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INTRODUCTION

Abstract

vo T cells are fascinating cells that bridge the innate and adaptive
immune systems. They have long been known to proliferate
rapidly following infection; however, the identity of the specific vy
T cell subsets proliferating and the role of this expansion in
protection from disease have only been explored more recently.
Several recent studies have investigated yd T-cell responses to
vaccines targeting infections such as Mycobacterium, Plasmodium
and influenza, and studies in animal models have provided further
insight into the association of these responses with improved
clinical outcomes. In this review, we examine the evidence for a
role for y3 T cells in vaccine-induced protection against various
bacterial, protozoan and viral infections. We further discuss results
suggesting potential mechanisms for protection, including
cytokine-mediated direct and indirect killing of infected cells, and
highlight remaining open questions in the field. Finally, building
on current efforts to integrate strategies targeting yd T cells into
immunotherapies for cancer, we discuss potential approaches to
improve vaccines for infectious diseases by inducing 8 T-cell
activation and cytotoxicity.

Keywords: cytokines, infection, proliferation, vaccination, Vy9Vé2 T
cells, yo T cells

different across different animals, but in humans,
subsets expressing different Vy and V3 regions

Although representing only a small percentage of T
cells (generally 2-5% of peripheral blood T cells in
healthy adults), yd T cells have increasingly been
recognised for their unique roles in establishing
and regulating the inflammatory response to
infectious diseases. These unconventional T cells
have antigen recognition capacity, tissue tropism
and cytotoxic functions that are distinct from off T
cells. v8 T cells are the first T cells to appear in the
thymus during foetal thymic ontogeny and,
following gene rearrangement, express different T-
cell receptor (TCR) sequences.” TCR diversity is
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localise to different tissues and have differing
effector functions. For example, the most abundant
subset in human adult peripheral blood is Vy9Vs2
cells (also referred to as Vy2V352) while V51" cells
are more common in mucosal tissues.® Existing
only in primates, Vy9V32 cells recognise
phosphoantigens induced by stress or pathogens in
a process that is dependent on butyrophilin 3A1
(BTN3A1, CD277), a type | glycoprotein in the B7
family.® Other signalling pathways for human v3 T-
cell activation involve TCR interaction with ligands
such as F1-ATPase or endothelial protein C

2019 | Vol. 8 | e1072
Page 1


https://orcid.org/0000-0001-6305-758X
https://orcid.org/0000-0001-6305-758X
https://orcid.org/0000-0001-6305-758X
mailto:
www.wileyonlinelibrary.com/journal/cti

vd T cells in disease and vaccination

receptor, or additional cell surface receptors such
as natural killer group 2 member D (NKG2D)
receptors or toll-like receptors (TLR).* Unlike ap T
cells, all of these pathways are independent of the
major histocompatibility complex (MHC). In some
animals (e.g. cattle, sheep, chickens), y6 T cells
express highly diverse TCRs regardless of tissue
localisation, while in others (e.g. mice), almost all
v8 T cells in the epidermal layer of the skin (called
‘dendritic epidermal T cells’) express identical yd
TCRs. Interestingly, y6 TCRs are structurally more
similar to immunoglobulins than of TCRs; the CDR3
lengths of TCR & chains are long and variable,
whereas those of the TCR y chains are short and
constrained.” The presence of TCR chains that use
antibody-like V domains is widely distributed in
vertebrates, suggesting a selective pressure for TCR
chains that recognise antigen in ways similar to
that of antibodies.

