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Individual responses to transcranial direct current stimulation (tDCS) are varied and
therefore potentially limit its application. There is evidence that this variability is related
to the contributions of Indirect waves (I-waves) recruited in the cortex. The latency
of motor-evoked potentials (MEPs) can be measured through transcranial magnetic
stimulation (TMS), allowing an individual’s responsiveness to tDCS to be determined.
However, this single-pulse method requires several different orientations of the TMS
coil, potentially affecting its reliability. Instead, we propose a paired-pulse TMS paradigm
targeting I-waves as an alternative method. This method uses one orientation that
reduces inter- and intra-trial variability. It was hypothesized that the paired-pulse method
would correlate more highly to tDCS responses than the single-pulse method. In a
randomized, double blinded, cross-over design, 30 healthy participants completed two
sessions, receiving 20 min of either anodal (2 mA) or sham tDCS. TMS was used to
quantify Short interval intracortical facilitation (SICF) at Inter stimulus intervals (ISIs) of
1.5, 3.5 and 4.5 ms. Latency was determined in the posterior-anterior (PA), anterior-
posterior (AP) and latero-medial (LM) coil orientations. The relationship between latency,
SICF measures and the change in suprathreshold MEP amplitude size following tDCS
were determined with Pearson’s correlations. TMS measures, SICI and SICF were
also used to determine responses to Anodal-tDCS (a-tDCS). Neither of the latency
differences nor the SICF measures correlated to the change in MEP amplitude from
pre-post tDCS (all P > 0.05). Overall, there was no significant response to tDCS in this
cohort. This study highlights the need for testing the effects of various tDCS protocols
on the different I-waves. Further research into SICF and whether it is a viable measure
of I-wave facilitation is warranted.
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Abbreviations: AMT, Active motor threshold; AP, Anterior-posterior; a-tDCS, Anodal-tDCS; BDNF, Brain derived
neurotrohpic factor; CNS, Central nervous system; CS, Conditioning stimulus; c-tDCS, Cathodal-tDCS; D-waves, Direct
waves; ECR, Extensor carpi radialis; EMG, Electromyography; fMRI, Functional magnetic resonance imaging; GABAA,
Gamma-aminobutyric acid-A; ISI, Inter stimulus interval; I-waves, Indirect waves; LM, Latero-medial; M1, Primary motor
cortex; MEP, Motor evoked potential; NMDA, N-methyl-D-aspartate; PA, Posterior-anterior; PET, Positron emission
tomography; RMT, Resting motor threshold; sEMG, Surface electromyography; SICF, Short interval intracortical facilitation;
SICI, Short interval intracortical inhibition; tDCS, Transcranial direct current stimulation; TES, Transcranial electrical
stimulation; TMS, Transcranial magnetic stimulation; TS, Testing stimulus.
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INTRODUCTION

Transcranial direct current stimulation (tDCS) is a non-invasive
brain stimulation technique that can modulate corticospinal
excitability in a polarity-dependent manner. Specifically, the
application of anodal tDCS (a-tDCS) over the primary motor
cortex (M1) can induce a facilitatory effect in motor-evoked
potential (MEP) amplitude elicited by transcranial magnetic
stimulation (TMS), while cathodal tDCS suppresses it. While
the facilitatory and inhibitory effects on corticospinal excitability
may hold therapeutic potential in clinical applications, a major
limitation of tDCS lies in its inherent individual variability in its
response.

The reasons behind the individual variability in responses to
tDCS are not fully understood and it is likely to be attributed
to different factors (i.e., skull thickness, time-of-day, tDCS
protocols and/or neurotrophic factor polymorphisms). However,
several studies to date have suggested that the dynamics of
trans-synaptic inter-neuronal networks, particularly those of
early and later indirect waves (I-waves) may, in part, explain
the variability in tDCS responses. In particular, Wiethoff et al.
(2014) suggested that people who showed a facilitatory response
to a-tDCS are more likely to recruit early I-waves or direct
waves (D-waves) compared to tDCS non-responders or those
that do not respond in a ‘‘canonical’’ manner. Later studies
have further demonstrated the relationship between early I-wave
recruitment and a-tDCS response (McCambridge et al., 2015;
Davidson et al., 2016), with McCambridge et al. (2015) finding
the relationship only existing in the distal muscles of the upper
limb (i.e., extensor carpi radialis (ECR)), not those of the
proximal upper limb (i.e., biceps brachii). These studies used
MEP latency differences, between different coil orientations,
as a surrogate measure of I-wave recruitment (Wiethoff et al.,
2014; McCambridge et al., 2015; Davidson et al., 2016).While
it is unclear as to why such a relationship exists between early
I-wave recruitment and a-tDCS response, one reason could be
that a-tDCS depolarizes the cell bodies of pyramidal neurons
for which early I-wave inputs are targeted (Wiethoff et al.,
2014). Studies of patients implanted with high cervical epidural
electrodes for pain suggested a-tDCS preferentially modulates
cortical circuits generating D- and early I-wave activity (Lang
et al., 2011; Di Lazzaro et al., 2013). These seminal studies
therefore suggest a seemingly close interaction between early
I-wave recruitment and a-tDCS responses.

