with large feature spaces. 

Given the mixture and expansive feature space of data types found in clinical metabolic 

profiling, we posit that AutoML approaches offer opportunity for a robust, agnostic profiling 

solution. However, a thorough evaluation of potential caveats and considerations for 

application of AutoML using TPOT in clinical metabolic profiling is necessary. This 

includes specific considerations regarding continuous metabolite features in a potentially 

expansive feature space.

In this study, we provide an annotated methodological case study applying AutoML in 

clinical metabolic profiling of patients exposed to metformin monotherapy. Patient data was 

collected previously for traditional clinical metabolic profiling endeavors [12] from patients 

nested within a biobank cohort [2] Highlighted within our methodological case study are the 

following items: 1) A focused overview of clinical metabolic profiling using automated 

supervised machine learning methods. Specifically, demonstrated using the TPOT tool; 2) 

Necessary pre-processing and analysis steps for development of a clinical metabolic profile 

using AutoML; 3) Current state of the art for identification of confounding characteristics 

using AutoML; 4) Proposed strategies to adjust for confounding characteristics of different 

types commonly encountered in clinical metabolic profiling; 5) Finally, propose an 

AutoML-based tandem rank-accuracy metric for agnostic data-driven feature selection in 

clinical metabolic profiling.

2. Methods

All analyses and experiments, described in-depth below, were conducted using Python 

programming packages Sklearn, Pandas, and Numpy. All figures were generated using 

Python Matplotlib and Seaborn programming packages. TPOT v0.8 software [9,10,11] 

<https://github.com/rhiever/tpot> was exclusively utilized for AutoML experiments.
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2.1. TPOT overview

Fundamentally, TPOT takes a supervised learning dataset as input and recommends a series 

of preprocessing, feature construction, feature selection, and ML modeling operations that 

maximize the predictive performance of the final ML model. We call this series of 

operations a pipeline. TPOT optimizes the analysis pipeline using a stochastic optimization 

process that begins with several simple, random pipelines (the population). For every 

iteration of the optimization process (a generation), TPOT makes several copies of the 

current best-performing pipelines in the population and then applies random changes to 

them, such as adding or removing an operation or tuning a parameter setting of one of the 

operations. These stochastic changes can have positive or negative effects on the 

performance of the pipelines, and as such allow TPOT to explore new analysis pipelines that 

were never previously considered. At the end of every generation, the worst performing 

pipelines are removed from the population and TPOT proceeds to the next generation. After 

a fixed number of generations (in this study, 1,000 generations), TPOT recommends the 

best-performing pipeline that it ever created during the optimization process. In this study, 

we present observations from the TPOT pipeline as described. For more details regarding the 

TPOT algorithm and tool, see [9,10,11] and the software package online at https://

github.com/rhiever/tpot

2.2. TPOT default parameters and pre-processing

A series of pre-processing steps were initiated to evaluate sensitivity of TPOT for detection 

of common clinical confounders (e.g. age, gender, body mass index (BMI), batch effects). 

Supervised classification analysis was performed using an out-of-the-box TPOT 

deployment. A classification predictive model was generated on the full dataset containing 

both prioritized metabolite features and clinical covariates using the following settings: 

number of generation 2000, population size 1000, 5-fold cross validation on the training set, 

and standard accuracy as a performance metrics. Prior to TPOT analyses, the cohort was 

randomly stratified into separate 75% training and 25% testing datasets. A unique random 

seed was selected for each of the 5 independent replications. Resulting models were 

characterized using accuracy metrics, representing the fraction of corrected prediction with 

the best possible score 1.0. For each replicate, feature importance was measured and rank 

was assigned in accordance with importance coefficients. Ranks were summed across 

replicates where inverse of sum of ranks served as the metric for feature importance across 

experiments. Specifically, rank coefficient or rx, where×is a feature coefficient from replicate 

i, n – total number of the TPOT replicates: rx = 1/∑i = 1
n x

2.3. TPOT Analysis

TPOT models generated predictive ranks, an approximation of relative effect size 

generalizable across TPOT-selected machine learning algorithms, for comparing importance 

of individual features. Model performance overall was evaluated using R2, or coefficient of 

determination (i.e. accuracy), describing the fraction of response variance described by the 

model, with a maximum possible score of 1.0. In our work, we highlighted the potential 

utility of rank-accuracy measures deployed in tandem to guide agnostic feature selection in 

clinical metabolic profiling.
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To evaluate TPOT’s automatic adjustment capabilities in clinical metabolic profiling, we 

evaluated the following features for potential confounding: 1) BMI – metabolites evaluated 

using case-only (metformin monotherapy exposed) and stratified {split by the median value 

of BMI (2 groups) and common clinical thresholds (<18.5, 18.525, 25–30, ≥30)} datasets; 2) 