Several v T-cell subsets have long been known
to rapidly increase in number following systemic
infections and to perform numerous roles,
including direct anti-microbial roles, recruitment
of innate immune cells and activation of adaptive
immune cells.* In many situations, including most
bacterial and parasitic infections in humans, it is
the V82" T-cell subset that proliferates, while in
some viral infections, V31" T cells expand and
exert anti-microbial activities. Interestingly, vd T
cells also appear to have some level of functional
plasticity, enabling them to adapt their function
at different points during infection based on TCR
signalling and environmental cues. Animal models
have further provided support that these cells are
not simply biomarkers of infection, but can in fact
mediate protection from disease and/or recurrent
infection. Despite being known to have an
important role in immunity to infectious diseases,
v6 T cells have, with the exception of the Bacillus
Calmette—-Guérin (BCG) vaccine for tuberculosis,
largely been ignored in vaccine development.
Whether vd T cells are stimulated directly by the
antigen component of the vaccine or indirectly
with an appropriate adjuvant, there may be many
opportunities to improve vaccine effectiveness by
targeting yd T cells. In this article, we will review
the evidence for the role of yd T cells in vaccine-
induced protection to bacterial, protozoan and
viral infections. Many of these diseases,
particularly those responsible for the highest
mortality and morbidity worldwide — tuberculosis,
malaria and HIV — do not yet have an effective
vaccine because of rapid pathogen evolution and
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other biological and technical challenges.
However, considering the functional roles of v4 T
cells and incorporating them into a vaccine
strategy could be an important step towards
reducing the devastating impact of these diseases.

MYCOBACTERIA AND OTHER
BACTERIAL INFECTIONS

A number of studies have shown expansion of v
T-cell populations in response to various bacterial
infections, both in humans and in animal models.
In humans, y& T cells accumulate at mucosal
epithelial tissues, including the lungs,> and have
been shown to rapidly proliferate following
infection  with  Mycobacterium  tuberculosis
(Mtb).5” These responding yd T cells primarily
express Vy9Vvs28 and recognise Mtb
phosphoantigen.®® Studies testing whether v& T
cells expand in response to the Mtb heat shock
protein HSP65 have had somewhat conflicting
results, but suggest that while some vyé T-cell
clones can recognise HSP65, the majority of cells
respond to other antigens.””'®'" Several in vitro
studies have suggested that Vy9Vvé2 T cells may
mediate protection from Mtb. These cells appear
to be capable of directly killing extracellular Mtb
via release of granulysin and intracellular Mtb via
granulysin and perforin."> Mycobacteria-specific
Vy9V32 T cells from individuals positive for the
tuberculosis skin test also produce granzyme A,
which indirectly leads to Mtb destruction by
stimulating TNFo  production by infected
macrophages.’® In the mouse model, although v
T cells seem to be less essential to immunity
against Mtb,"*"> GM-CSF production by 8 T cells
in the lungs seems to play a role in protection
and an additive effect between GM-CSF and IFNy
promoted macrophage control of intracellular
bacterial replication.'® Clearly, the Vy9V82 T-cell
subset is important in the human immune
response to Mtb, but further work is required to
evaluate the role of various cytokines in
protection from disease at different timepoints
during infection.

v T cells also seem to play a role in immunity
induced by BCG, the only current vaccination
against Mtb. Similarly to natural infection, y3 T-
cell populations expand and produce IFNy in
response to BCG vaccination.” ' In fact, IFNy
production by these cells was greater than that of
CD4* T cells. In adults, V82" y8 T cells from BCG-
vaccinated individuals expanded more than cells
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from non-vaccinated individuals in response to
in vitro Mtb restimulation; this memory-like
phenotype could not solely be attributed to
increased helper functions from mycobacteria-
specific memory CD4* T cells.?® Given that BCG
contains lower levels of phosphorylated
nonpeptidic antigens compared to Mtb,?" it is
unclear whether y3 T cells responding to BCG are
recognising the same or different antigens
compared to natural infection. Further studies are
needed to evaluate the functional role of y§ T-cell
expansion following BCG vaccination, including
any role for memory-like subsets and whether
expansion provides protection upon challenge or
infection with Mtb. Considering the importance
of granulysin, perforin and granzyme A in
response to Mth, it may also be useful to
incorporate strategies that elicit these responses
into vaccine design.