Apart from using MEP latency differences between coil
orientations, paired-pulse TMS that targets I-wave periodicity
is another method of investigating the dynamics of trans-
synaptic inter-neuronal networks. First described by Ziemann
et al. (1998), paired-pulse TMS, at suprathreshold intensities,
delivered at 1.1–1.5 ms, 3.0–3.5 ms and 4.1–4.5 ms interstimulus
intervals (ISIs) produces a clear short-interval intracortical
facilitation (SICF) that is due to the facilitatory interactions
between I-waves (Thickbroom et al., 2006; Cash et al., 2009).
While our current understanding of I-waves and its interaction
is limited, generation of early and later I-waves are likely
to have different underlying mechanism (for review see Di
Lazzaro et al., 2012) that contribute towards the modulation

of a-tDCS response. For example, early I-waves are thought
to originate from monosynaptic activation of P5 pyramidal
tract neurons (PTN) via more superficial P2–3 PTNs, and
are not influenced by GABAergic inhibitory influences (Di
Lazzaro et al., 2012). Later I-waves may be generated by
reactivation of P5 PTNs via excitatory reciprocal connections
with P2–3 PTNs and interneurons that have approximately
1.5 ms transmission delay (Thomson et al., 2002). These
monosynaptic connections are further influenced by GABAergic
interneuron connections, thus having a greater inhibitory
influence (Di Lazzaro et al., 2000). Given that I-waves are thought
to result from trans-synaptic activation of corticospinal neurons
via excitatory cortical interneurons (Ziemann and Rothwell,
2000; Rusu et al., 2014; Wiethoff et al., 2014; McCambridge
et al., 2015), and that the effects of a-tDCS are associated
with the modulation of excitatory and inhibitory interneurons
(Medeiros et al., 2012), the interactions between I-waves may
have implications for a-tDCS, whereby its efficacy may be
influenced by GABAergic mechanisms and also the level of
excitability of more superficial PTNs that tDCS may have a
greater effect on.

The aim of this exploratory study was to investigate
the relationship between I-wave dynamics (i.e., I-wave
recruitment and facilitation) with variability in a-tDCS
responses. Specifically, we compared SICF (pre-tDCS) elicited
using paired-pulse TMS at I-wave periodicities, and I-wave
recruitment by measuring MEP latency differences at different
TMS coil orientations, to changes in corticospinal excitability
following a-tDCS. We hypothesized that measures of SICF at
I-wave periodicities will correlate with changes in corticospinal
excitability following a-tDCS in a similar fashion to the coil
orientation method as previously reported (Wiethoff et al., 2014;
McCambridge et al., 2015).

MATERIALS AND METHODS

Participants
Thirty healthy participants (19 males, 11 females, aged
18–34 years, height: 173.1 ± 1.5 cm, weight: 71.6 ± 2.3 kg)
completed two testing sessions, each lasting approximately
1.5 h in a randomized, double-blinded cross-over study.
All participants received either real or sham a-tDCS in a
randomized order, separated by a minimum 48 h washout
period (Nitsche et al., 2008). Both researcher and participant
were blinded to the condition of stimulation during each session.
Written informed consent was obtained from participants
prior to testing and participants were also screened for
TMS eligibility prior to any testing. Any participants that
were left-handed, as determined through the Edinburgh
Handedness Questionnaire (Oldfield, 1971), or who had any
contraindications to TMS or tDCS, such as implanted medical
devices, or neurological conditions, were excluded from
this study. Left-handed participants were excluded as
right handed participants were selected for convenience
sampling and to avoid any potential laterality effects. This
study complied with the Declaration of Helsinki and was
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approved by the Deakin University Human Research Ethics
Committee.

