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Despite their limited area relative to the global ocean, coastal zones—the
regions where land meets the sea—play a disproportionately important
role in generating ecosystem services. However, coastal ecosystems are
under increasing pressure from human populations. In particular, urban
stormwater is an increasingly important threat to the integrity of coastal sys-
tems. Urban catchments exhibit altered flow regimes that impact ecosystem
processes and coastal foodwebs. In addition, urban stormwater contains
complex and unpredictable mixtures of chemicals that result in a multitude
of lethal and sublethal impacts on species in coastal systems. Along the
western coast of the United States, we estimate that hundreds of billions
of kilograms of suspended solids flow off land surfaces and enter the North-
ern California Current each year. However, 70% of this pollution could be
addressed by treating only 1.35% of the land area. Determining how to
prioritize treatment of stormwater in this region requires a clear articulation
of objectives—spatial distribution of appropriate management actions is
dependent on the life histories of species, and management schemes
optimized for one species may not achieve desired objectives for other
species. In particular, we highlight that the scale of stormwater interventions
must match the ecological scale relevant to species targeted by management.
In many cases, management and policy will require mechanisms in order to
ensure that local actions scale-up to efficiently and effectively achieve man-
agement objectives. In the face of rapid urbanization of coastal zones, failure
to consider the match of management and ecological scales will result in the
continued decline of coastal ecosystems and the species they support.

This article is part of the theme issue ‘Integrative research perspectives
on marine conservation’.
1. Introduction
Marine and coastal ecosystems are among the most diverse regions on Earth
(e.g. [1,2]). Globally, they support the livelihoods of some three billion people
[3], and provide a range of ecosystem services, including climate regulation,
food security and coastal defence [4]. Even so, ocean biodiversity is jeopardized
by an array of human activities [5–8], threatening the well-being of communities
that depend on the ocean.

Numerous assessments of threats to ocean health have been conducted, and
these analyses often highlight such pressures as fishing, habitat loss, shipping
and climate change (e.g. [5,8–10]). Often, such marine-based threats are thought
to have greater impacts on marine ecosystems than pressures occurring on land.
For instance, Halpern et al. [10] found that the global impacts of fishing on
marine ecosystems are about fourfold, and climate impacts are more than
50-fold, greater than that from land-based pollution. Given that the relative
impact of land-based activities on the sea is low at a global scale (because its
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footprint is small compared with the scale of threats like
climate change and fishing), conclusions regarding the
global importance of large-scale threats is reasonable. Even
so, such evaluations may underestimate the impact of
spatially limited human activities if ecologically or culturally
rich locations are strongly impacted. Interestingly, the public
perception that land-based pollution is the most significant
threat to marine ecosystems [11] may highlight a blind
spot in existing quantitative global assessments (cf. [12]).
Indeed, human-driven impacts often interact across multiple
scales, with localized perturbations coupling with global-
scale threats to greatly affect the stability, resilience and
productivity of marine ecosystems [13].

Despite their limited area relative to the global ocean,
coastal zones—the regions where land meets the sea—play
a disproportionately importants role in generating ecosystem
services [14,15]. Ecosystem services such as food provision-
ing, nutrient regulation, waste treatment processing, coastal
protection, recreational opportunities, spiritual fulfilment
and cultural identity are generated at much greater levels in
coastal zones relative to other regions of the ocean [16,17].
For example, coastal zones support a wide range of fishing
fleets that support millions of households and livelihoods
and can drive economies over a range of scales [18].

However, coastal regions are also under increasing
pressure from a growing human population. Nearly 37% of
the global population resides in coastal regions that collec-
tively constitute less than 6% of the Earth’s total area [19].
Moreover, populations in coastal zones are expected to
increase at greater rates relative to inland areas, further inten-
sifying this issue [20]. As human populations grow, so too
will impacts on coastal ecosystems. Numerous studies have
documented that development and urbanization of marine
coastal zones result in impacts that cross terrestrial, fresh-
water and marine realms, resulting in damage to ecosystem
services provided by these regions [13,21–25].