Studies in non-human primates further support
an important role for y3 T cells in responding to
Mtb infection and BCG vaccination. These studies
may additionally provide insight into mechanisms
driving immunity induced by yé T-cell expansion.
Non-human primates serve as a useful model as
they also express the Vy9Vé2 T-cell subset, which
recognise Mtb, unlike murine vy3 T cells which do
not recognise phosphoantigen or microbial
antigens.”>  Administration of an  Mtb
phosphoantigen analog combined with IL-2
expanded the Vy9Vd2 T-cell population during
Mtb infection.?? Expanded Vy9V52 T cells

differentiated into effector subpopulations,
expressed cytokines such as |IFNy, perforin,
granulysin and IL-12, and led to enhanced

pulmonary responses of peptide-specific CD4*/
CD8* T cells.?? Importantly, diminished TB lesions
and reduced Mtb proliferation were also
observed, suggesting a role for expanded/
differentiated Vy9V32 T cells in resistance to Mtb
infection.’> In another approach, adoptive
transfer of autologous Vy9V32 T cells 1 or 3 weeks
after Mtb infection led to significant protection
from Mtb, including a rapid recall-like increase in
the pulmonary Vy9Vé2 T-cell subset, decreased
Mtb infectious burdens (particularly in the lungs)
and reduced pathology.?® Following BCG
vaccination, Vy9Vé2 T cells expanded as early as
4-6 days post-vaccination with peak levels at 3—
5 weeks post-vaccination; this expansion further
coincided with clearance of bacteraemia and
immunity to fatal tuberculosis after challenge.?*
Finally, a prime-boost approach using
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phosphoantigen followed by fusion proteins led
to expansion of y3 T cells displaying effector
memory surface markers and producing cytokines
such as IL-2, IL-6, IFNy and TNFa following primary
vaccination.?® As these cells anergised following
boosts whereas off T cells expanded,?® future
studies could investigate whether anergy can be
prevented and vy3 T-cell recall responses preserved.
Together, the described studies in macaques
provide evidence that y3 T cells confer protection
from symptomatic Mtb infection and support
targeting these cells in vaccination approaches to
Mtb.

The 73 T-cell ontogeny is quite different in
other mammals compared to humans and non-
human primates; however, studies in cattle and
pigs showed similar responses to those found in
humans and macaques. Cattle and other
ruminants express large proportions of yd T cells
that decline with age, but remain high relative to
human levels.?*?” In cattle, yo T cells rapidly
proliferate following infection with
Mycobacterium bovis*®3° or BCG vaccination.3'3?
Similarly, in pigs, y8 T cells proliferated following
vaccination with BCG.33

Other bacterial agents demonstrating yd T-cell
expansion following infection and vaccination
include Leptospira borgpetersenii, Salmonella
enterica, Francisella tularensis and Listeria
monocytogenes. Similarly to the described
response to Mtb, human v3 T-cell populations, in
particular the Vy9V32 subset, expand following
leptospirosis  infection.3*3> In  leptospirosis
vaccination studies in cattle, IFNy-producing v6 T
cells expressing the WC1 co-receptor expand post-
vaccination and upon in vitro restimulation.3¢38
v& T cells also expand following salmonella
vaccination in chickens and macaques®>*® or
following salmonella infection in humans.*'
Furthermore, following salmonella or listeria
vaccination in macaques, yd T cells displaying
Vy9Ve2  were the major T-cell subset
proliferating.*®4? Following subclinical Listeria
monocytogenes  infection, Vy9Vvé2 T cells
expanded, trafficked to the lungs and intestinal
mucosa and evolved into effector cells producing
IFNYy, TNFo, 11-4, 1I-17 and/or perforin.42 These cells
could then lyse infected target cells and inhibit
intracellular bacterial growth, demonstrating a

potential role in protection from listeria.*?
Interestingly, 6 T «cells displaying Vy9Va2
expanded in  humans infected with F.