Study Design
Prior to the experiment, all participants were seated comfortably
on a chair with their right arm relaxed and their elbow
placed at a 90◦ angle on the arm rest. The optimal location
of the ECR muscle was identified via palpation of the radial
epicondyle and the styloid process of the ulnar and skin was
prepared before attaching the surface electromyography (sEMG)
electrodes. The researcher collected the maximal compound
wave (M-wave) measure, before determining resting motor
threshold (RMT) and active motor threshold (AMT) for the
participant. Measurement of 130% of RMT and AMT was
then collected in the posterior-anterior (PA) and anterior-
posterior (AP) orientations, along with SICI in resting and
active conditions and SICF at 1.5, 3.5 and 4.5 ms in a
resting state. These measures were taken in a randomized
order. Twenty minutes of tDCS (sham or a-tDCS) was
applied before repeating the same TMS outcome measures.
Figure 1 shows the timeline of experimental procedures for this
study.

Surface Electromyography
sEMG activity was recorded from the ECR muscle of the right
forearm. The location of the ECR muscle was determined
through measuring from the humeral lateral epicondyle to the
medial styloid process of the ulnar. The halfway point was
determined, and recorded, while the participant was seated with
their arm by their side at 90◦ of flexion at the elbow and with
the hand pronated, in line with the forearm. Seven centimetres
proximal to this point was palpated to determine where the bulk
of the ECR muscle belly lay, according to the sEMG recording
for non-invasive assessment of muscles (Stegeman and Hermens,
2007). This was marked with a surgical marker and recorded

for correct placement in the following session. At the site of the
ECR muscle, the participant’s skin was shaved of excess hair
and scrubbed with an abrasive gel (Nuprep, Weaver and Co.,
Aurora, CO, USA) to remove any dead skin and cleaned with
70% isopropyl alcohol wipes. Positive and negative bipolar Ag-
AgCl foam electrodes (Covidien, Quebec, QC, Canada) were
placed onto this site in a muscle-belly tendon arrangement,
with the positive electrode proximal to the negative electrode,
with an inter-electrode distance of 2 cm according to SENIAM
guidelines (Stegeman and Hermens, 2007). The electrodes were
fastened with tape to preventmovement artifact, and a grounding
electrode was connected around the wrist of the participant
via a grounding velcro strap. All EMG signals were amplified
(×1000) with band-pass filtering between 20 Hz and 1 kHz for
500 ms.

Maximal Compound Waves
To account for any peripheral changes at the muscle level,
maximal compound waves were evoked from the ECR
muscle using a peripheral nerve stimulator (DS7A, Digitimer,
UK) applied to the radial nerve on the lateral aspect of
the upper right arm, above the bend of the elbow. To
ensure a maximal muscle response (MMAX) was obtained, the
stimulation intensity was increased in 10% increments until
no further increase was seen in the amplitude of the sEMG
response (Goodwill et al., 2013). A further three stimulus
was applied at this intensity to obtain an average MMAX
measure.

Transcranial Magnetic Stimulation Measures
Single- and paired-pulse TMS was delivered using a Bistim
2002 magnetic stimulator (Magstim Co, Dyfed, UK) with a
figure-eight shaped coil, with an external loop diameter of
90 mm. The optimal site for the motor representation of
the ECR muscle, or hotspot, was first identified through

FIGURE 1 | A timeline of the testing protocol in both testing sessions. R, Randomized order; AMT, Active motor threshold; RMT, Resting motor threshold;
PA, Posterior-anterior; AP, Anterior-posterior; LM, Latero-medial; SICI, Short interval intracortical inhibiton; SICF, Short interval intracortical facilitation; tDCS,
transcranial direct current stimulation; MMAX, Maximal muscle response.
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initial exploration using single-pulse TMS around the right
hand representation of the left primary M1. The optimal
hotspot was defined as the site that elicited the largest and
most consistent MEPs during single-pulse TMS. Once the
optimal hotspot was located, it was marked with a surgical
marker, and recorded for consistency between pre- and post-
testing, and to ensure repeatability between the sham and
real tDCS sessions. 10 MEPs were collected at each stimulus
intensity.

