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Ginkgo biloba, known as the "living fossil," has a long history of being used as
botanical drug for treating cardiovascular diseases and the content of flavonoids as
high as 24%. More than 110 different kinds of flavonoids and their derivatives have
been separated from G. biloba, including flavones, flavonols, biflavonoids, catechins,
and their glycosides, etc., all of which display the ability to dilate blood vessels,
regulate blood lipids, and antagonize platelet activating factor, and protect against
ischemic damage. At present, many types of preparations based on G. biloba
extract or the bioactive flavonoids of it have been developed, which are mostly used
for the treatment of cardiovascular diseases. We herein review recent progress in
understanding the metabolic regulatory processes and gene regulation of cellular
metabolism in cardiovascular diseases of G. biloba flavonoids. First, we present the
cardioprotective flavonoids of G. biloba and their possible pharmacological mechanism.
Then, it is the pharmacokinetic and liver and gut microbial metabolism pathways that
enable the flavonoids to reach the target organ to exert effect that is analyzed. In the
end, we review the possible endogenous pathways toward restoring lipid metabolism
and energy metabolism as well as detail novel metabolomic methods for probing the
cardioprotective effect of flavonoids of G. biloba.

Keywords: Ginkgo biloba, flavonoids, pharmacokinetics, metabolism, metabolomics, cardiovascular disease, gut
microbiota

INTRODUCTION

Cardiovascular disease is one type of diseases with the highest morbidity and mortality worldwide,
mainly including angina pectoris, hypertension, hyperlipidemia, atherosclerosis, and stroke (1).
Cardiovascular disease brings heavy economic burden on patients and makes it urgent to prevent
and treat the disease (2). Botanical drugs, such as Ginkgo biloba, are effective in prevention of
cardiovascular disease.
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As an herb belongs to the Ginkgoaceae, G. biloba, which
has a long history of medicinal use (3), has been recorded
to own the effects of promoting blood circulation, removing
blood stasis, dredging collaterals, relieving pain, and lowering
lipids. Since the 1960s, German scientists discovered for the
first time that G. biloba contained medicinal ingredients
for the treatment of cardiovascular diseases (4). After that,
G. biloba extract has attracted more and more attention
all over the world. One of the main key components in
G. biloba extract is flavonoids, the content of which is
as high as 24%. In several epidemiological studies, dietary
flavonol and flavonoid intake was inversely associated with
the risk of cardiovascular disease (5). Current pharmacological
investigations have revealed that the flavonoids extracted from
G. biloba has prominent cardioprotective activities such as
dilating blood vessels (6, 7), regulating blood lipids (8), lowering
blood sugar (9), inhibiting cardiomyocyte apoptosis (10, 11) and
preventing myocardial ischemic injury (12, 13) and vascular
rupture (14).

A plethora of G. biloba flavonoids have been separated,
purified, and identified. To date, more than 110 flavonoids
and their derivatives are isolated from ginkgo leaves (15).
According to the chemical structures, flavonoids are mainly
divided into four categories: flavones, flavonols, biflavonoids,
catechins, and their glycosides (16). As is shown in Figure 1, this
review focused on the progress of pharmacokinetics, metabolism,
and metabolomics of G. biloba flavonoids in recent years,
which will shed light on the cardioprotective mechanism of
G. biloba flavonoids and lay a foundation for clinical use of the
G. biloba flavonoids.

CARDIOPROTECTIVE FLAVONOIDS OF
GINKGO BILOBA

The flavones in G. biloba mainly include apigenin, luteolin,
and chrysanthin, the cardioprotective mechanism of which were
summarized in Supplementary Table 1. Apigenin can protect
vascular endothelial (17, 18), reduce myocardial damage (19,
20), serve as anticoagulant (21), and prevent aortic aneurysm
(22). Not only could apigenin improve the functional recovery
of ischemic heart through PI3K/Akt pathway and reduce
myocardial infarction size, but it also could downregulate the
activities of creatine kinase isoenzyme and lactate dehydrogenase
in coronary blood flow, and minimize the number of apoptotic
cardiomyocytes. In addition, apigenin protected myoblast H9c2
from ischemia/hypoxia-induced myocardial injury and inhibited
the expression of pro-inflammatory factors (23). Apigenin
significantly prevented platelet aggregation at a concentration of
2500 mM in vitro, however, since this concentration was difficult
to achieve in vivo, consuming large amounts of apigenin-rich
foods would not affect platelet aggregation nor other hemostatic
variables in healthy volunteers (24). Several studies have shown
that luteolin has beneficial effects on cardiovascular diseases,
such as reducing atherosclerosis (25, 26), protecting vascular
endothelial cells (27, 28), improving hypertension complications
(29), and dilating coronary arteries (30). For instance, due

to that luteolin interacted with activator factor 3 (STAT3)
mainly through hydrogen bonding interactions, luteolin reduced
oxLDL-induced inflammation by inhibiting STAT3 signaling
and transcription (26). Moreover, by inducing NO production
and reducing oxidative stress (31), luteolin protected venous
endothelial cells. By promoting signaling of the endogenous
antioxidant enzyme peroxidase II, increasing the expression of
the anti-apoptotic protein Bcl-2 and decreasing the expression of
the pro-apoptotic protein Bax (32, 33), it ameliorated myocardial
ischemia-reperfusion injury.