Batch effect – 8 splits were applied using TPOT classification mode with case status set as 

the target variable. For each replicate, feature importance was measured and predictive ranks 

were assigned; 3) Dose-dependent metabolite effect of metformin exposure – case-only 

analysis was performed where prescribed metformin daily dose and measured metformin 

plasma concentration were included; 4) Confounding associations (i.e. sensitivity) not 

identified by TPOT (i.e. insensitive) – metabolites were adjusted using either stratification or 

residual adjustment approaches, both of which are described in-depth below.

To demonstrate the utility of TPOT for feature selection towards ascertainment of a 

metabolic profile, classification TPOT analysis was then applied to a reduced-feature dataset 

containing only the prioritized metabolite features (i.e. potential confounding clinical 

covariates were removed). TPOT settings described in the previous section were utilized. 

Predictive ranks were deployed to aid in feature selection of metabolic profiles; metabolites 

were sorted in accordance to their rank coefficient and recursive feature elimination 

estimated the strength (e.g. accuracy score) of prediction for various consecutive 

combination of sorted features. Pipelines from TPOT analyses evaluated performance of 

various feature sets by reporting training and testing set accuracy. To understand the impact 

of potential confounding insensitive to TPOT, the ascertained clinical metabolite profile was 

replicated using a BMI-adjusted dataset, where metabolite measured concentrations were 

replaced with residuals from independent univariate linear regression models of individual 

metabolites and BMI.

3. Results

3.1. Cohort characteristics

Exposure to clinically stable (i.e. ‘long-term’) metformin monotherapy was profiled using a 

de-identified case-control dataset representing 546 unique patients nested within a biobank 

cohort. All data was previously collected for parallel metabolic profiling endeavors [12]; 

data was de-identified by our collaborating institution prior to release for analysis. IRB 

coverage for both prior research data collection (original study purpose) [Mayo Clinic 

15-003347 and 08-007049] and secondary analysis [Penn 827996] were obtained. A pre-

selected panel of amine-based metabolites (n=42) were previously measured from human 

plasma samples using tandem LC-MS. Clinical features were previously ascertained using 

electronic health record(EHR)-based phenotyping and confirmed by manual chart review. 

Clinical features included common covariates (age, gender, BMI, and metabolite batch) and 

metformin exposure (metformin prescribed daily dose and metformin plasma concentration). 

Cases (n=273) included patients exposed to metformin monotherapy with type 2 diabetes 

having glycemic control; controls consisted of healthy normal patients with no known 

metformin exposure. Case and control patients were previously matched by age and gender 

prior to sample selection and were statistically randomized and assigned to batches prior to 

metabolomic measurement.
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3.2. Descriptive analyses using default TPOT parameters

Univariate Pearson’s correlations were generated for metformin exposure (case-control 

status) using TPOT (Figure 1). Metformin exposure demonstrated correlations with varying 

effect and direction for both metabolite (e.g. alanine and citrulline) and clinical (BMI, 

metformin prescribed daily dose, metformin plasma concentration) features. These results 

demonstrated that associations exist within the dataset, suggestive of potential confounding 

between metformin exposure and metabolic perturbation. Further, strong associations were 

identified for several metabolite-metabolite pairings. For example, tyrosine, valine, 

isoleucine, leucine and phenylalanine were positively correlated (r > 0.5) with each other. 

While physiologically unclear, such distinct clustering of associations might suggest 

potential for proximal, interrelated metabolic responses.

From the perspective of rank associations, we evaluated sensitivity of TPOT to identify 

potential confounding features using default parameters. Not surprisingly, increased 

prescribed daily dose of metformin was associated with increased relative effect (~ 5 times 

larger than the most predictive metabolite) for predicting metformin exposure (Figure 2A). 