Single-pulse TMS was used to measure RMT and AMT.
RMT was defined as the minimum percent of maximum
stimulator output (%MSO) that will elicit an average MEP
amplitude response between 50–100 µV in at least 5 out of
10 stimulations of the ECR muscle at rest (Rothwell et al.,
1999). AMT was defined as the minimum %MSO required
to elicit an average MEP amplitude between 200–300 µV
in at least 5 out of 10 stimulations, when the ECR muscle
is slightly activated at approximately 5 ± 2% of maximal
sEMG (Rothwell et al., 1999). In the current study, this
low-level of activation was achieved by maintaining the
fingers and hand at 180◦ in line with the forearm, and was
measured through the root mean squared EMG (rmsEMG;
Hendy and Kidgell, 2014). Measurement at 130% of RMT
and AMT was then undertaken in a PA and AP orientation,
and at 130% of RMT in the latero-medial (LM) orientation.
The MEP latency (time between TMS stimulus and onset
of MEP) for each coil orientation, at 130% of RMT, was
measured for each individual response, manually with a
cursor. The participant’s average latency at each orientation
(10 MEPs at each orientation) was then used to calculate
the latency differences between those orientations and
to determine the recruitment of I-waves (Hamada et al.,
2013).

To measure short-interval intracortical inhibition (SICI), a
conditioning stimulus (CS) at an intensity of 80% of RMT
was followed with a testing stimulus (TS) at an intensity of
130% of RMT for the resting condition. During the active
condition 80% of AMT and 130% of AMT was used for the
CS and TS respectively. The CS and TS were separated by an
ISI of 3 ms during both resting and active ECR conditions
(Kujirai et al., 1993; Hummel et al., 2005; Hendy and Kidgell,
2014).

SICF was taken at resting and active ECR conditions, with
both the CS and TS set to the RMT, and AMT for the resting
and active conditions respectively. This was tested at ISIs of 1.5,
3.5 and 4.5 ms, which corresponds to the periodicity of the first,
second and third I-waves respectively (Day et al., 1989; Tokimura
et al., 1996; Ziemann et al., 1998; Thickbroom et al., 2006). An ISI
interval of 3 ms was not used as this coincides with the ISI used
to elicit SICI.

The amount of SICI was determined by calculating paired-
pulse MEP as a percentage of the single-pulse MEP elicited
at the same TS intensity. SICF was measured as a percentage
difference of the paired-pulse SICF MEPs to the single-pulse
MEPs (130% of RMT and 130% of AMT) and the difference from
pre-post of 130% of RMT and AMT was used to determine tDCS
responses.

Transcranial Direct Current Stimulation Protocol
tDCS (NeuroConn, Ilmenau, Germany) was applied to the
participant for 20 min, at an intensity of 2 mA (0.08 mA/cm2;
Iyer et al., 2005). Two 25 cm2 rubber electrode pads were
attached in a bipolar electrode montage with the anode placed
over the M1 corresponding with the right ECR muscle and
the cathode placed over the participant’s right supraorbital
area (Nitsche and Paulus, 2001). Both the anode and cathode
were held in position using rubber straps for the duration of
stimulation and an electrode conducting gel (Ten20 Conductive
Gel, Weaver and Company, Aurora, CO, USA) was applied
to the electrodes instead of saline solution to reduce electrical
impedance.

For a-tDCS, the stimulus intensity was ramped up to 2 mA
in the first 15 s and maintained for 20 min before ramping
down in the last 15 s. Sham tDCS only incorporated the
ramping up phase in the first 15 s to provide a similar
sensation before ramping down (Hummel et al., 2005; Palm
et al., 2013). This method of sham stimulation has been
previously validated and is commonly used as a control for
studies using tDCS (Gandiga et al., 2006). The tDCS device
was programmed to deliver either real or sham stimulation,
which the researcher activated with pre-programmed codes.
The researcher conducting the testing sessions was only
un-blinded to stimulation type once all data analysis was
completed.

Analytical Procedures and Statistical
Analysis
Analytical Procedures
The primary outcome measures of this study were SICF,
elicited by paired-pulse TMS I-wave periodicities, the latency
differences between coil orientations, excitability (tDCS
response) and inhibition (SICI) following tDCS. Corticospinal
excitability is expressed as a percentage difference in MEP
amplitude from pre to post-tDCS (Figure 9). MEP latency
was determined visually, from the time when TMS is
triggered to the onset of the MEP (McCambridge et al.,
2015). The difference between the latencies of the coil
orientations (AP-LM, PA-LM, AP-PA) were used to determine
I-wave recruitment (Wiethoff et al., 2014; McCambridge
et al., 2015). All outcome measures were analyzed using
LabChart 8 software (ADinstruments, Bella Vista, NSW,
Australia).