Flavonols of G. biloba contain quercetin, kaempferol, and
isorhamnetin. The monoglycosides of flavonols are mainly
glucoside and isorhamnoside (34). The flavonols of G. biloba have
cardioprotective, antioxidant, antibacterial, and neuroprotective
effects (35). The effect of flavonol of G. biloba on improving
blood circulation may be partly attributed to its promotion
of thrombomodulin expression and tissue-type plasminogen
activator (t-PA) secretion in endothelial cells, and quercetin
is heavily involved in promotion effect on t-PA secretion
(36). Meanwhile, one study (37) showed that flavonol of
G. biloba exhibited a concentration-dependent vasodilation
effect. Rat aortic annulus showed strong contraction after
initial application of 5 µM norepinephrine (NE). Subsequent
application of flavonol of G. biloba (0.03–3 g L−1) effectively
relaxed NE-induced contractions in a concentration-dependent
manner. Quercetin produced a significant vasodilation effect at
a concentration of 0.1 µM, whereas 100 µM of quercetin can
cause a very strong vasodilation effect, and the vasodilation
rate reached 49.9 ± 4.8%. Of note, kaempferol can significantly
enhance vascular endothelial cell proliferation, migration, and
angiogenesis by binding to vascular endothelial growth factor
(VEGF) (38).

Biflavonoids are a class of compounds formed by the
polymerization of two flavonoid cores through C-C bonds,
and are usually characteristic chemical components of
gymnosperms. So far, thirteen biflavonoids have been isolated
and identified from G. biloba leaves, including ginkgetin,
7′-O-β-D-glucosyl-ginkgetin, isoginkgetin, 7′-O-β-D-glucosyl-
isoginkgetin, 2,3-dihydroisoginkgetin, 2,3-dihydrosciadopitysin,
amentoflavone, bilobetin, sesquojaflavone, podocarpusflavone
A, 7-methoxy- amentoflavone, 5′-methoxybilobetin,
and sciadopitysin. These biflavonoids have a variety of
pharmacological effects, such as cardioprotective, anti-
inflammatory, antioxidant, and neuroprotection. One work
(39) established a DPPH/ABTS free radical scavenging
model and the nitric oxide measurement method to find
that amentoflavone own oxygen free radicals scavenging effect
in a dose-dependent manner. Moreover, another work (40)
discovered that four biflavonoids (i.e., ginkgetin, isoginkgetin,
bilobetin, and amentoflavone) can occupy the active hole of
human thrombin, bind to the exosite I to inhibit the activity
of thrombin and prevent the formation of thrombus. cAMP-
phosphodiesterases (cAMP-PDEs) have a regulatory effect on
cardiac excitation-contraction coupling. Interventions targeting
cAMP-PDEs have important implications for the treatment of
heart failure (41). It was reported that the inhibitory degree
of bioflavonoids of G. biloba on this enzyme from high to low
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FIGURE 1 | The metabolism, pharmacokinetics, and metabolomics of Ginkgo biloba flavonoids.

was ranked as below: amentoflavone > bilobetin > sesquojafla-
vone > ginkgetin = isoginkgetin. Of note, sciadopitysin is
almost inactive. It has been demonstrated that the inhibitory
activity of biflavonoids is directly related to the number of free
hydroxyl groups. Biflavonoids of G. biloba showed complete
inhibition at a much lower concentration than the well-known
cAMP-phosphodiesterase inhibitors papaverine, aminophylline,
and kaempferol (42, 43).

Catechins of G. biloba are divided into four types: catechins,
epicatechins, gallic acid catechins, and epigallic acid catechins. In
addition, there are dimers of 4, 8′′-catechin gallate catechins and
4, 8′′-gallate catechin gallate catechins. Wu et al. (44) reported
that epigallocatechin inhibited endoplasmic reticulum stress-
related thioredoxin-interacting protein (TXNIP) and NOD-
like receptor protein 3 (NLRP3) inflammasome activation,
thereby protecting endothelial cells from inflammatory and
apoptotic damage.