Since prescribed metformin daily dose was a non-binary feature, characterized by 10 

discrete values (ranging from 250 to 3000 mg), adjusting for a potential confounding effect 

using stratification alone – one of the common strategies to adjust for confounding feature in 

AutoML analysis – had potential to create unbalanced or underpowered subgroups and bias 

resulting associations. We posited, while increased dose has potential to mask identification 

of relevant metabolite features, inherently enhancing the biological effect of metformin 

exposure, it is unlikely to introduce bias by a confounding effect and can be removed from 

analysis. When dose and concentration of metformin exposure were removed from 

consideration, a more gradual distribution of rank coefficients were observed. The top three 

features contained the metabolites homocysteine and citrulline and clinical feature BMI 

(Figure 2B). These findings, together with existing biomedical knowledge, suggest that 

dose-dependent features have potential to mask important metabolite features and BMI 

might introduce bias due to confounding.

3.3. Evaluation of clinical characteristics for potential confounding

Within the below sections, we assessed potential confounding using out-of-the-box 

AutoML. Specifically, we evaluatde BMI, metabolomics batch effect, and potential dose-

dependent effects:

3.3.1. Body mass index (BMI)—While BMI was demonstrated to be associated with 

metformin exposure overall, suggesting confounding, potential for within case-control status 

confounding was unknown. To elucidate potential within-case confounding (i.e. 

confounding by indication) by BMI, TPOT regression analysis was performed on a case-

only dataset with metabolite and BMI features and evaluated using R2 or accuracy (AC) 

metrics (R2= testing; training). TPOT generated various regression models, including 

Elastic Net Regressor with built-in Cross-Validation, Extra Tree Regressor, Random Forest 

Regressor, and Ridge Regressor with built-in Cross-Validation. Due to low accuracy, the 

highest being (R2=0.48;<0.01), we were unable to assign rank coefficients or an effect. This 

low accuracy suggested that either the TPOT models were insensitive to within-case BMI or 
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that no confounding effect existed. To further elucidate a potential effect, BMI was evaluated 

with various splits and thresholds. However, the highest accuracy (R2= 0.89;neg) implicated 

a model likely over-fit and containing false positives. Univariate linear regression analysis 

was performed on the same datasets to serve as a benchmark for TPOT regression 

performance. In independent regression analyses of top metabolite features, model 

performance remained poor for alanine (R2=0.58;null) and a-aminoadipic acid 

(R2=0.62;0.42). While the models did not identify BMI associations, the existence of 

distinct distributions of BMI within cases and controls (Figure 3) suggest potential 

confounding and potential insensitivity of TPOT where collinearity exists.

3.3.2. Metabolomics batch effect—To elucidate a potential batch effect, TPOT analysis 

was performed stratified by batches. We ran TPOT classification analysis for each batch 

subset and compared performance. Overall, subsets performed very well with high accuracy 

for both training and testing sets, suggesting strong potential for a batch effect. For 

individual batch performance, we observed the following: batch 1(AC=0.90;0.87); batch 2 

(AC=0.90;0.82); batch 3 (AC=0.95;0.94); batch 4 (AC=0.95;0.81); batch 5 (AC=0.92;0.90); 

batch 6 (AC=0.94;0.93); batch 7 (AC=0.96;0.73); batch 8 (AC=1.0;1.0). However, case-

control frequencies varied within these associations, with batch 2 having 61 cases and batch 

5 having only 2 cases. Unbalanced randomization between case-control selection in batch 

assignment likely contributed to a potential batch effect.

3.3.3. Metformin dose-dependent effect—Case-only TPOT analysis generated strong 

dose-dependent associations (prescribed metformin daily dose and measured plasma 

metformin concentrations) across several TPOT-generated models. However, when 

benchmarked to univariate associations, both training and testing accuracies were very low 

(AC<0.11), suggesting likely model overfitting. In context, these findings suggest that while 

dose effects may mask associations in clinical metabolic profiling due to being contained 

within the exposure, the observed is potentially not a true confounding effect. Further work 

remains to robustly identify and adjust for dose-dependent effects in AutoML.

3.4. Obtaining metabolic profile guided by predictive ranks and tandem-rank accuracy

In development of a clinical metabolic profile of metformin exposure, TPOT models 

selected Gradient Boosting Classifier and Extra Trees Classifier for classification task with 

accuracy scores for a training set 0.98 and above and for a testing set 0.83 and above. 

Distribution of rank coefficients clearly prioritized homocysteine and citrulline as top 

metabolite features. To ascertain additional metabolite features of potential relevance, 

recursive feature elimination was applied and features sorted in accordance by their rank. 

Training and testing accuracy of the model continued to increase (Figure 4) up to the 

addition of the top 4 important metabolite features (homocysteine, citrulline, allo- 

isoleucine, and arginine) and remained relatively unchanged beyond inclusion of an 

additional 2 metabolite features (alanine and isoleucine).