Statistical Analysis
The mean and standard error (SE) of participant’s RMT,
AMT and %MSO values across both sessions were calculated.
Kolmogorov-Smirnov and Shapiro-Wilk tests were used to
determine normal distribution of data, and log transformations
were applied where appropriate. A two-way repeated measures
analysis of variance (ANOVA; CONDITION- sham vs. real;
TIME- pre vs. post tDCS) was undertaken to test for significant
effects of tDCS, SICFratio and SICIratio measures and Bonferroni
post hoc analysis was conducted where appropriate and
significance was found. Pearson productmoment correlation was
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used to determine the relationship between latency differences
(AP-PA, AP-LM and PA-LM), SICFratio (at inter-stimulus
intervals (ISI) of 1.5, 3.5 and 4.5 ms), and tDCS response, in both
active and resting muscle states. These analyses were done with
MEPs normalized to MMAX. T-tests were performed between the
ISI’s of the SICF measures post real-tDCS.

All statistical analysis was performed using SPSS version 22
(SPSS Inc., Chicago, IL, USA). An alpha level of P < 0.05 was set
as the level of significance.

RESULTS

Participants
MMAX
Participants MMAX was recorded to ensure peripheral
excitability remained constant throughout and between
testing sessions. This was established through a range
of 6–9.5 mA. There was no significant effect of TIME
(F(1,29) = 1.787, P = 0.192, η2 = 0.253), CONDITION
(F(1,29) = 0.113, P = 0.739, η2 = 0.062), nor was a significant
TIME × CONDITION interaction present (F(1,29) = 0.782,
P = 0.384, η2 = 0.137).

Pre-Stim rmsEMG
Participants rmsEMG from the active conditions were
compared to ensure consistent background muscle activity
levels during testing, with no significant effect of TIME
(F(1,29) = 1.651, P = 0.209, η2 = 0.237), CONDITION
(F(1,29) = 0.055, P= 0.816, η2 = 0.056) or TIME×CONDITION
(F(1,29) = 0.317, P = 0.578, η2 = 0.085) interaction
present.

Stimulator Output to Evoke AMT and RMT
The MEP amplitude obtained at RMT and AMT, as well as the
percentage of maximum stimulator output (%MSO) required to
evoke RMT and AMT for both sessions, are displayed in Table 1.

TABLE 1 | Transcranial magnetic stimulation (TMS) characteristics and
responses to transcranial direct current stimulation (tDCS) (mean ± SE).

Real Sham

RMT MEPs (mV)
Pre 0.094 ± 0.009 0.095 ± 0.007
Post 0.095 ± 0.014 0.103 ± 0.010

Mmax (mV)
Pre 7.9 ± 2.69 8.1 ± 2.46
Post 8.3 ± 2.47 8.2 ± 2.46

AMT MEPs (mV)
Pre 0.533 ± 0.036 0.503 ± 0.033
Post 0.561 ± 0.048 0.520 ± 0.035

RMT (%MSO)
Pre 45 ± 2 45 ± 2
Post 45 ± 2 44 ± 2

AMT (%MSO)
Pre 38 ± 2 37 ± 2
Post 38 ± 2 37 ± 2

Sensations
Pain 2 ± 0.4 2 ± 0.4
Tingling 3 ± 0.5 3 ± 0.5
Itching 2 ± 0.4 2 ± 0.4
Burning 4 ± 0.5 3 ± 0.5

No differences existed between MEPs or %MSO obtained either
pre or post-tDCS in both sessions.

Sensations of Real and Sham tDCS
Participant’s predictions as to which sessions were real and
which were sham were calculated. Out of a possible 60
responses, participants correctly identified the tDCS condition
37 times (Correct guess 61% of the time). Participants were
more likely to identify either session as real over sham,
with 38 of the responses being real, and only 22 of the
responses being sham. Responses to the sensation questionnaire

FIGURE 2 | Individual motor-evoked potential (MEP) responses following tDCS in (A) resting and (B) active extensor carpi radialis (ECR) conditions in
both sham and real sessions.
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FIGURE 3 | Percentage of individual’s responses to tDCS measured under (A) active and (B) resting conditions.

(Supplementary Data Sheet 1) were compared between sessions
and were not significantly different between the real and sham
sessions (all P > 0.050).