PHARMACOKINETICS OF FLAVONOIDS
OF GINKGO BILOBA

Unlike terpenes with high bioavailability, flavonoids have
extremely low bioavailability due to the extensive first pass effect
and glucuronidation (45). Flavonoids of G. biloba are mainly
absorbed in the form of aglycon, and mainly exist in the form
of glucuronate or sulfate in plasma and urine (46–49). One work
(50) labeled G. biloba preparation with radioactive element 14C
and administered them to the rats. It is showed in the result
that with a first-order elimination rate and a half-life of about
4.5 h, the pharmacokinetic of G. biloba preparation fitted to a
two-compartment model. G. biloba was absorbed through the
gastrointestinal tract after oral administration, and the absorption
rate was more than 60%. The amount of 14C-CO2 exhaled
accounted for 38% of the dose after 72 h of oral administration.
22% of the dose is excreted in urine, while 29% of the dose is

excreted in feces. The glands, neuron tissues, and eyes show high
affinity for the labeled G. biloba preparation.

Another group (51) developed and validated a novel
liquid chromatography-tandem mass spectrometry method
using dynamic multiple reaction monitoring (DMRM) for the
simultaneous determination of three flavonoids (i.e., quercetin,
kaempferol, isorhamnetin) of G. biloba extract in rat plasma.
Compared to traditional multiple reaction monitoring (MRM),
DMRM reduces the number of concurrent MRM transitions and
increases dwell time significantly, and provides greater sensitivity.

Ten adult volunteers with an average age of 28 years were each
given a single oral dose of six tablets of G. biloba extract at a time
(52). Reversed-phase high performance liquid chromatography
was applied to determine the levels of quercetin and kaempferol
in human urine at different periods. The elimination rate
constant Ke and absorption rate constant Ka of quercetin were
slightly larger than that of kaempferol. In contrast, the absorption
half-life (t1/2a), elimination half-life (t1/2) and tmax of quercetin
were all smaller than that of kaempferol. The mean values
of Ka were 0.61 and 0.55 h−1 for quercetin and kaempferol,
respectively. As a result, quercetin and kaempferol are mainly
excreted in human urine in the form of glucuronide.

Extensive first-pass metabolism is believed to be the main
cause for the low bioavailability of flavonoids, apart from which,
P-glycoprotein (P-gp)-mediated efflux is another reason for the
low bioavailability of G. biloba flavonoids. As an ATP-driven
efflux pump, P-gp can transport a wide variety of compounds
of various structures from the interior of the cell into the
extracellular space. P-gp exists in both tumor cells and normal
tissues, and it plays an important role in the process of drug
absorption in the human body. Quercetin, kaempferol and
isorhamnetin are substrates of P-gp. P-glycoprotein-type efflux
pumps may limit the bioavailability of ginkgo flavonols (53).
In the presence of breast cancer resistance protein inhibitors,
the intracellular concentration of kaempferol was found to
increase significantly (54). Moreover, the sulfation of intestinal
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metabolites and the activity of efflux transporters can form
a connecting barrier to jointly prevent flavonoid aglycones
from entering the portal vein and circulation and to reduce
their absorption.

The components of G. biloba extracts are complex. Compared
with that of a single compound, the synergistic effects
of coexisting components can inevitably induce interactions
between the components and change their pharmacokinetic
behaviors. One group (55) investigated the pharmacokinetic
parameters of G. biloba extract and ginkgo flavonoids after oral
administration. Compared with those of the ginkgo flavonoids
treated group, the Cmax, AUC0 → t values and absorption rate of
all analytes (except for the Cmax of naringenin) were significantly
improved in the G. biloba extract treated group. As is mentioned
earlier, intestinal efflux mediated by transporters may contribute
to the low bioavailability of ginkgo flavonoids. It is worth noting
that in the presence of kaempferol, the transport rate of quercetin
efflux by MDCK/Bcrp1 cells decreased by 11.6 times (from 97.5
to 8.37), which implied that kaempferol could inhibit the efflux
of quercetin. Further investigation revealed that kaempferol,
quercetin and isorhamnetin had strong mutual inhibition on
efflux mediated by P-glycoprotein transporters. The Ki values of
kaempferol to quercetin and isorhamnetin are determined to be
4.64± 3.45 and 18.42± 3.87 µM, respectively, while the Ki values
of quercetin to kaempferin and isorhamnetin are calculated as
11.10 ± 0.30 and 2.26 ± 0.99 µM, respectively. Moreover,
the Ki values of isorhamnetin to kaempferol and quercetin are
24.99 ± 2.87 and 5.27 ± 2.40 µM. The interactions between
the components may facilitate the absorption of flavonoids of
G. biloba.