tularensis,**** but did not expand following
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because of different

t.43

vaccination, perhaps
phosphoantigens presen

In summary, a number of studies have not only
demonstrated 3 T-cell expansion in various
bacterial infections, but also possible mechanisms
of protection provided by this cell population,
including both direct killing and recruitment of
other cell types via production of pro-
inflammatory cytokines. Although clear that v6 T
cells respond differently based on infectious
agent, specific proliferation of the Vy9V32 subset
in response to a number of bacterial pathogens
correlates with protection from symptomatic
disease. Consequently, upregulating activation
and/or functional responses of this subset by
vaccination may enhance protection against the
agent targeted by immunisation. However, given
the vy T-cell anergy observed in the described
vaccine study combining phosphoantigen with a
subunit anti-tuberculosis vaccine,?®> as well as
prevalent examples of T-cell exhaustion in other

contexts, further work is needed to assess
potential mechanisms driving such processes.
Timing of interventions could therefore be

optimised to induce maximal 5 T-cell recall
responses and promote activation without causing
exhaustion.

MALARIA INFECTION

In addition to long-standing evidence that y6 T
cells play a role in initial responses to parasitic
infections, there is increasing evidence that yd T
cells are important in vaccine-induced protection
from malaria. Studies over the past few decades
have shown that v T cells (particularly the V&2*
subset) rapidly expand following infection with the
most virulent human malaria parasite, Plasmodium
falciparum (Pf), in children, malaria-naive adults
and malaria-experienced adults.***® Frequencies
of v& T-cell subsets, including V82", V82~ activated
CD11c* or CD16*/Tim-3" y5 T cells, have all been
associated with malaria exposure.**>® Higher
frequencies and malaria-responsive  cytokine
production of V32" T cells correlate with protection
against subsequent infection in children living in
endemic settings,>”*® and in vitro, these cells
perform cytotoxic, anti-parasitic functions.>>®°
Furthermore, these cells can also act as antigen-
presenting cells,®"®* which may further enhance
the response to infection and/or vaccination. In
malaria-naive volunteers exposed to Pf-infected
mosquitoes, while under chloroquine prophylaxis,
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v& T cells expand after infection.®® Elevated
frequencies of 8 T cells expressing effector
memory  surface  markers and enhanced
responsiveness to Pf stimulation persist for over
1year  following experimental infectious
challenge.®® A recent small study from the same
group reported that vaccination with BCG changed
the course of experimental malaria infection and
that BCG vaccination was associated with altered
innate immune activation (including v3, NK and
monocytes) following malaria challenge.
Interestingly, expression of the activation marker
CD69 on both NK cells and y8 T cells was associated
with reduced parasitaemia.®® Trends towards
increased  degranulation and granzyme B
production among v3 T cells from BCG-vaccinated
volunteers compared to unvaccinated were also
observed.®® Together, these results suggest an
important role for vyd T cells in mediating
protective immunity to malaria.

Although there is not yet an effective vaccine
for malaria, preliminary studies testing whole
parasite vaccines in humans and mice suggest an
important role for yd T cells in protection from
subsequent infection. The malaria vaccine that has
advanced farthest to date is the RTS,S vaccine,
which is based on the Pf circumsporozoite (CSP)
protein and targets the sporozoite and liver
stages of infection. Interestingly, RTS,S phase 3
trials in African children detected no significant
change in 8 T-cell frequencies following
vaccination and minimal cytokine production by
these cells in response to in vitro CSP
stimulation.®” However, as the authors examined
total y8 T cells rather than V32" or other v T-cell
subsets, it will be important for future studies to
determine whether specific subsets correlate with
protection and if so, whether future RTS,S
formulations can target these subsets. RTS,S trials
in malaria-naive populations have generally
focused on anti-CSP antibody studies and CD4"/
CD8* T-cell responses without examining innate
populations like yd T cells. One recent study
utilising a systems approach identified natural
killer (NK) cell signatures that correlated with and
predicted protection,®® suggesting that depending
on the precise vaccine regimen, innate immune
responses could be significant.