In addition to crossing terrestrial, freshwater and marine
ecosystems, urban impacts also cross multiple spatial scales.
Localized urban conditions may acutely impact individual
marine organisms living along urbanized shorelines where
habitat loss and pollutants are concentrated [26]. Additionally,
marine waters distant from shorelines are also affected by
urban areas—the outflow of pollutants emanating from
urban areas can be hundreds of kilometres in the ocean [23].
Because the impacts of urbanization transcend scale, it is
important to distinguish between pressures that are intrinsic
and extrinsic. Intrinsic pressures arise within a realm, with
impacts largely constrained to that same domain. Extrinsic
pressures arise within one realm, but produce impacts in adja-
cent systems. Intrinsic pressures are more easily managed and
regulated, whereas extrinsic pressures are notoriously difficult
to govern [16]. However, the sustainability of coastal ecosys-
tems depends, in part, on effectively diminishing impacts of
extrinsic land-based human pressures on coastal ecosystems.
2. Urban stormwater—a key extrinsic pressure
on coastal ecosystems

One of the primary extrinsic impacts of urbanization on
coastal ecosystems is urban stormwater runoff—the fastest-
growing cause of surface water impairment in the United
States [27]. Urbanization of forested and other natural
landscapes creates impervious surfaces that alter the quality,
quantity and routing of surface water runoff as it moves
across the landscape during and after rain events. Urban
stormwater is generally delivered directly to stream and
river networks by drainage pipes and open ditches that
follow road systems. These forms of human-constructed
(i.e. grey) stormwater infrastructure efficiently convey storm-
water runoff and associated pollutants to downstream
drainage systems, thus effectively avoiding urban flooding.
However, grey infrastructure systems often bypass waste-
water management systems as well as natural filtration
through soils, wetlands and other forms of vegetation [28],
and this leads to significant adverse effects downstream
[29,30]. In particular, urbanized watersheds suffer from
‘urban syndrome’—a condition that results in low abundance
and survival of sensitive aquatic and coastal species [31,32].
3. Water quality versus water quantity
stormwater impacts

Urban stormwater runoff impacts the quantity and quality of
water, both of which adversely impact the ecological integrity
of receiving waterbodies [32–35]. Disentangling the impact
of water quality versus water quantity on species and
ecosystem processes remains a challenging and active area
of research [36].

(a) Water quantity
Urban catchments display hydrologic flow regimes that are
altered in magnitude, frequency, duration and timing com-
pared with natural systems [36]. This hydrologic alteration
occurs because impervious surfaces and piped drainage sys-
tems deliver surface runoff to nearby streams and rivers more
efficiently than natural landcover conditions. The inability to
absorb rain events, coupled with more efficient routing of
water, results in degraded hydrologic flow regimes in urban
systems with as little as 5–10% impervious surface area
[33]. Because river flows have shaped the evolution of life-his-
tory strategies, many aquatic or aquatic-dependent species
respond negatively to physical habitat changes associated
with urban hydrologic regimes [36,37]. In particular, popu-
lation declines of diadromous species, whose life histories
occupy both fresh and marine systems, can relay the degra-
dation of freshwater ecosystems to the marine environment
as population shifts alter biological interactions and energy
transfers [38]. Shifts in flow regimes also influence near-
shore marine ecosystem processes such as nutrient flux,
organic matter processing and ecosystem metabolism.
Coastal foodwebs are inextricably linked to river ecosystems
through the transport of organisms, nutrients and materials
[39,40]; however, the ability to quantitatively connect changes
in freshwater flow regimes to coastal marine ecosystems is
not well developed.