Collectively, most of the ginkgo flavonoids are hydrolyzed
under the action of cytosolic β-glucosidase (CBG) in the small
intestine, and then absorbed in the form of aglycones after
hydrolysis. This procedure is a key step in the absorption
and metabolism of flavonoid glycosides (47). Then, flavonoid
aglycones usually pass through the intestinal wall and enter
the intestinal epithelial cells, and finally reach the liver through
the portal vein or the portal chyle duct. In the liver, flavonoid
aglycones first undergo phase I metabolism such as hydroxylation
of liver cytochrome P450. Phase I metabolism contributed little
to metabolism of flavonoid aglycones. On the contrary, phase
II metabolism played a pivotal role in metabolism of flavonoid
aglycones. At present, there are mainly three types of phase
II metabolic enzymes, which are involved in the metabolism
of flavonoid aglycones, including uridine 5′-diphospho-
glucuronosyl transferase (UGT), sulfotransferase (SULT), and
catechol-O-methyltransferase (COMT) (56). Under the action
of UGT, SULT, and COMT, flavonoid aglycones can undergo
glucuronidation, sulfation, and methylation reactions and
generate corresponding glucuronides, sulfates, and methylated
metabolites. The typical bimodal phenomenon of ginkgo
flavonoids is caused by enterohepatic circulation. Some flavonoid
glycosides were rapidly absorbed in the upper part of the
digestive tracts and can be excreted through the biliary tracts,
which entered the gut again and reabsorbed. This phenomenon
will help to increase serum levels of flavonoids and prolong
their half-life time.

METABOLISM OF FLAVONOIDS OF
GINKGO BILOBA BY LIVER

Flavonoid glycosides of G. biloba are mainly metabolized in
two parts of the body: one is the liver, where a series of
reactions occur under the action of liver CYP450 to produce
metabolites with higher water solubility; the second is the
intestinal tract, where flavonoid glycosides are hydrolyzed into
aglycon under fermentation of intestinal flora. Cytochrome P450
(CYP450) enzyme system is the major enzyme system of liver
for drug metabolism, which has a wide range of biological
significance. CYP450 enzyme system mainly includes CYP1A2,
CYP2A6, CYP2B6, CYP2C, CYP2D6, CYP2E1, and CYP3A.
In the liver, flavonoids of G. biloba are mainly subjected to
phase II metabolism, and their main metabolic pathway is
glucuronic acid binding reaction. The liver metabolism pathway
of quercetin is presented in Supplementary Figure 1. The major
enzyme that mediates their phase II metabolism is UGT1A9
(57, 58). G. biloba extract can inhibit the activity of UGT1A9
(59, 60). Meanwhile, flavonoids of G. biloba also exert effect
on the expression of phase II metabolizing enzymes (61–69)
(see Table 1). A serum concentration of about 100 nM for
luteolin can be reached by dietary habits, but less than 1 nM
luteolin was capable of inducing the expression of phase II drug
metabolizing enzymes through the ERK1/2 signaling pathway,
such as glutathione S-transferase (GST), heme oxygenase-1 (HO-
1), NAD(P)H: quinone oxidoreductase 1 (NQO1), and aldo-
keto reductase family 1 member B10 (AKR1B10), increasing the
stability of Nuclear factor-erythroid-2-related factor 2 (Nrf2) and
inducing conformational changes in Kelch-like EXH-associated
protein 1 (Keap1) (70).

On the one hand, CYP450 enzymes and intestinal flora can
metabolize flavonoids of G. biloba (71). On the other hand,
flavonoids of G. biloba also affect the activity of CYP450 enzymes
and the abundance of intestinal flora. The current research
pertaining to G. biloba flavonoids and CYP450 enzymes is
mainly focused on CYP3A4, which is one of the key enzymes
of drug metabolism and plays a pivotal role in the metabolism
of more than 50% of the drugs on the market. It’s intriguing
that many studies have shown that ginkgolides have the effect
of activating CYP3A4 enzyme system, while G. biloba extract
and flavonoids have inhibitory effects against CYP3A4 enzyme
(62, 65, 66). However, one study has also shown that kaempferol
has a weak effect on CYP3A4 enzyme (72). This phenomenon
can be explained by the fact that kaempferol can activate the
expression of CYP3A enzyme but inhibit its activity. Taken
together, quercetin and kaempferol can reduce the enzyme
activities of CYP1A1, CYP1A2, and CYP3A4 (64).

GUT MICROBIOTA AND FLAVNOIDS OF
GINKGO BILOBA

The gut microbiota is a collection of microorganisms living
in the gastrointestinal tract that provides important signaling
metabolites for the host (73, 74). After orally administered,
flavonoids of G. biloba pass through the gastrointestinal tract
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TABLE 1 | Impact of flavonoids of Ginkgo biloba on metabolism enzymes.