In contrast to RTS,S, vaccine formulations using
sporozoites (the stage of the parasite injected by
the mosquito into the human) have indicated a
direct or indirect role for yd T cells in protection.
In malaria-naive individuals immunised with the
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attenuated Pf sporozoite (PfSPZ) vaccine, V82" T
cells expanded in a dose-dependent fashion and
frequencies of these cells correlated with
protection more significantly than any other
cellular immune responses.®*7" Numbers of
memory V382" T cells also correlated with
protection in a recent PfSPZ trial in a malaria-
endemic region in Mali.”? Finally, when malaria-
naive individuals were immunised with non-
irradiated PfSPZ combined with chemoprophylaxis
(PfSPZ-cVAC), the frequency of V&2© T cells
increased in a dose-dependent manner and
memory v3 T cells specifically increased expression
of IFNy and the activation marker CD38.73
Additional work is needed to further elucidate
the mechanism of V82" T-cell-induced protection,
as well as to determine whether frequencies of
these cells could be used as a biomarker for
protection in PfSPZ vaccinations in malaria-
endemic regions.

In the mouse model, results have depended
somewhat on the parasite strain used, but
generally support y8 T cells as a correlate of
natural and vaccine-induced protection. In the
lethal Plasmodium berghei ANKA model, v3 T cells
were not required to prevent infection upon
blood-stage challenge following sporozoite
vaccination, but did contribute to pre-erythrocytic
immunity by recruiting dendritic cells and CD8* T
cells.”? These cells may also be important in
modulating functional T follicular helper (Tfh) cell
and germinal centre B-cell responses.”* In contrast
to these indirect roles in protection, vd T cells
appear to act as important effector cells following
vaccination with nonlethal Plasmodium yoelii
sporozoites.”> Results from mice lacking ap T cells
further suggest that y8 T-cell cytotoxicity may
become more effective after interaction with
CD4* T cells.”” Mice lacking vd T cells further
reveal that these «cells may be particularly
important in immunity targeting the liver stages
of the parasite (before it enters the
bloodstream).”® Clearly, it will be important to
evaluate whether these differing results between
murine parasite strains are solely because of
differences in the type of immunity induced (i.e.
P.  berghei-irradiated sporozoite vaccination
induces sterile immunity, while P. yoelii
vaccination does not). Interestingly, a vaccine
using whole lysate of the promastigote stage of a
related parasite, Leishmania amazonensis, led to
protection against subsequent infection that was
dependent on the presence of 5 T cells.”” The
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mechanisms  driving  this  protection and
implications for malaria vaccines, however, are
unknown.

In sum, results from vaccination studies
targeting malaria (and potentially other parasitic
infections such as leishmaniasis) strongly suggest
that v3 T cells play an important role in protection
from future infection. However, future work is
required to definitively show that yd T cells
directly mediate protection rather than act as a
biomarker of infection, as well as to determine
the mechanism of protection and the role of V52~
subsets (if any). In particular, it will be important
to assess whether protection is mediated via direct
vd T-cell cytotoxicity and/or more indirect effects
such as antigen presentation, recruitment of other
cell types, or stimulation of functional Tfh cells
and antibodies. Given that most malaria vaccines
in trials, including the leading RTS,S vaccine, use
specific antigens rather than whole sporozoites,
vaccine effectiveness may be improved by the
addition of an adjuvant or other vaccine
component that stimulates y3 T-cell responses.
BCG vaccination may be a potential approach
based on recent results of increased activation of
innate cell populations following CHMI in BCG-
vaccinated individuals;®® however, given that this
response only occurred in half of the vaccinated
volunteers and the sample size was small, further
study is warranted.

VIRAL INFECTIONS

There is evidence that y6 T cells may play a role in
response to viral infections, including influenza
virus, HIV and cytomegalovirus (CMV), and that
they can directly kill virally infected cells. There is
also evidence that these cells can expand in vivo
in response to bisphosphonate stimulation and
viral vaccination strategies and may contribute to
improved outcomes, thereby raising the possibility
that these cells could be targeted to play an
important role in vaccine-mediated protection.
Regarding influenza, several studies have shown
that phosphoantigen or pamidronate-activated v3
T cells are capable of inhibiting virus replication
by killing influenza-infected macrophages’® and/
or lung alveolar epithelial cells.”® Phosphoantigen-
activated cells also have non-cytolytic activities in
response to pandemic HIN1, producing IFNy and
expressing inflammatory chemokines.®® Relatedly,
it was also recently shown that Vy9Vvé2 T cells
can promote CD4* T follicular helper cell
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differentiation, B-cell class switching and
influenza virus-specific antibody production in an
in vitro co-culture assay,®’ suggesting that these
cells may provide both a direct cytotoxic and
potential synergistic role in the adaptive immune
response to influenza.