(b) Water quality
Owing to increased nutrient and contaminant loads carried
by stormwater to nearby rivers, lakes and estuaries, urban
stormwater has emerged as an imminent threat to coastal sys-
tems [31]. As such, urban hydrologists and ecotoxicologists
are increasingly focusing on the impact of urbanization on
water quality and aquatic species [31,41]. Urban stormwater
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Figure 1. Puget Sound resides within the California Current Large Marine Ecosystem. The range of southern resident killer whales (teal shading) overlaps with the
northern portion of the California Current. The range of Chinook salmon (blue shading) also includes the northern portion of the California Current.
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runoff contains complex and unpredictable mixtures of
chemicals [31]; however, heavy metals and hydrocarbons
from motor vehicles and commercial land use, as well as
pesticides and pharmaceuticals, are ubiquitous in urban
catchments. In some cases, exposure to urban stormwater
results in acute lethal effects. For example, adult coho
salmon (Onchorhynchus kisutch) returning to urban creeks
experience much higher mortality rates prior to spawning
(greater than 50%) compared with coho returning to non-
urban creeks (less than 1%) [42]. Experimental results point
to compounds found in tyre-wear particle leachates as the
likely cause of this pre-spawn mortality [43]. Indeed, coho
pre-spawn mortality is correlated with a suite of conditions
associated with urbanization, including road density, traffic
intensity and degree of imperviousness in the watershed
[34]. High rates of pre-spawn mortality have significant
impacts to the long-term viability of coho populations [44],
with far-reaching ramifications for both freshwater and
marine foodwebs [45].

While acute impacts of stormwater like salmon pre-spawn
mortality are dramatic, and have captured the attention of the
public (e.g. [46]), most exposure to stormwater results in sub-
lethal impacts [47]. In individual organisms, stormwater can
alter physiology, resulting in such phenomena as pericardial
oedema and sensory deprivation in juvenile fishes [31].
In turn, the physiological alteration can reduce survival or
reproductive output or shift behaviour, and this can have
long-term, multi-generational consequences [47]. Such effects
on individuals can propagate to population- and community-
level dynamics [47]. These impacts can then lead to impacts
on ecosystem-level processes, such as nutrient cycling,
carbon sequestration, water quality and ecosystem resilience
[47]. For example, the collapse of Japanese smelt has been
linked to a chain of sublethal foodweb impacts generated
by the land-based application of neonicotinoids [48]. Impor-
tantly, the temporal and spatial scale of sublethal impacts of
stormwater can be extensive. Some organic compounds
(e.g. polychlorinated biphenyls (PCBs), DDT) persist in the
environment and bioaccumulate in animal tissues for long
periods of time and can be transferred over extensive spatial
scales by highly migratory species [49,50].
4. Confronting stormwater threats to coastal
ecosystems: a case study

Confronting land-based threats such as urban stormwater to
marine ecosystems requires dealing with two overarching
challenges: (i) the spatial separation between where a threat
arises on the landscape and where the impact of that threat
is realized; and (ii) the mismatch in the spatial scale of
impacts versus the scale of governance. Using the Puget
Sound region in the United States as a case study, we high-
light the scale and magnitude of the urban stormwater
problem, the implications for management and recovery
of imperilled species, and finally highlight solutions for
large-scale extrinsic stressors impacting marine diversity.

(a) The magnitude of the stormwater problem
Situated within the California Current Large Marine Ecosys-
tem, the Puget Sound region encompasses 41 500 km2 of
upland, freshwater, estuarine and marine habitats, and cur-
rently supports a large and increasingly urban population
from Vancouver, British Columbia to Olympia, Washington
(figures 1–3). Population projections suggest that human
numbers in the greater Puget Sound region will increase by
two million in the next 30 years [51]. With over 40 species
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Figure 2. The US portion of the Northern California Current (from Point Conception, California to Canada) showing (a) the per cent cover of impervious area by
subwatershed and (b) the loading of total suspended solids (TSS) by urban areas/urban clusters, expressed as the per cent of the total. Details are provided in the
text and electronic supplementary material.
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of birds, mammals, fishes, plants and invertebrates currently
listed as threatened, endangered, or candidates for state and
federal endangered species lists, Puget Sound is considered
a ‘hot-spot’ of extinction risk [52]. Importantly, some of
these imperilled species, such as Chinook salmon (Onchor-
hynchus tshawytscha) and killer whales (Orcinus orca), are
regional icons that have been commemorated in art, culture
and tradition for millennia (e.g. [47]).

In the Pacific Northwest, the iconic nature of salmon and
killer whales leads many stormwater programmes to highlight
salmon recovery and ‘healthy’ killer whale populations as a
goal (e.g. [51]). In Washington State, the local population of
killer whales (southern resident killer whales, SRKW) are con-
sidered endangered under the Endangered Species Act, and
specifically identified as an ecological endpoint in stormwater
management plans. Tackling the stormwater problem for these
species requires that we first determine the magnitude of the
stormwater problem and how it is distributed across the
habitat range of salmon and killer whales.