Sample Specific
metabolism
enzyme

Model Impact
effect

References

GBE CYP2B1
CYP3A23

hepatocytes activation
inhibition

(61)

GBE CYP3A4 liver
microsomes

activate
expression
inhibit
activity

(62)

GBE CYP2B6 liver
microsomes

inhibition (63)

GBE CYP1A1 Caco-2 cells inhibition (64)

GBE CYP3A4
CYP2D6

liver
microsomes

inhibition (65)

GBE CYP3A intestinal
mucosa

inhibition (66)

Quercetin CYP1A2
CYP2A6

liver
microsomes

inhibition
activation

(67)

Quercetin CYP 3A liver
microsomes

inhibition (68)

Luteolin CYP3A4
CYP3A5

liver
microsomes

inhibition
inhibition

(69)

Luteolin quercetin β-glucuronidase gut
microbiota

inhibition (75)

Amentoflavone β-glucuronidase gut
microbiota

inhibition (76)

and are transformed by the gut microbiota (75, 76). The
transformation of G. biloba flavonoids by the gut microbiota
is presented in Supplementary Figure 2. Lin et al. (77)
investigated the effect of gut microbiota on the biotransformation
of quercetin, kaempferol, luteolin, apigenin, and naringenin.
To differentiate in vitro fecal fermentation of flavonoids from
enzymatic or chemical degradation, flavonoids were incubated
with fecal microbial suspensions or heat-killed intestinal
microbial suspensions. Compared with the heat-inactivated
group, all flavonoids in the fecal microbial suspension group were
metabolized within 48 h of fermentation, suggesting that the loss
of parent compounds in the activated suspension was ascribed
to the enzymatic activity of the gut microbiota. Meanwhile,
purified flavonoids were administered to control mice and
antibiotic-treated mice by gavage, and the metabolism of these
flavonoids was elucidated. The gut microbiota broke down the
heterocycles of flavonoids and produced a series of phenolic
metabolites. p-Hydroxyphenylacetic acid, protocatechuic acid,
p-hydroxybenzoic acid, vanillic acid, hydrocaffeic acid, coumaric
acid, and 3-(4-hydroxyphenyl)propionic acid were detected in
serum samples of control group following oral consumption
of these flavonoids. The transformation route was displayed
in Supplementary Figure 2. Deglycosylation of flavonoids by
β-glucosidase and endo-β-glucosidase occurs as the first step
of metabolism, and then gut flora further breaks down and
metabolizes aglycones to phenolic compounds. Phenylacetic acid
and its hydroxylated forms are the main fermentation products.
The released glycosyl moieties can be used as fermentation
co-substrates, thereby accelerating the fermentation process of

flavonoids. Compared with control group, a significantly lower
concentrations of phenolic metabolites were observed in the
antibiotic-treated group. A significantly higher concentration
of flavonoids was excreted in feces and urine. These results
suggested that the gut microbiota plays an important role in the
metabolism and degradation of flavonoids of G. biloba.

The metabolism of gut microbiota may also affect the
bioavailability of the flavonoids (78). Hanske et al. (79)
investigated the effect of human gut microbiota on bioavailability
of apigenin-7-glucoside (A7G) in vitro and in germ-free
and human gut microbiota-associated (HMA) rats. Apigenin-
7-O-glucoside was completely converted within 5 h after
incubation with a fecal suspension containing the human
gut microbiota. Apigenin and naringenin were transiently
formed as intermediate metabolites, and the final degradation
product was 3-(4-hydroxyphenyl)propionic acid (4-HPPA) and
3-(3-hydroxyphenyl)propionic acid (3-HPPA). In contrast, the
concentration of A7G remained stable in germ-free group. These
in vitro experiments demonstrated the ability of the human
gut microbiota on transformation of A7G. After administration
to germ-free rats, apigenin, luteolin and their conjugates
were detected in urine and feces. While in HMA rats, 3-
(4-hydroxyphenyl)propionic acid was observed as the major
metabolite in urine. Specific gut microbiota was tested for their
ability to deglycosylate A7G. Not all commensal gut microbiota
were found to deglycosylate apigenin. Notably, cytoplasmic
extracts of Eubacterium and Bacteroides were able to convert A7G
to apigenin. Overall, this study suggested a crucial role of gut
microbiota in the metabolism of apigenin.

On the other hand, flavonoids of G. biloba can modulate the
structure and function of the intestinal flora. For instance, one
work (80) cultivated hybrid groupers on a diet with G. biloba
extract. The work found that dietary supplementation of 0.50–
2.00 g/kg G. biloba extract improved gut morphology and
increased expression of zonula occludens 1, zonula occludens
2, zonula occludens 3, occludin, and claudin 3a in hybrid
grouper. Moreover, another work (81) found that apigenin can
significantly improve intestinal dysbiosis induced by high-fat
diet, increase the abundance of Akkermansia, Incertae_Sedis
and reduce the abundance of Faecalibaculum and Dubosiella
to restore intestinal barrier damage. In addition, G. biloba
extract was evaluated for its potential as a feed additive
for ruminant animals (82). The levels of total bacteria,
Ruminococcus flavefaciens, Ruminococcus albus, and Fibrobacter
succinogenes were decreased by administration of G. biloba
extract, whereas the levels of Selenomonas ruminantium,
Anaerovibrio lipolytica, Ruminobacter amylophilus, Succinivibrio
dextrinosolvens, and Megasphaera elsdenii were increased by
ginkgo extract supplementation, which led to the higher
propionate production. Amentoflavone derived from G. biloba
displayed relatively strong inhibition on three gut bacterial
β-glucuronidases including CpGUS, SpasGUS, and EcGUS,
which play an important role in deconjugation of various
O-glucuronides (76). Intriguingly, treatment with G. biloba
extract did not affect intestinal expression of human breast
cancer resistance protein, but treatment with the lysates of
G. biloba extract-treated mouse feces significantly suppressed
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expression of human breast cancer resistance protein (83). These
results suggested that G. biloba extract changed the function of
intestinal flora indeed.

