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� Two different liver immune microenvironments

were identified in patients with chronic hepatitis B:
immune high and immune low.

� Immune high patients had elevated immune
pathway activity and immune cell signatures cor-
responding to B cells, T cells and macrophages.

� Antiviral treatment and normalization of ALT cor-
relates with a marked decrease in liver immune
infiltrate and inflammation.

� CXCL10 and ICAM-1 were identified as peripheral
biomarkers that correlated with these differenti-
ated immune microenvironments.
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Liver biopsies from patients with chronic hepatitis B
were submitted to RNA-Seq and multiplex immuno-
fluorescence and identified two different liver im-
mune microenvironments: immune high and immune
low. Immune high patients showed elevated immune
pathways, including interferon signaling pathways,
and increase presence of immune cells. Longitudinal
analysis of biopsies from treatment experienced pa-
tients showed that treatment correlates with a
marked decrease in inflammation and these findings
may have important implications for both safety and
efficacy of immune modulator programs for HBV cure.
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Background & Aims: We aim to describe the liver immune microenvironment by analyzing liver biopsies from patients with
chronic HBV infection (CHB). Host immune cell signatures and their corresponding localization were characterized by
analyzing the intrahepatic transcriptome in combination with a custom multiplex immunofluorescence panel.
Method: Matching FFPE and fresh frozen liver biopsies were collected from immune active patients within the open-label
phase IV study GS-US-174-0149. RNA-Seq was conducted on 53 CHB liver biopsies from 46 patients. Twenty-eight of the
53 samples had matched FFPE biopsies and were stained with a 12-plex panel including cell segmentation, immune and viral
biomarkers. Corresponding serum samples were screened using the MSD Human V-plex Screen Service to identify peripheral
correlates for the immune microenvironment.
Results: Using unsupervised clustering of the transcriptome, we reveal two unique liver immune signatures classified as
immune high and immune low based on the quantification of the liver infiltrate gene signatures. Multiplex immunofluo-
rescence analysis demonstrated large periportal lymphoid aggregates in immune high samples consisting of CD4 and CD8 T
cells, B cells and macrophages. Differentiation of the high and low immune microenvironments was independent of HBeAg
status and peripheral viral antigen levels. In addition, longitudinal analysis indicates that treatment and normalization of ALT
correlates with a decrease in liver immune infiltrate and inflammation. Finally, we screened a panel of peripheral biomarkers
and identified ICAM-1 and CXCL10 as biomarkers that strongly correlate with these unique immune microenvironments.
Conclusion: These data provide a description of immune phenotypes in patients with CHB and show that immune responses
are downregulated in the liver following nucleotide analogue treatment. This may have important implications for both the
safety and efficacy of immune modulator programs aimed at HBV cure.
Lay summary: Liver biopsies from patients with chronic hepatitis B were submitted to RNA-Seq and multiplex immuno-
fluorescence and identified two different liver immune microenvironments: immune high and immune low. Immune high
patients showed elevated immune pathways, including interferon signaling pathways, and increase presence of immune cells.
Longitudinal analysis of biopsies from treatment experienced patients showed that treatment correlates with a marked
decrease in inflammation and these findings may have important implications for both safety and efficacy of immune
modulator programs for HBV cure.
© 2021 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
HBV chronically infects over 257 million people worldwide and
is a leading cause of liver-related mortality.1 HBV can cause
lifelong chronic infection that results in progression through
various stages of liver disease including fibrosis, cirrhosis and
ultimately hepatocellular carcinoma.2,3 Progression to end-stage
liver disease is mediated largely through chronic liver
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inflammation, which is thought to be highly variable throughout
the natural history of disease.4 Long-term chronic inflammation
of the liver results in hepatocyte death and regeneration, slowly
leading to liver scarring and fibrosis, and eventually leading to
advanced liver disease. Hepatocyte death is measured in the
periphery using a serum biomarker, alanine aminotransferase
(ALT), which is released from ruptured hepatocytes into the
circulation.5

CHB infection typically progresses through several stages of
natural history, ultimately leading to hepatocellular carcinoma.6

The immune tolerant phase is characterized by patients that are
positive for HBeAg, have very high viral DNA levels, but have ALT
levels that remain normal.6 Patients that contract HBV at birth
often stay in the immune tolerant phase of disease for several
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decades and fail to mount an anti-HBV immune response despite
high viral burden.7 Patients eventually experience elevated ALT
and transition to the immune active phase of disease, however,
the immune triggers that mediate this switch are unknown. The
presence of viral antigens alone is insufficient to trigger this
immune switch, as they are present at high levels throughout the
immune tolerant phase of disease. Patients with elevated ALT are
indicated for treatment based on the current treatment guide-
lines.8 Treatment with pegylated-interferon-a (PEG-IFNa) leads
to higher cure rates than other regimens, but still cures less than
10% of patients.9 Several studies characterizing the response
signature in patients treated with PEG-IFNa revealed interferon
signaling in the liver and elevated CXCL10 and CXCL9 in serum of
patients that experience cure.10,11