Corticospinal Responses Following
Transcranial Direct Current Stimulation
Corticospinal Excitability in Active and Resting
Conditions
The group mean data under the active condition saw no
significant main effect for TIME (F(1,29) = 0.130, P = 0.721,
η2 = 0.004), CONDITION (F(1,29) = 0.029, P = 0.867,
η2 = 0.001) nor was there a significant TIME × CONDITION
interaction (F(1,29) = 0.265, P = 0.610, η2 = 0.009). Mean
group data showed the sham session (5.09% change) and the
real session (7.56% change) both increased overall. Sixteen
participants showed an increase in tDCS excitability in the
real session and 15 displayed an increase in the sham session
(Figure 2B). The responses for active MEP amplitude changes
were less variable when compared to resting MEP amplitude
changes (real tDCS from −43 to 127% change, sham tDCS from
−35 to 97% change).

For the group mean data of tDCS responses in the resting
condition, there was no significant main effect for TIME

(F(1,29) = 0.035, P = 0.852, η2 = 0.001), CONDITION
(F(1,29) = 0.017, P = 0.896, η2 = 0.017) nor was there a
significant TIME × CONDITION interaction (F(1,29) = 0.207,
P = 0.652, η2 = 0.007). Across all participants there

FIGURE 4 | Change in SICF MEP amplitudes (as a percentage of
unconditioned MEPs) at ISIs of 1.5, 3.5 and 4.5 ms (all P > 0.05).
∗Denotes significant difference between SICF 3.5 and 4.5. †Denotes
significant difference between SICF 1.5 and 4.5.
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FIGURE 5 | Correlation between response to Anodal-tDCS (a-tDCS; resting) and (A) AP-LM latency, (B) SICFratio 1.5 ms, (C) SICFratio 3.5 ms and (D)
SICFratio 4.5 ms.

was a greater increase from pre-post in the sham session
(24.93%) than in the real session (8.26%). Individually,
14 participants displayed an increase in excitability in the
real session, while 19 displayed an increase during the
sham session (Figure 2A). The amount of change between
individuals was extremely variable under resting conditions
(real tDCS from −65 to 135% change, sham tDCS from
−85 to 271% change), with some participants responding
negatively in both conditions, and others responding positively
(Figure 3).

This data shows the overall response to tDCS was not
significant. This appears to be due to high variability between
individuals, as some participants showed positive changes to
tDCS excitability from the real tDCS session.

Short Interval Intracortical Inhibition in Resting and
Active Conditions
The magnitude of inhibition did not differ significantly
between pre-post measures of SICI, or between the
real and sham sessions. No significant main effects
for TIME (F(1,29) = 0.814, P = 0.374, η2 = 0.027),
CONDITION (F(1,29) = 0.026, P = 0.872, η2 = 0.001),
or TIME × CONDITION interaction (F(1,29) < 0.000,

P = 0.999, η2 < 0.000) were seen for SICI under the active
condition.

No significant main effects for TIME
(F(1,29) = 1.392, P = 0.248, η2 = 0.046), CONDITION
(F(1,29) = 1.078, P = 0.308, η2 = 0.036) or
TIME × CONDITION interaction was seen during
resting SICI (F(1,29) = 0.168, P = 0.685, η2 = 0.006;
Figure 8).

SICI, at baseline, was significant across all measures of SICI,
including SICI at rest with real tDCS (F(1,29) = 84.048, P< 0.001,
η2 = 1.000) and sham tDCS (F(1,29) = 72.215, P < 0.001,
η2 = 1.000) and during the active condition with real tDCS
(F(1,29) = 176.562, P < 0.001, η2 = 1.000) and sham tDCS
(F(1,29) = 228.005, P < 0.001, η2 = 1.000).

Short Interval Intracortical Facilitation in Resting
Conditions
From pre-post tDCS there was no significant change,
with no effect of the SICF protocol (F(2,36) = 1.023,
P = 0.370, η2 = 0.054), CONDITION (F(1,18) = 0.456,
P = 0.0508, η2 = 0.025), nor was there a significant SICF
protocol × CONDITION interaction (F(2,36) = 0.073,
P = 0.930, η2 = 0.004). Significant differences existed
between SICF 1.5 and SICF 4.5 (P = 0.020) post real tDCS,
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FIGURE 6 | MEPs at 130% of RMT at LM, PA and AP orientation,
pre-tDCS, used to calculate latencies and latency difference. Latency is
between the stimulus to the onset of the MEP, indicated by a.

as well as between SICF 3.5 and SICF 4.5 (P = 0.046;
Figure 4).