Although both inactivated and live attenuated
influenza vaccine reduce influenza illness and
disease complications, live attenuated influenza
vaccine has been shown to have superior efficacy
in children.®? Influenza-responsive y8 T cells were
found to expand following live attenuated, but
not inactivated, influenza vaccination,®8*
suggesting a potential immunologic correlate for
this observation. Despite not proliferating after

vaccination, yd T «cells in elderly individuals
receiving the inactivated vaccine did increase
perforin  production and, after in vitro

restimulation, proliferated and produced IFNy and
IL-4.8% Similarly, the y& T-cell response in the nasal
mucosa was attenuated in cigarette smokers
relative to non-smokers,® suggesting these cells
may represent a correlate for why smokers
respond less well to influenza vaccination. In a
murine model of influenza, v T cells significantly
expand in bronchial alveolar fluid following
infection,®® and in a humanised mouse model,
pamidronate administration to mice reconstituted
with human PBMC reduced disease severity and
mortality following H1N1 and HS5N1 influenza
infection. However, pamidronate had no effect in
mice reconstituted with V&2 depleted cells.?’
Together, these studies suggest that yd T cells may
not only represent an immunologic correlate of
protection from influenza infection and
vaccination, but that they might also be a
mediator of protection.

Regarding HIV, it has long been known that
both the V31" and V382" subsets of vd T cells have
cytotoxic capacity against HIV® % and can inhibit
viral replication in vitro. HIV-infected elite
controllers have elevated levels of V&82© T cells
compared with HIV-negative controls or HIV-
infected individuals on antiretroviral therapy,®"%?
suggesting a potential role for these cells in
inhibiting viral replication in vivo. y6 T cells may
also play a role in controlling viral infection at
mucosal barriers. A recent study reported that
higher levels of pro-inflammatory V51" T cells
correlated with lower gut-associated HIV viral
load,”® and another study in rhesus macaques
found that levels of CD8* V&2" T cells in the
female reproductive tract correlated with lower
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SIV viral loads.®* V31" T cells expanding in HIV-
infected individuals may also protect from other
infections. For example, V51" T cells producing
IFNy and IL-17A responded to Candida albicans®
and further expanded upon influenza vaccination
combined with the MF59 adjuvant.®

Individuals with chronic HIV infection have been
found to have V82" T-cell depletion and
dysfunction in response to phosphoantigenic
stimulation.®” It is possible, however, that some of
these cells are not dysfunctional but rather have
different functions. For example, He et al.
identified a population of CD16% V82" T cells that
had decreased responses to phosphoantigens but
increased capacity for antibody-dependent cellular
cytotoxicity (ADCC). A decline in this population
was associated with faster disease progression,
while no decline was observed in individuals with
controlled  infection.”®  Administration  of
zoledronic acid with IL-2 in HIV-infected,
antiretroviral naive patients was associated with
V&2* T-cell expansion, dendritic cell activation and
increased HIV-specific CD8* T-cell responses.”® It
was also recently shown that y6 T cells can be
isolated from antiretroviral suppressed, HIV-
infected individuals and that these cells can kill
autologous HIV-infected CD4* T cells. In addition,
these cells could expand ex vivo following
pamidronate stimulation and could significantly
reduce viral replication, suggesting a potential
role for these cells to clear HIV infection from
latent reservoirs.'°

Even though HIV vaccine trials to date have not
investigated any changes in yd T-cell populations,
an intriguing study looked at canarypox as a
vector for HIV antigens and, after in vitro
expansion, identified a Vy9* population (specific
for canarypox, not HIV antigens) that produced
IFNYy.'®" These results suggest that in addition to
adjuvants, vaccine vectors could be used to target
v6 T-cell responses.