To assess the magnitude and distribution of stormwater
impacts to salmon and killer whales, we calculated a pol-
lution load metric by coupling annual hydrology data with
regional pollution loading coefficients for different land use
types. We focused on one pollution metric, total suspended
solids (TSS), which is a commonly used metric to generally
assess water quality, and includes a wide variety of materials
that can be trapped on a filter, such as silt, decaying plant and
animal matter, industrial waste, vehicle exhaust emissions,
pavement wear, vehicle parts and oils, building materials
and paints, and atmospheric particle deposition. Importantly,
TSS does not fully capture water quality issues, as it does not
account for dissolved pollutants; however, TSS is a useful
indicator for urban stormwater pollution [53–56]. For this
case study, we bounded our analysis to the northern portion
of the California Current Ecosystem along the Pacific coast
of the United States (hereafter referred to as the Northern
California Current), which encompasses most of the home
range of the SRKW and key portions of the Chinook salmon
range (figure 1). We used a well-established stormwater pol-
lution model [57] to calculate a TSS load for United States
Geological Survey (USGS) watersheds (10-digit Hydrologic
Unit Codes) at a 30 m spatial resolution and with regionally
relevant TSS concentrations for six land use types [58–60].
Our intent is to roughly illustrate the magnitude and breadth



Coho salmon objective: focus on
small urbanized tributary
watersheds throughout the lowlands

Chinook salmon objective: focus on cumulative
loading to estuaries and mainstem rivers, low in
the watershed

Southern resident killer whale objective:
focus on cumulative loading in locations
where killer whales forage

Figure 3. Caricature of the Puget Sound region. Yellow dots highlight the small, lowland tributaries where stormwater treatment would be most effective for coho
salmon; green dots highlight the need for the cumulative reduction of stormwater contaminants in lower portions of mainstem rivers and estuaries in order to
achieve operational objectives related to Chinook salmon; purple dots indicate the need to focus on a reduction of the loading in the Northern California Current
resulting from cumulative inputs from urban areas.
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of the stormwater pollution issue in the study area, and we
acknowledge that theremay be broad statistical error associated
with the approach arising from spatial data input accuracy, the
variability of the TSS concentrations and simplicity of the load
algorithm. Additional methodological details are provided in
the electronic supplementary material.

We calculated that 2.2282 × 1011 kg TSS flows from urban
areas in watersheds associated with the Northern California
Current system each year. This is a 1099% increase in TSS
loads relative to pre-development conditions without imper-
vious surfaces. Pre-development landscapes generated an
average annual TSS export load of 40 kg per hectare [61].
Developed surfaces generate considerably more TSS, with
freeways generating the highest loads (635 kg per hectare),
followed by commercial surfaces (251 kg per hectare), indus-
trial zones (219 kg per hectare), mixed residential (126 kg per
hectare) and residential uses (86 kg per hectare) [61].

While hundreds of billions of kilograms of TSS are deliv-
ered each year to coastal marine systems in the Northern
California Current, the generation of stormwater pollution is
spatially heterogenous across the landscape and concentrated
in urban areas. Urban areas hold 89%of the total human popu-
lation in the region, and they generate 88% of the total TSS
load. The watersheds feeding into San Francisco Bay contrib-
ute the largest amount of stormwater pollution (37% of the
total TSS load) to the Northern California Current system, fol-
lowed by the lower Columbia River watersheds (19%) and the
Puget Soundwatershed (15%) (table 1). Combined, these three
basins generate 70% of the total TSS load in the Northern
California Current. If we narrow our analysis to only pollution
generated in urbanized areas of at least 10 000 people (US
Census Bureau delineation of urban versus rural [62]) adjacent
to the Northern California Current, 51% of the total TSS load is
generated in just four cities: Seattle (22%), Portland (16%),
San Francisco (8%) and Sacramento (5%). Because the gener-
ation of stormwater is concentrated in these four urban areas
which occupy a small proportion of the total land area of the
region, addressing 70% of the stormwater pollutant loading
in the Northern California Current Ecosystem requires
treatment of only 1.35% of the land area (table 1).