Latency and Short Interval Intracortical
Facilitation to Predict Responders to
Transcranial Direct Current Stimulation
The latencies of the orientations (LM, AP and PA) as well as
the latency differences between orientations (AP-LM, PA-LM
and AP-PA) are displayed in Table 2. Pearson product
moment correlations showed that response to a-tDCS in both
active and resting muscle states was not related to latency
difference (AP-PA, AP-LM, PA-LM) or SICFratio (1.5, 3.5.
4.5; all P > 0.05; Figure 5). Correlation data is displayed in
Table 3.

DISCUSSION

We aimed to determine the individual variability of responses
to a-tDCS using the difference in MEP latencies (in LM,
PA and AP coil orientations), and compared it to paired-
pulse TMS at I-wave periodicities. We hypothesized that
both methods would correlate to the individuals’ response
to a-tDCS. None of the MEP latency measures, nor any of
the SICF measures correlated to the change in excitability
following a-tDCS in resting or active conditions. This
disagrees with our hypothesis that paired-pulse TMS

at I-wave periodicity would be predictive of a-tDCS
responses.

Variability in a-tDCS Responses
Similar to Wiethoff et al. (2014), our results demonstrated
that tDCS responses between individuals were highly variable,
with approximately half the participants responding in a
canonical manner to a-tDCS. The amount of I-wave facilitation
and recruitment (Lang et al., 2011), N-methyl-D-aspartate
(NMDA) receptor activity (Nitsche et al., 2003), as well
as skull thickness and brain derived neurotrohpic factor
(BDNF) polymorphisms (Antal et al., 2010; Opitz et al.,
2015), could explain some of the variance of the tDCS after-
effects. I-waves can be facilitated through a-tDCS if there
is a sufficient amount of a-tDCS to induce intracortical
changes which alters the after-effects of tDCS (Nitsche et al.,
2005). If the amplitude of a-tDCS is insufficient, changes
in NMDA receptor efficacy may not be induced (Nitsche
et al., 2005). Differences in skull thickness, which increases
resistance to tDCS, and BDNF polymorphisms, which make
individuals more susceptible to externally induced plasticity,
could both inhibit a-tDCS and therefore no after-effects
would be induced (Nitsche et al., 2005; Antal et al., 2010;
Opitz et al., 2015). This was observed in both the active
and resting conditions (53% and 47% respectively), while a
reduction in MEP amplitude occurred in approximately 20%
of individuals for both conditions. Overall, our group average
data did not show a facilitatory effect of a-tDCS on MEP
amplitude which could have been attributed to the large
variability in tDCS responses. This is not uncommon, with
studies frequently reporting no facilitation in MEP amplitude,
particularly when tDCS is applied in healthy populations
(Horvath et al., 2015; McCambridge et al., 2015), and with no
additional or concurrent motor stimuli (Hendy and Kidgell,
2014).

Predicting a-tDCS Variability Based Upon
I-wave Recruitment and Facilitation
Our study did not show a correlation between AP-LM
latency difference and response to a-tDCS. This is in contrast
to the correlation reported by McCambridge et al. (2015).
Methodological differences, such as determining MEP onset,
defining the beginning and end of MEP latency (Figure 6),
stimulation duration and electrode montage (dual vs. uni-
hemisphere stimulation parameters) may, in part, explain
some of the discrepancies between our results and previous
studies (McCambridge et al., 2015). Our experiment was
conducted in a comparatively large sample size of 30, using

TABLE 2 | Mean ± SE for latencies and latency differences of the
latero-media (LM), anterior-posterior (AP) and posterior-anterior (PA)
orientations, obtained at rest pre-tDCS (ms).

LM (ms) AP (ms) PA (ms)

15.91 ± 0.16 18.21 ± 0.19 16.78 ± 0.17
AP-LM (ms) PA-LM (ms) AP-PA (ms)
2.16 ± 0.19 0.72 ± 0.14 1.44 ± 0.18
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TABLE 3 | Correlations between latency differences, SICFratio, and response to a-tDCS.

AP-PA AP-LM PA-LM SICFratio 1.5 SICFratio 3.5 SICFratio 4.5

A-TDCS r = 0.098 r = 0.145 r = 0.102 r = 0.010 r = 0.057 r = 0.066
(ACTIVE) P = 0.607 P = 0.446 P = 0.591 P = 0.958 P = 0.767 P = 0.736
A-TDCS r = 0.166 r = 0.308 r = 0.261 r = −0.020 r = −0.016 r = −0.055
(RESTING) P = 0.380 P = 0.098 P = 0.164 P = 0.916 P = 0.935 P = 0.775

pre-programmed code based double blinding, as well as a
previously established sham protocol to ensure scientific rigour
(Gandiga et al., 2006). While the recruitment of I-waves
may partially explain the variability of tDCS responses, we

hypothesized that I-wave facilitation may also attribute to
tDCS variability. Later I-waves are significantly facilitated for
4 min post a-tDCS, while I1-wave amplitudes are significantly
facilitated for 2 min post a-tDCS (Lang et al., 2011).