Finally, in the context of CMV infection,
oligoclonal v8 (primarily V327) T cells expand and
differentiate into effector/memory cells.'%%" 1
Expansion of V82~ T cells is associated with viral
clearance both in immunosuppressed'?%1%6:197 and
in healthy populations.’® %7 These cells likely
contribute to viral clearance via effector functions
such as cytotoxicity and IFNy/TNFa production,'®®
‘antibody-dependent cell-mediated inhibition’,'*®
and enhanced cytotoxicity via sensing of IL-18
from virus-infected cells.'’® During secondary
infection, cells proliferate and resolve infection
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faster, suggesting a memory-like phenotype.’'®?
Several studies in mice have shown that (1) v6 T
cells are capable of protecting af T-cell-deficient
mice against CMV-induced pathology and (2)
adoptive transfer of CMV-induced 8 T cells
provides long-term protection in immunodeficient
mice.""" "2 These results suggest that v5 T cells are
important mediators of protection against CMV
and support approaches using adoptive transfer
of effector/memory 3 T cells or targeting yd T
cells in future CMV vaccine trials. The possibility
of inducing exhausted y3 T cells would need to be
considered, however, as CMV infection has both
been shown to result in higher numbers of these
cells.'™®

In sum, results from in vitro and natural
infection studies suggest an important role for v3
T cells in controlling influenza, HIV and CMV viral
replication. Targeting 3 T cells through
stimulation could provide an important adjuvant-
type role in vaccination and/or cure-related
strategies for viral infections.

CONCLUSIONS

Across the different bacterial, protozoan and viral
infections examined (summarised in Table 1), there
are clear patterns of 3 T-cell expansion,
particularly of the V52" subset, in response to both
infection and vaccination. In several contexts,
including infection with Mtb, malaria, influenza
and HIV and vaccination with BCG, PfSPZ and live
attenuated influenza, y8 T cells are associated with
protection. Further, evidence so far supports a role
for vd T cells in mediating protection via direct
killing and other mechanisms. Studies in animal
models, such as BCG vaccination in macaques and
PfSPZ vaccination in mice, are beginning to shed
light on direct mechanisms of protection vs.
stimulation of other immune cells that mediate
protection. Clearly, future work is needed to
further elucidate these mechanisms, as well as the
host and infection-mediated factors that influence
responsivity of y3 T cells and the relevant
differences between responses to natural infection
compared to response to vaccination. As new
vaccine formulations targeting these diseases
progress through development, the question of
whether to induce v3 T cells or 3 T-cell subsets will
become an important consideration. In fact, this
approach is already being implemented in cancer,
whether via administration of Vy9Vvd2 T-cell
agonists'' or using BCG to stimulate Vy9V52 T

2019 | Vol. 8 | e1072
Page 12
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cells as treatment for bladder cancer."'>'"®

Approaches incorporating v3 T cells into strategies
targeting B- or T-cell responses have also been
promising so far. For example, as previously
mentioned, a study testing a subunit tuberculosis
vaccine combined with phosphoantigen observed
a robust v8 T-cell response, including expression of
effector memory markers, following primary
vaccination.?® Finally, another intriguing approach
is to expand functional v T cells ex vivo, as has
been tested with effector cells capable of
inhibiting HIV replication'® and Mtb infection.?3

To maximise functional responses in future
similar studies, it will be important to improve our
understanding of the timing of 38 T-cell vs. af T-
cell responses following vaccination, as well as
any potential negative effects of overstimulation
of vd T cells. As specific subsets of yd T cells that
correlate with protection in different contexts are
identified, optimisation of methods to specifically
target these subsets will be beneficial. Especially
given the hypothetical possibility of yd T-cell
anergy/exhaustion, it will be essential to define
responses that optimally stimulate and antigens/
agonists that best elicit that response. Altogether,
as development of vaccines targeting infectious
diseases that have long proved elusive becomes
more of a reality, it will be important to broaden
our perspective beyond targeting antibody-driven
or T-cell responses and to intentionally target
innate cells, such as yd T cells.
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