(b) Solving the stormwater problem requires clear
operational management objectives

Solving the stormwater problem forces us to ask—solve for
what? In order to effectively and efficiently prioritize natural
resource interventions, clear objectives that translate high-
level policy statements into action are required [63,64]. Objec-
tives are commonly divided into two types—strategic and
operational. Strategic objectives unpack high-level statements
into declarations of what is to be achieved, and are focused
on particular social, ecological, institutional or economic
elements in a social–ecological system [65]. Operational objec-
tives are derived from strategic objectives and are specific,
measurable, achievable, realistic and time-bound [66]. Develop-
ing effective portfolios of operational objectives requires (i) a
clear articulation of what management actions will and will
not do [67], and (ii) that operational objectives for each major
endpoint of the social–ecological systems—ecological, econ-
omic, social/cultural and institutional—be considered [68,69].

Here, we highlight how the location and scale of required
stormwater interventions vary with the operational objective
of management. We focus on three species—coho salmon,
Chinook salmon and SRKW—to illustrate how the spatial dis-
tribution of appropriate management actions is dependent on
the disparate life histories of these species, and how



Table 1. Impervious area, total suspended solids (TSS load) and human populations are concentrated in three major watershed systems in the Northern
California Current ecosystem. SF, San Francisco.

SF Bay
watershed (%)

lower Columbia
watershed (%)

Puget Sound
watershed (%)

all other coastal
watersheds (%)

per cent impervious of entire study areaa 0.69 0.31 0.35 0.59

per cent impervious of watershed 1.43 2.35 3.59 2.05

per cent of total impervious area 36 16 18 30

per cent of total TSS load 37 19 15 30

per cent of total human population 33 15 20 32
aFor example, 0.69% of the total study area is developed impervious area of the SF Bay watershed.
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management schemes optimized for one species may not
achieve desired objectives for other species.

(i) Stormwater mitigation for coho salmon
After spending 1–3 years in the ocean, coho salmon return to
freshwater to spawn and rear for 1–2 years in small tributary
creeks throughout Puget Sound lowlands [70,71] As
described above, coho are acutely sensitive to toxic storm-
water runoff when they return from the ocean to their natal
creeks to spawn. They are also sensitive as juveniles, showing
sublethal developmental impairments, such as pericardial
oedema [31]. In both cases, the adverse effects of stormwater
on coho occur while fish occupy their preferred freshwater
habitats, small lowland creeks [72], rather than over a lifetime
of contaminant accumulation. Stormwater interventions
intended to improve the status of coho populations must
focus on locations where coho spawn and rear. Thus, inter-
ventions concentrated on small tributary creeks in locations
where stormwater composes the majority of creek flow will
be most effective. Concentrating stormwater interventions to
reduce overall pollution in the lower mainstems of river
basins and marine waters, such as Puget Sound or
San Francisco Bay, will pull resources towards the largest
sources of pollution generation (e.g. industrial and commer-
cial centres of large urban areas) rather than the small
freshwater spawning habitats critical for coho salmon.
Thus, mitigation of stormwater impacts on coho salmon
requires a localized strategy that addresses contaminant
loading in the specific creeks where coho rear and spawn.

(ii) Stormwater mitigation for Chinook salmon
By contrast to coho salmon, the impacts of stormwater pol-
lution on Chinook salmon are more complex. In Puget
Sound, Chinook salmon spawn primarily in the relatively
non-urbanized upper reaches of major river basins and thus
do not suffer from acute pre-spawn mortality as observed
in coho [73]. However, stormwater toxics appear to have
numerous impacts on Chinook in other portions of their life
cycle. For example, juvenile Chinook that pass through estu-
aries impacted by stormwater pollution exhibit a 45%
reduction in survival during their ocean residence relative
to fish that migrate through uncontaminated habitats [74].
The mechanisms causing increased mortality in Chinook
are ostensibly multifaceted, but reduced pathogen resistance
and susceptibility to infection appear to be important (e.g.
[58–60]). Thus, for species like Chinook that spawn and
rear distant from urban centres, but must pass through
contaminated estuaries, it is the cumulative loading of toxic
compounds in the watershed that is critical. Management
strategies that effectively and efficiently reduce the magni-
tude of toxics reaching estuaries should be favoured. For
example, interventions that target lower reaches of large
tributaries will be more efficient in reducing large quantities
of pollution compared with actions in small streams in the
upper reaches of the watershed.
(iii) Stormwater mitigation for southern resident killer whales
SRKW consist of three fish-eating pods of killer whales that
range from Northern California to Southeast Alaska [75]
(figure 1). In 2005, they were listed as endangered under
the Endangered Species Act, and in the listing the National
Marine Fisheries Service highlighted high levels of contami-
nants from stormwater was a key threat [75]. In particular,
persistent organic pollutants (POPs) such as polychlorinated
biphenyls and polybrominated diphenyls occur in SRKW.
These chemicals are an important component of stormwater,
and bioaccumulate through foodwebs, building up and per-
sisting in the body tissues of organisms over time. As the
concentration of these chemicals increases in their tissues,
organisms experience adverse health effects including endo-
crine disruption, reproductive disruption, immunotoxicity,
neurotoxicity, neurobehavioural disruption and cancer [76].