In this analysis, the rank metrics provided information about relative importance of 

metabolic variables with respect to their predictability of the outcome (metformin exposure) 

variable. The accuracy metrics provided an estimate of the model performance on the 
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various subsets of the features and help to distinguish the most discriminative features in the 

dataset. Together rank and accuracy generated a statistical support for distinguishing 

metabolites that show differential response to exposure. In this study, the tandem metrics 

demonstrated that homocysteine was consistently identified as our top TPOT-recommended 

feature, with a much larger magnitude of effect than other features.

3.5. Proposed adjustments for confounding bias in AutoML analyses

In the previous section, we identified features with potential to bias AutoML-based clinical 

metabolic profiling endeavors due to confounding effects. We identified that TPOT is 

potentially insensitive to identification of low-effect confounding features, and that high-

effect features may mask potentially relevant prioritized metabolite features. As such, 

manual adjustment for potential confounding features might be necessary. Further, as is 

often required for epidemiological inquiry, select feature adjustment might be required to 

rule out a suspected confounding effect.

To adjust for confounding in AutoML, we suggest two data type-dependent adjustment 

strategies: 1) For continuous values, we propose that residuals obtained from independent 

linear regressions [13] (e.g. between metabolites and BMI) be obtained prior to AutoML 

analyses. This aims to be consistent with approaches appropriately address confounding in 

multivariate statistical analyses [14]. In our application, the residual index was computed 

independently for each metabolite as the residual from the simple linear regression of 

metabolite variable on the confounding variable (i.e. BMI). The residual distances of 

individual points from regression line then served as the estimators of metabolites. Our 

adjustment for BMI slightly enhanced our homocysteine association – demonstrated to be 

increased in plasma concentration with metformin exposure in multivariate linear regression 

– with the model accuracy remaining comparable. Metabolite features originally ranked 

below homocysteine in unadjusted analysis consistently remained below homocysteine, but 

were slightly modified by rank order and magnitude. We recommend sensitivity analysis and 

regression diagnostic methods to select a proper regression model for adjustment in AutoML 

applications. 2) For categorical data types, we recommend stratification, where independent 

analyses are conducted and findings (e.g. means) presented in aggregate. In this approach, 

AutoML generates feature importance coefficients for each subset and then transformed into 

ranked coefficients (described in Section 2.2) where mean of ranks are calculated over all 

subsets. However, stratification is known to be negatively impacted by low sample power. 

Frequently, well-powered strata produce more accurate estimates than relatively lower 

powered strata. To supplement this deficiency, we suggest weighted mean, particularly 

Mantel-Haenszel [15], where strata are prioritized be statistical power. When applied, 

stratum-specific adjusted relative risk estimates can be calculated, providing an overall 

summary measure of effect. Approach described for categorical data types might be most 

aptly applied in future research to elucidate potential metformin dose-dependent effects.

4. Discussion

In this study, we demonstrated AutoML considerations using TPOT for metabolic profiling 

of exposure to metformin monotherapy in a biobank cohort. Our two major informatics 
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contributions include: 1) tandem rank-accuracy measures to guide agnostic feature selection 

and corresponding threshold determination in clinical metabolic profiling endeavors, and 2) 

residual training and adjustment of metabolite features in AutoML analysis. Both our 

informatics contributions and identified metabolite associations contribute to precision 

medicine knowledge.

4.1. Considerations and adjustments for confounding features

In our analysis, we demonstrated that while AutoML is a potential powerful tool for clinical 

metabolic profiling, specific considerations and adjustments might need to be applied for 

potentially confounding characteristics. Correlation and agnostic TPOT analyses 

demonstrated that daily dose and BMI had strong-to-medium associations with metformin 

exposure. While not a focus of our analysis, this dataset is uniquely suited for future 

evaluation of dose-dependent effects using AutoML and other analysis approaches. For 

datasets with potential confounding, we proposed two data type-dependent adjustment 

strategies: 1) stratification for categorical features, and 2) independent residual identification 

and application for continuous features.