IMPACTING FACTORS ON
BIOAVAILABILITY OF FLAVONOIDS OF
GINKGO BILOBA

The flavonoids of G. biloba mainly exist in the form of
monoglycosides, diglycosides and triglycosides. One group (84)
studied the effect of glycosylation on the absorption and
metabolism of quercetin in rats. Four groups of rats were orally
administered 20 mg of quercetin or equivalent quercetin 3-
glucoside, or quercetin 3-rhamnoside or rutin. After 4 h, a
HPLC-UV method was applied to determine the concentration of
the flavonoids and its metabolites via glucuronidase or sulfatase
in rat plasma. As a result, the quercetin metabolites in the
plasma of rats in all groups were the same, but their total
concentrations were quite different. The plasma level of the
quercetin in quercetin treated group was 11.7 ± 1.8 µM, but
when quercetin was administered as quercetin-3-O-glucoside,
the level of quercetin was three times higher (33.2 ± 3.5 µM).
In contrast, the plasma concentration of quercetin in the rutin
treated group was very low (approximately 3 µM) and was even
undetectable in the quercetin-3-O-rhamnoside treated group.
These findings indicated that 3-O-glucosylation increases the
absorption of quercetin in the small intestine, whereas the
glycosides containing the rhamnose moiety significantly inhibits
the absorption of rutin. Therefore, the nature of glycosylation
significantly affects the absorption efficiency of quercetin in rats.
In addition, one study (85) discovered three new compounds in
G. biloba and compared their antioxidant activity with aglycone.
It was worth noting that the antioxidant activity of aglycones was
about three times higher than that of their respective glycosides,
and about three times higher than that of positive control,
i.e., ascorbic acid.

The oral bioavailability of a drug is closely related to its
oral absorption route in the gastrointestinal tract. Part of the
flavonoid glycosides are quickly absorbed in the upper digestive
tract, and some of them are absorbed after being metabolized
by the intestinal flora in the lower digestive tract. One group
(86) investigated how the sugar group affected absorption of
quercetin. When these compounds (i.e., quercetin glucoside
and quercetin rutinoside) were fed to nine volunteers, the
peak concentration of quercetin (Cmax) in plasma of quercetin
glucoside-fed group was 20 times higher than that of quercetin
rutinoside-fed group. Moreover, Tmax of the former group
was more than ten times shorter that the latter group. The
bioavailability of the quercetin rutinoside was only 20% of
that of the quercetin glucoside. This phenomenon suggests that
quercetin glucoside is actively absorbed from the small intestine,
whereas quercetin rutinoside is absorbed from the colon after
deglycosylation.

Different administration methods have great influence on
the bioavailability of flavonoids of G. biloba. One study (87)
established an UPLC-Q-TOF-MS method to compare the

metabolic profiles of amentoflavone (AMF), which were given
by gavage (500 mg/kg) and intravenous injection (10 mg/kg) in
rats. The oral bioavailability of AMF was only 0.06 ± 0.04%,
and the area under the curve of the glucuronidated AMF
metabolites (410.938 ± 62.219 ng/mL h) was significantly higher
than that of AMF (194.509 ± 16.915 ng/mL h). Due to the
poor solubility of flavonoids and poor absorption effect, the
intravenous administration method can avoid the first pass
effect, which greatly improves the bioavailability of flavonoids of
G. biloba.

The state of the body also affects the biotransformation and
metabolic absorption of flavonoids of G. biloba. One group (88)
combined an offline hydrophilic interaction × reversed-phase
two-dimensional liquid chromatography (HILIC × RP 2D-LC)
system with diode array detection (DAD) and quadrupole time-
of-flight mass spectrometry (Q/TOF-MS) for identifying and
quantifying the biotransformation of flavonoids of G. biloba in
normal and diabetic rat liver microsomes (RLM). Compared with
normal RLMs, the metabolic rates of four target compounds,
i.e., quercetin, genistein, kaempferol, and isorhamnetin, were
significantly increased in diabetic RLMs. Enzyme kinetics
investigation showed that the Michaelis-Menten constant (Km)
value of genistein in diabetic RLMs was significantly increased
as compared with normal RLMs, whereas its maximum velocity
(Vmax) and intrinsic clearance (CLint) values were significantly
decreased. In contrast, the CLint values of kaempferol and
isorhamnetin were significantly increased, and their Km values
were significantly decreased.