Adult killer whales are primarily exposed to POPs
through the ingestion of prey. Given the dominance of
Chinook salmon in the diet of killer whales [77], and the elev-
ated POP levels in Chinook [76], these fish are the primary
source of contaminants in SRKW. Chinook salmon that feed
in Puget Sound have high contaminant concentrations,
likely a result of both the proximity to urban areas and
high residence time of water in Puget Sound [78,79]. Conse-
quently, killer whales that spend a significant amount of
time foraging in Puget Sound are exposed to high contami-
nant levels [80]. Even so, because Chinook acquire greater
than 96% of their body burden of POPs from marine habitats
[79,81], and SRKW forage across the Northern California Cur-
rent [82], feeding on salmon froma diversity ofwatersheds [83],
whales will be exposed to pollution generated fromurban areas
across the region. This may be particularly relevant in years of
low salmon abundance because even those whales known to
primarily forage in Puget Sound will spend more time
elsewhere in search of prey [84].

Because some whales reside in Puget Sound in summer
months and feed on Chinook with high levels of contami-
nants, reducing the cumulative loading of toxic compounds
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in Puget Sound will certainly have some positive benefit.
Indeed, the governor ofWashington state has proposed spend-
ing $51 million to reduce and manage stormwater in Puget
Sound in an effort to recover killer whales [85]. However, for
SRKW that use habitats across theNorthern California Current
ecosystem [86], local efforts in one geographical location may
be insufficient. In order to manage stormwater effectively for
SRKW, efforts may be required across the entirety of their
home range. As this includes 1621 municipalities, 82 counties
and three states in the United States and additional jurisdic-
tions in Canada, this is a formidable task. Nonetheless, the
same approaches used to prioritize conservation actions in
other highly migratory species (e.g. [72–74]) could be adapted
to develop effective and efficient stormwater mitigation at a
scale relevant to killer whale life history.
 Trans.R.Soc.B
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5. Policy solutions for effective stormwater
management

The Puget Sound case study highlights a number of key issues
that, if successfully addressed, could lead to more effective
outcomes in stormwater water management. Here, we high-
light three actions governance bodies could implement that
would yield substantial benefits—development of scale-appro-
priate operational objectives, increased connectivity across
scales of governance, and implementation of stormwater
credit programmes.

Stormwater management is implemented at the oper-
ational level through management plans, administrative
regulations and decisions of individual managers or insti-
tutions. Dozens of potential management actions have been
developed and shown to be effective for reducing the toxicity
of stormwater (full evaluation and cost-effectiveness of these
actions can be found in [87]) For instance, sand filtration of
stormwater through a pretreatment system, flow spreaders,
a sand bed and underdrain piping can reduce TSS by 80%
[88]. Street sweeping can also effectively remove pollutants
from stormwater. In a study of street sweeping effectiveness
in Korea, sweeping reduced event mean concentrations of
TSS by 78% [89]. Green stormwater infrastructure mimics
natural processes by encouraging stormwater to infiltrate
into the ground by slowing down flows and filtering out pol-
lutants. This type of treatment significantly reduces the
quantity of stormwater and improves the quality of storm-
water runoff. For instance, constructed wetlands can
remove more than 70% of metal pollution in stormwater [88].