FIGURE 7 | MEPs elicited through SICF at 1.5, 3.5 and 4.5 ms from pre- and post-tDCS in the real condition. a shows the amplitude of the MEP, calculated
from peak to peak of the muscle response.
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FIGURE 8 | Pre and post-tDCS MEPs elicited through SICI during
resting and active conditions.

Later I-waves are thought to be generated from more
superficial cortical layers than the I1 waves (Lang et al.,
2011). Therefore, the cortico-cortical and thalamo-cortical fibers
and interneurons may be activated more readily through
a-tDCS. While the axons of these connections that produce
the early I-waves are not activated as readily. This is
because they are located deeper in the cortex. A possible
explanation for this could be the dendritic model which
states that early I-waves are activated through excitatory and
inhibitory neurons in a pool, that synapse with pyramidal
neurons in layer V (McCambridge et al., 2015).When sham
tDCS was delivered, there was no relationship between the
change in MEP amplitude at 130% of RMT and AMT
in the PA orientation to the AP-LM latency difference,
or to any of the SICF measures. This indicates that the
changes in SICF measures in the real session (Figure 7)
is likely to be an actual physiological effect, rather than
measurement error or variability. Despite this, we did not find
a correlation between the pre-tDCS SICF measure and the
post-tDCS MEP response. Therefore, the present findings do
not support the use of the SICF measures to determine tDCS
variability.

FIGURE 9 | Pre and post-tDCS MEPs elicited through 130% of RMT at
the PA orientation. Amplitude (a) was used to compare MEP size pre- and
post-tDCS to determine tDCS effectiveness.

Limitations and Conclusion
Several limitations in our study have to be acknowledged. While
it is accepted that paired-pulse TMS at 1.5, 3.5 and 4.5 ms ISIs
are able to target early and late I-waves, it is likely that these ISIs
may not coincide with the optimal periodicities to elicit maximal
facilitation of I-waves in every participant. It is suggested that
a range of values (e.g., 1.3–1.7 ms, 3.0–3.5 ms and 4.3–4.7 ms)
can also cause facilitation of I-waves that is individualized to
each participant (Cash et al., 2009). Therefore, to accurately
determine the relationship between I-wave facilitation and tDCS
responses, individual I-wave response curvesmust be determined
to elicit maximum I-wave responses. However, this may not be
feasible to conduct on individual participants. Another potential
limitation is the saturation or a ceiling effect of MEPs post-
tDCS. It is possible that the %MSO intensity used for single-pulse
TMS following tDCS may have resulted in maximal facilitation
of MEPs. However this is unlikely in our study as the level of
intensity used (130% AMT and RMT) has previously been used
and intensities at which saturation occurs is typically between
170–190% of active or resting threshold (Ziemann et al., 1998;
Goodwill et al., 2013; Pearce et al., 2013a,b). Using paired-pulse
measures is another potential limitation as it has been shown
these measures have an inherent level of inter-tester variability
(Boroojerdi et al., 2000). All reasonable steps were taken by
the researchers, who followed standard protocol (Rossini et al.,
2015), to limit this variability when comparing to other literature.
Finally, the amount of TMS pulses elicited, may account for
some of the individual variability in responses to tDCS, as single-
pulse TMS has been shown to have cumulative corticospinal
excitability effects (Pellicciari et al., 2016).

In conclusion, our results showed that paired-pulse TMS
at I-wave periodicity did not correlate to tDCS responses.
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Therefore paired-pulse TMS at I-wave periodicity may not be an
appropriate measure to determine individual variability to tDCS
responses. We demonstrated that the responses to 20 min of
a-tDCS is highly variable, which is in line with previous studies.
The latency difference in the AP-LM coil orientation and tDCS
responses were also inconsistent with previous literature. This is
likely due tomethodological differences between studies. Overall,
our findings highlight the need for more robust methods to
determine tDCS responses in order to accurately predict if an
individual may benefit from the application of tDCS.
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