New drug delivery systems for flavonoids of G. biloba
are also under development. One group (89) applied ultra-
performance liquid chromatography-tandem mass spectrometry
to compare the absorption and metabolism of G. biloba
extract and its liposome preparations. Compared with the
control group, the AUC0 → t and Cmax values of quercetin,
kaempferol and isorhamnetin in the liposome treated group
were significant increased. Liposome encapsulation improve the
bioavailability of G. biloba extract. Moreover, another group
(90) prepared phospholipid complex (GBP) and solid dispersion
(GBS) of G. biloba extract, and compared their pharmacokinetic
parameters and oral bioavailability. It was demonstrated that the
bioavailability of quercetin, kaempferol, and isorhamnetin in the
GBP and GBS groups increased significantly in comparison with
the G. biloba extract group, and the bioavailability of GBP was
higher than that of GBS.

METABLOMICS ON FLAVNOIDS OF
GINKGO BILOBA

Dietary flavonoid intake is associated with a reduced risk of
cardiovascular disease, possibly by affecting metabolic health.
Different flavonoids have different effects on the energy and
lipids metabolism. Apigenin, quercetin and epicatechin all
significantly reduced high-fat diet-induced weight gain, of
which quercetin was the most effective in reducing liver lipid
accumulation by up to 70% (91, 92). In addition, luteolin-
7-glucoside promoted hepatic lipid metabolism by inhibiting
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the activity of HMG CoA reductase in a dose-dependent
manner. G. biloba flavonoids may help prevent metabolic
disease (93, 94). In addition, pretreatment with G. biloba
extract and quercetin inhibited NO release in a dose-dependent
manner (95).

Metabolomics is an omics technique for quantitatively
analyzing all endogenous metabolites in organisms and
finding the relative relationship between the metabolites
and physiological and pathological changes. This is in line
with the integrity and systemic characteristics of traditional
Chinese medicine. This technology can provide good support
for uncovering the cardioprotective mechanism of G. biloba
and facilitating the quality control of G. biloba extract. The
general method of identifying endogenous metabolites relies
on the use of liquid chromatography mass spectrometry
and gas chromatography mass spectrometry to analyze
biological samples such as plasma and urine. One work
(96) employed ultra-high performance liquid chromatography
tandem with quadrupole time-of-flight mass spectrometry
to identify eighteen serum endogenous metabolites related
to G. biloba extract’s protective effect against positive
acceleration exposure, mainly involving fatty acid oxidation,
glycerophospholipid metabolism, and phospholipid metabolism,
bile acid metabolism, purine metabolism and lysine metabolism,
and other pathways.

However, the use of small samples to develop a suitable
analysis platform that can simultaneously cover enough
endogenous metabolites related to multiple metabolic pathways
is still the bottleneck of metabolomics research. First, the polarity
of the endogenous metabolites is significantly different, so the
sample preparation is also different; Second, the abundance of
endogenous metabolites is very different, the mass detection
method is more conducive to the detection of high abundance
ions. This leads to the omission of low-abundance metabolites in
plasma, urine, and target tissues. Third, the number of samples
in animal and clinical experiments is always small and precious,
and it is necessary to use small samples to obtain as much
information as possible.

To overcome these hurdles, one group (97) improved
the efficiency and capacity of the electrospray ionization
method by spiking ammonium formate into the mobile
phase, and only 20 µL aliquots of plasma samples were
required to simultaneously determine the ginkgo flavonoids
and terpenoids in plasma within 5 min. This method greatly
improves the sensitivity, reduces the matrix effect, expands
the linear range, and shortens the detection time. In order
to simultaneously characterize lipids and polar metabolites of
different intensities, another group (98) developed a new liquid-
liquid extraction method to extract and separate target analytes
from micro-samples (100 µL), and then these endogenous
metabolites, i.e., sphingolipids, phosphoglycerides, glycerides,
and sphingomyelins were analyzed on a triple quadrupole
mass spectrometer. At the same time, a targeted metabolomics
analysis platform was developed. Notably, only 100 µL of
biological samples were used to quantify 808 endogenous
metabolites, covering the core network of lipid, glucose,
amino acid, and nucleotide metabolism. This platform was

employed for metabolic profiling of endogenous metabolites
of myocardial ischemia-reperfusion rats and G. biloba extract-
preconditioned rats. Forty-seven metabolites were discovered
as potential biomarkers. After myocardial ischemia-reperfusion,
oxidative stress, and structural damage lead to metabolic
disorders. G. biloba extract can effectively restore the levels of
fatty acids, sphingolipids, phosphoglycerides, glycerides, amino
acids, and energy metabolism, which is closely related to its
antioxidant, platelet-activating factor antagonistic and lipid-
lowering properties.