No matter what management tactic is employed, effective
management is contingent on operational objectives that are
linked to feasible and measurable indicators and reference
levels [90]. In the United States, because stormwater manage-
ment is typically implemented at the scale of cities and
counties [28], operational objectives must target problems at
scales that match the governance or the problems themselves,
while policy instruments are required to overcome a scale
mismatch between objectives and governance [91]. For
example, in the Puget Sound region, operational objectives
focused on local populations of coho salmon can provide a
clear link between specific management actions and ecologi-
cal outcomes. Operational objectives focused on Chinook
salmon may require coordination among several municipali-
ties spread across many watersheds that all contribute
contaminants to mainstem rivers and estuaries. For SRKW,
meeting specific operational objectives may require collabor-
ation among the large urban areas across the Northern
California Current. We suggest operational objectives created
by local management bodies for issues that must be
addressed at a larger scale are problematic unless a plan for
coordination is in place for expanding conservation actions
to the appropriate scale [92].

Effective governance depends on collaboration, social
learning and integration of knowledge across actors. Thus,
well-developed networks of local actors are crucial for suc-
cessful management for issues that can be addressed at
local scales, such as in coho salmon. Fortunately, governance
and management of stormwater are characterized by a high
concentration of managers and organizations that are often
well integrated [93]; therefore, prospects for successful
local-scale outcomes are high. However, networks among
individuals or institutions that are active at different scales
and could promote cross-scale linkages are often absent
[94]. Networks that cross scales and link otherwise uncon-
nected governance structures and actors are crucial for
reaching objectives that require large-scale cooperation. Expli-
citly engaging scale-crossing individuals will be critical for
successfully achieving goals associated with objectives that
are inherently multi-scalar, such as those associated with
killer whales and Chinook salmon [95]. Scale-crossing bro-
kers [96] will not only improve coordination across scales,
they can also create new pathways for exchanging infor-
mation and incubating innovation [95]. Further, the ability
to detect and act on gradual system changes requires knowl-
edge derived in different places and at varying scales. Thus,
scale-crossing brokers serve as an important component of
adaptive management by blending and conveying critical
monitoring information.

Another approach to encourage cross-network collabor-
ation that has shown promising results for stormwater is
the implementation of cap and trade policies targeting
total daily maximum loads (TMDLs) at the catchment or
watershed scale. These regulations encourage management
performance and progress towards meeting operational objec-
tives, as opposed to compliance with a set of construction
guidelines [29]. Because TMDLs focus on performance, they
enable integrated credit trading among polluters, which in
turn encourages cross-sector collaboration.With the implemen-
tation of nutrient TMDLs in Chesapeake Bay, for example,
agriculture, wastewater and stormwater departments and tech-
nologies began towork in concert with one another. The result,
at the time of the midpoint assessment, was the highest
estimates of water quality over a 30-year period [27].

While TMDLs achieve coordination through mandates,
scale-crossing among organizations incentivized by cap and
trade policies and associated fundingmayalso achievemanage-
ment at appropriate spatial scales. Mandated coordination
alone is rarely viewed as productive [93]. Thus, a shared interest
generated by credit trading policies with complementary
funding may achieve success in some instances.
6. Conclusion
The phrase ‘think globally, act locally’ has become an iconic
principle of the modern environmental movement. Typically,
this maxim is meant to inspire and encourage individuals to
perform local conservation actions with the assumption that
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these actions will coalesce to create a desirable global future
[97]. However, when first articulated by Dubos [98], the
phrase was meant to warn environmentalists that global
objectives cannot easily be translated into local actions [97].
Such may be the case with stormwater. While local storm-
water actions may be meant to solve large-scale issues
confronting coastal ecosystems, they will often be inadequate
by themselves. Local actions must be coordinated into sys-
tems of effective management that operate on spatial scales
appropriate to specific management objectives. The informal
and formal means to achieve such coordination are available,
but it will take recognition by actors working at all scales that
cross-scale collaboration is crucial before it will become
normal and commonplace. Given the rapid urbanization of
coastal zones and the concomitant increase in stormwater
contamination, the integrity of coastal and marine ecosystems
depends on us thinking globally while we act at all scales.
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