We examined liver biopsies from the GS-US-174-0149 clin-
ical trial.9 Liver biopsies were collected from volunteers at
baseline and week 96 (tenofovir disoproxil fumarate [TDF] and/
or PEG-IFNa). RNA-Seq was performed on baseline biopsies and
revealed two immune signatures, immune high and immune
low. The immune high transcriptome resembles the known
PEG-IFNa response signature and includes elevated interferon
signaling pathways and increased intrahepatic lymphoid sig-
natures. RNA-Seq from the week 96 biopsies demonstrated
even lower intrahepatic immune cell levels and transcriptional
signatures. Multiplex immunofluorescence (mIF) demonstrated
that immune high samples had significantly higher levels of T
cells and B cells that accumulated into periportal lymphoid
aggregates. Finally, we demonstrate that peripheral ICAM-1 and
CXCL10 correlate with the immune high and immune low sig-
natures, indicating that these are potential biomarkers and may
help stratify patients based on immune microenvironment.

Materials and methods
Liver biopsy collection
Liver biopsies were obtained from treatment-naïve HBeAg-
positive and -negative patients enrolled in a phase IV clinical
trial of TDF ± PEG-IFNa (GS-US-174-0149).9 63 patients partici-
pated in voluntary liver biopsy donation including 56 formalin-
fixed paraffin-embedded (FFPE) and 67 fresh frozen liver bi-
opsies. Thirty-one samples had matched FFPE and fresh frozen
biopsies. Ten patients were biopsied longitudinally at baseline
and week 96. Patient samples analyzed were collected from 8
countries (US, Korea, Turkey, Hong Kong, Poland, Netherlands,
Greece and Germany). All patients signed an informed consent
form prior to screening and in accordance with local regulatory
and ethics committee requirements. The experimental protocol
in these trials was approved by Gilead Sciences and all local
regulatory agencies (see ClinicalTrials.gov: NCT01940471).

Transcriptomic analyses
Total RNA was isolated from all fresh frozen samples using the
Allprep kit (Qiagen) and RNA-Seq analysis was performed at
Expression Analysis – Q2 Solutions (Morrisville, NC). 54 of 67
samples met the quantity and quality standards for RNA-Seq.
Sequencing libraries were prepared using TruSeq Stranded To-
tal Gold with RiboZero and sequenced on an Illumina HiSeq with
2*150 bp reads. Reads were aligned to reference genome hg38
using STAR and quantified using protein coding gene annotations
from Gencode. Gene count data were converted to an RPKM
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matrix of all samples combined with flow-sorted gene expres-
sion data from Blueprint Epigenome Project to calculate cell type
enrichment scores using xCell for 43 cell types that may reside in
the liver.12 Baseline samples were grouped using unsupervised
hierarchical clustering of lymphoid cell xCell scores including the
following cell types: activated dendritic cells, CD4+ memory T
cells, CD8+ naïve T cells, CD8+ central memory T cells, T helper 1
cells and T helper 2 cells. Subsequent cell deconvolution analyses
were performed using EPIC.13,14 Single sample gene set enrich-
ment analysis (ssGSEA) scores were calculated using gene set
variation analysis for hallmark, canonical and immune pathways
from MSigDB v7.0.15-17 Statistical analyses for ssGSEA scores,
xCell scores, and log transformed gene expression were per-
formed using a moderated t-test.18
Immunohistochemistry
FFPE blocks were sectioned at 5 lm and mounted on charged
microscope slides for staining. Slides were stained with anti-
HBcAg (25-7, Gilead), anti-HBsAg (polyclonal, Novus Biologics
cat# NB100-62652), anti-PD-1 (NAT105, Abcam cat# ab52587),
or anti-PD-L1 (28-8, Abcam cat# ab205921) on the Ventana
Discovery Ultra using routine immunoperoxidase methods.
Stained slides were scanned on the Leica Aperio AT2 at 40x.
Quantitative morphometric analysis of whole slide images was
performed using Definiens Developer and Definiens Tissue
Studio.
Multiplex immunofluorescence
Liver biopsy slides were shipped to Neogenomics (Fort Myers,
FL). The MultiOmyxTM platform involves serial staining, imaging
and dye-inactivation of two antigens at a time, one on Cy3 and
another on Cy5 (Fig. S2).19 The least robust targets are visualized
first while the more robust targets are visualized last to limit the
effects of dye-inactivation. Slides were stained in the following
order: Round 1: anti-PD-L1 (73-10, Cell Signaling Technologies)
and anti-CD299 (EPR11211, Abcam), Round 2: anti-PanCK (AE-1/
AE-3, Biolegend) and anti-HBsAg (XTL17, Gilead), Round 3: anti-
CD8 (EP1150Y, Abcam) and anti-HBcAg (366-2, Gilead), Round 4:
anti-CD4 (EPR6855, Abcam) and anti-PD-1 (EH33, Cell Signaling
Technologies), Round 5: anti-CD3 (97707, Abcam) and anti-FoxP3
(326A/E7, Abcam), Round 6: anti-CD19 (LE-CD19, Dako) and anti-
Ki67 (MIB-1, Dako), Round 7: Anti-CD20 (L26, Dako) and anti-
CD68 (KP-1, Diagnostic Biosystems). Images were collected on
the GE InCell scanner at 20x. Quantitative morphometric image
analysis was performed both at Neogenomics using a proprietary
software platform, and at Gilead using Visiopharm.
Peripheral cytokine analysis
HBsAg, HBeAg, HBV DNA and ALT were collected during the GS-
US-174-0149 clinical trial.9 Patient plasma matched to each liver
biopsy was shipped to DDL Diagnostic Labs (Rijswijk, The
Netherlands) for quantitation of HBcrAg (Fujiribio, Lumipulse)
and HBV RNA (DDL Diagnostics).20