4.2. Future study design considerations

AutoML methods (and ML methods in general) can be sensitive to the dataset quality in 

terms of sample size and sample structure. A distinct strength of our study was the well-

powered (n = 546) dataset with targeted metabolites. Conversely, datasets with a small 

sample size (n < 50 samples) can often lead to overfitting, especially when the dataset has 

high variance due to random noise. Here we had 546 samples and 42 metabolites, which is 

considered a good ratio of features to samples to avoid high variance problem. However, in 

untargeted clinical metabolic profiling studies, where the number of metabolites exceeds the 

number of samples 10 or even 100-fold, this high variance is a common problem. In this 

scenario, even high accuracy scores could be unreliable without deploying an alternative 

strategy. One suggested approach to avoid this pitfall is to apply feature selection methods 

before running AutoML analysis. Relief-based algorithms, recursive feature elimination and 

regularization techniques are among the most common approaches used to treat overfitting 

and is directly applicable in future untargeted clinical metabolic profiling endeavors.

Imbalanced datasets with one phenotype overrepresented (i.e. more controls than cases) can 

also cause bias in AutoML and ML classification tasks. Several adjustments could be made 

including: 1) changing performance metrics to one that can give more insight into the 

accuracy of the model than traditional classification accuracy (e.g., area under the ROC 

curve, precision and recall); 2) resampling data using either addition of copies of samples 

from the under-represented phenotype or removal of samples from the over-represented 

phenotype. Imbalanced datasets can also make it difficult to apply stratification approaches 

to control for confounding. A potential weakness of our study is that batch effect could not 

be reasonably incorporated into adjustment approaches due to imbalance. Ensuring balanced 

observation batches is a critical consideration for study design in future clinical metabolic 

profiling studies.
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Finally, datasets with a large percentage of missing values can be problematic for AutoML 

and ML methods. Another strength of our study includes that all features were fully 

populated. Many ML methods cannot handle missing values by default, so a common 

approach is to replace all missing values in a column with the median or mean value of that 

column (for all columns with missing values), or even replace all missing values with a fixed 

value (e.g., -99 or 0, depending on the feature). However, replacing missing values in such a 

manner, especially when there is a large percentage of missing values can introduce noise 

into the dataset and bias analysis. Thus, we recommend taking a thorough approach when 

replacing missing values in a dataset for AutoML and ML.

4.3. Increased homocysteine

Beyond our specific informatics contributions, we demonstrated the utility of AutoML to 

enhance multi-omic perspectives in pursuit of precision medicine knowledge. In this study, 

we present increased homocysteine with long-term exposure to metformin as a potentially 

novel metabolite association suggested by TPOT; an association not identified in parallel 

clinical metabolic profiling endeavors. While warranting independent replication, our 

tandem rank-accuracy measure suggests homocysteine to be the metabolite feature with 

largest effect, and corresponding priority for further translational clinical research. Residual 

training and adjustment for a potential confounding effect by BMI only slightly modified 

our initial association. Elevated homocysteine levels are clinically associated with vitamin 

B12 and folate deficiency [16] – we suggest future consideration for potential clinical 

relevance and independent replication. Elevated homocysteine is also associated with some 

increased posited risk for atherosclerotic disease [17], potentially cancer [18], and 

depression [19], but has insufficient evidence to suggest consideration as a clinical predictor 

or biomarker.

While indeed, the maturation of metabolomics science and proliferation of biobanks are 

exciting, combining with the expansive clinical perspectives offered by EHR linkages offer 

unprecedented opportunity. We posit that EHR perspectives of phenotypic divergence 

combined with metabolic variation are poised to become powerful facets advancing clinical 

translational science. Judicious application of ML and AutoML approaches will become 

increasingly powerful in multi-omic research.

5. Conclusion

AutoML is an exciting tool holding great promise to enhance clinical metabolic profiling 

and advance translational research endeavors; considerations are recommended, including 

adjustment approaches for clinical confounders. Our identified association of increased 

homocysteine with long-term metformin exposure warrants independent replication and 

evaluation for potential clinical relevance.
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Figure 1. 
Pearson’s correlation coefficients for metabolite and clinical features.
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Figure 2. 
Metabolite and clinical feature ranks. The most predictive features have lowest values; the 

least predictive features have highest values. A) All metabolic and clinical features. B) All 

metabolic and clinical features excluding daily dosage.
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Figure 3. 
Distribution of BMI within case and control
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Figure 4. 
AutoML generated clinical metabolic profile for exposure to metformin guided by tandem-

rank accuracy measure. Sorted histogram of predictive power for metabolite inverse (for 

ease of interpretation) sum of ranks (blue bar), training set accuracy, (solid magenta line), 

and testing set accuracy (dashed magenta line) describe relative feature effect size and model 

performance.
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