Due to the poor absorption of natural medicines and the low
concentration of metabolites, its metabolomic characterization
is still extremely challenging. Complex biological matrices often
affect the determination results of low-concentration metabolites.
Cao et al. (99) developed a strategy called intestinal mucosal
metabolome guided detection (IMMD) to solve this problem.
The basic principle is that poorly absorbed natural products are
usually concentrated and extensively metabolized by intestinal
cells before entering the bloodstream and being distributed to
other organs. First, the metabolites in rat intestinal mucosa
after treatment with G. biloba extract were identified, and then
the identified metabolome was used as a target database for
metabolomics analysis of rat plasma, liver and brain. Finally, the
IMMD strategy was applied to identify 39, 45, and 6 metabolites
in plasma, liver, and brain, respectively. Therefore, the IMMD
strategy provides higher sensitivity and specificity for detecting
low-abundance compounds in complex mixtures.

Commercial preparations of G. biloba are complex mixtures
prepared from raw leaf extracts through a series of extraction
and pre-purification steps. The quality of G. biloba preparations
is uneven, and the quality of G. biloba preparations will
seriously affect the efficacy of the drug (100). To standardize
G. biloba preparations, one group (101) developed a 1H NMR-
based metabolomics method and combined high-performance
liquid chromatography, photodiode array detection, mass
spectrometry, solid-phase extraction, and nuclear magnetic
resonance for analyze 16 commercially available G. biloba
preparations, which were collected from Denmark, Italy, Sweden,
and the United Kingdom. Eight secondary metabolites were
identified as quality markers.

CONCLUSION

Existing clinical practice and experimental studies have
confirmed that G. biloba flavonoids and their preparations
have cardioprotective effects, and are clinically used to
treat cardiovascular diseases such as coronary heart disease,
hypertension, angina pectoris, and atherosclerosis. Quercetin,
kaempferol, apigenin, and luteolin of G. biloba flavonoids are
heavily studied, which have been proven to protect myocardial
ischemia-reperfusion injury, protect endothelial cells, and
prevent coronary atherosclerosis, but other bioactive flavonoids
of are less studied. Single flavonoid of G. biloba is less effective
than G. biloba extracts. Therefore, it is important to explore other
bioactive flavonoids of G. biloba and the interaction between
different flavonoids of G. biloba.

Frontiers in Nutrition | www.frontiersin.org 7 March 2022 | Volume 9 | Article 857370

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/
https://www.frontiersin.org/journals/nutrition#articles


fnut-09-857370 March 17, 2022 Time: 13:34 # 8

Tao et al. Metabolism of Ginkgo biloba Flavonoids

Due to the first-pass effect and glucuronidation, the oral
bioavailability of flavonoids of G. biloba is low. The metabolism
of flavonoids is mainly mediated by UGT1A9 enzyme in the liver.
The glucuronidation and hydrolysis of flavonoids into aglycones
are accomplished under the fermentation of the intestinal flora in
the small intestine. The major form of glucuronic acid or sulfate
adduct of flavonoids were observed in plasma and urine. Novel
drug delivery systems such as liposomes, phospholipid complexes
and solid dispersions of G. biloba flavonoids can improve the
bioavailability.

The gut microbiota is a complex group of microorganisms
that exist in the gastrointestinal tract in a symbiotic manner
with the host. The intra-individual composition of the gut
microbiota is dynamic, and the inter-individual composition
of the gut microbiota also varies dramatically. Therefore, the
therapeutical effect of the same drug at the same dosage will be
different between individuals. Precision medicine, which takes
differences in individual genes, environment and living habits
into account, has become the mainstay of modern therapy and
provides an emerging strategy for prevention and treatment
of diseases. Individualized medication can achieve the most
important path to precision medicine. Undoubtedly, precise dose
adjustment based on the composition of the fecal gut microbiota
is preferred (102, 103). The timing of administration should
also be considered, as circadian rhythms play a crucial role in
fluctuations in the composition and function of gut microbiota,
which can significantly affect drug efficacy by modulating gut
microbiota metabolites. Targeting the gut microbiota through a
combination of drugs, which target bacterial enzymes such as
beta-glucuronidase that is responsible for drug transformation,
is also a good option of future precision medicine (104).

The metabolomic investigation of G. biloba flavonoids shows
that there are still several problems and challenges in the
application of this method. For example, the physical and
chemical properties of different metabolites are very different and
cannot be extracted at the same time. Most metabolites are very
low in the body fluids, making it difficult to quantify. The current

metabolomics database is not perfect, and there are still many
endogenous metabolites whose structures cannot be confirmed.
If these problems can be overcome in the future, metabolomics
will play a huge role in comprehensive understanding of the
cardioprotective effect of G. biloba flavonoids.

Collectively, this review summarized the bioactive flavonoids
of G. biloba and presented metabolism, pharmacokinetics and
metabolomic studies for elucidating its mechanism of action
on cardiovascular diseases, and these studies will be helpful for
understanding the cardioprotective effect of G. biloba flavonoids.
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