Human peripheral biomarkers were analyzed from serum at
Meso Scale Diagnostics (Gaithersburg, MD). sPD-1 and sPD-L1
were analyzed using the MSD R-plex platform. Human V-plex
Screening Service 1 panel is commercially available and consists
of 39 analytes.
2vol. 4 j 100388
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Fig. 1. Comparison of intrahepatic immune cell and pathway signatures across CHB liver biopsies. Gene expression patterns were analyzed by xCell
(lymphoids on x-axis) and unsupervised hierarchical clustering to define two groups called immune high and immune low. (A) List of the top differentially
expressed genes between immune high and immune low clusters. (B) Differentiated Hallmark pathways between immune high and immune low. (C) EPIC cell
deconvolution shows an increase of T-cell, B-cell, and monocyte signatures in immune high samples.13 Patient order is consistent in heatmaps A-C. ALT, alanine
aminotransferase; CHB, chronic HBV infection.
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Results
Identification of unique liver immune microenvironments in
treatment-naïve liver biopsies
We analyzed fresh frozen and FFPE liver biopsies from a sub-
study of the Gilead GS-US-174-0149 clinical trial. Patients were
enrolled based on elevated HBV DNA and ALT independent of
HBeAg status. Fifty-three liver biopsies were analyzed by RNA-
Seq: 41 samples from baseline and 12 samples from week 96,
including 7 longitudinal pairs. To characterize the liver immune
microenvironment, we used the deconvolution algorithm, xCell,
to estimate immune cell types infiltrating the liver of each
sample.21 Unsupervised hierarchical clustering of lymphoid xCell
scores resolved two unique liver immune microenvironments
within baseline samples that we classified as immune high and
immune low. No baseline clinical characteristics differentiated
these two clusters including age, race, HBV genotype, BMI or sex
(Table S1). To characterize the transcriptional changes between
immune high and immune low samples we highlight individual
genes (Fig. 1A), signaling pathways (Fig. 1B) and intrahepatic
immune cell signatures (Fig. 1C) that are the most differentiated
between these two groups. Differentially expressed gene (DEG)
analysis demonstrated that the top DEGs are mostly immune
genes that are upregulated in immune high vs. immune low
samples (Fig. 1A). Next, we analyzed pathways that are differ-
entially regulated between immune high and immune low bi-
opsies (Fig. 1B). A variety of immune pathways were upregulated
in immune high samples, including those related to interferon
and other inflammatory signaling pathways. In contrast, specific
metabolic pathways were downregulated in immune high sam-
ples compared to immune low samples. This likely represents a
lower relative abundance of hepatocyte gene signatures as a
proportion of the total sample transcriptome. We quantified cell
type estimates using an alternative algorithm, EPIC, to determine
the relative composition of immune cell types in each sample
(Fig. 1C).13,14 Consistent with the pathway analysis, we observed
an increase in cell signatures representing T cells, B cells and
monocytes and a decrease in hepatocyte signatures in the im-
mune high samples. Surprisingly, these immune signatures did
not correlate with serum HBV DNA or HBsAg levels, HBeAg status
or ALT levels (Fig. S1).

Our biopsy collection also included 12 samples post-
treatment (week 96). Patients were treated for the first 48
weeks with a combination of TDF ± PEG-IFNa. During treatment-
free follow-up, if patients experienced HBV DNA rebound to an
established threshold or had an ALT flare, then patients were re-
treated with TDF alone for the remainder of the trial. While the
week 96 samples do not represent the end-of-treatment per se,
all samples in our collection came from patients with normalized
ALT and 8 of 12 achieved full viral suppression. Of these 12 pa-
tients, 7 of them had matching baseline biopsies such that we
could assay the liver immune microenvironment longitudinally
(Fig. 2). Changes in gene expression were calculated between
baseline and week 96 and plotted vs. their adjusted p values
(Fig. 2A). Most DEGs were significantly downregulated at week
96 and consisted of immune genes. Pathway analysis confirmed
that many of the immune pathways were downregulated at
week 96 (Fig. 2B). We used EPIC cell deconvolution to monitor
the reduction of a variety of immune cell types following treat-
ment. Intrahepatic CD4 T-cell and B-cell signatures were signif-
icantly reduced in treated samples, and likewise, there was an
increase in hepatocytes (Fig. 2C).
JHEP Reports 2022
Multiplex immunofluorescence reveals the architecture of the
liver immune microenvironment
The transcriptome indicated that the immune high samples had
significantly increased numbers of T cells, B cells and macro-
phages. To determine the localization of these immune cells,
matched FFPE biopsies were imaged using mIF and subjected to
multiple rounds of staining using the MultiOmyxTM platform
(Fig. S2).19 In line with the transcriptional analysis, image
quantitation demonstrated that immune high biopsies had
greater numbers of intrahepatic T cells, B cells and macrophages
(Fig. 3A). Immune high liver biopsies had clusters of immune
cells in and near portal regions (Fig. 3B). These periportal
lymphoid aggregates consisted of CD4 T cells, CD8 T cells, B cells
and CD68-positive macrophages. In addition, there was an in-
crease in CD68-positive Kupffer cells and macrophages in the
liver sinusoids. These aggregates of lymphocytes in the liver
portal tracts appear similar in structure to tertiary lymphoid
structures (TLS) observed in many other tissues and tumors.
Indeed, immune high patients do appear to have elevated
expression of TLS-associated gene signatures including T follic-
ular helper cell signatures and TLS cytokines (Fig. S3).22 In
addition, we quantified T-cell receptor (TCR) and B-cell receptor
(BCR) clonality using RNA-Seq (Fig. S3C). Although there are
more intrahepatic T and B cells in immune high samples, there
does not appear to be enrichment of specific T and B cell clones,
and instead this likely represents general recruitment of T and B
cells from the periphery. Week 96 samples were also imaged
using mIF. These images confirmed the transcriptome findings,
demonstrating that treated liver biopsies have lower numbers of
intrahepatic T cells, B cells and macrophages than baseline pa-
tient livers (Fig. 3).

Immune high samples demonstrate elevated expression of
immune checkpoints
Immune checkpoint blockade improves T-cell function and leads
to positive outcomes for cancer patients and is now being
explored for HBV cure.23,24 We examined the expression of a
variety of checkpoint genes in our liver biopsy collection and
found that immune high patients had significantly increased
expression of PDCD1 (PD-1), CD274 (PD-L1), CTLA4, TIGIT and
HAVCR2 (TIM3) (Fig. 4A). Immune high liver biopsies showed
significant expression of both PD-1 and PD-L1 as detected by
immunohistochemistry (IHC), largely driven by half of the sam-
ples with larger than 1% marker area expression (Fig. 4B). In
contrast, immune low and week 96 biopsies demonstrated low
or undetectable PD-1 and PD-L1 protein expression by IHC
(Fig. 4B). In the 8 longitudinal biopsy pairs, there was a signifi-
cant decrease in PD-1 staining at week 96 compared to baseline
biopsies (Fig. S4). In addition, two patients with elevated PD-L1
staining at baseline displayed a sharp decrease in PD-L1 stain-
ing at week 96 (0.7% and 0.93% marker area decrease at week 96)
(Fig. S4).

The PD-L1 staining pattern observed by IHC appeared to
localize mostly to liver sinusoids and Kupffer cells, and not
directly on hepatocytes. To confirm which cell types expressed
PD-L1 in the liver of patients with CHB, we developed a 4-plex
fluorescence assay. Our panel consisted of pan cytokeratin
(PanCK) as a marker for hepatocytes, CD299 as a marker for liver
sinusoidal endothelial cells, CD68 as a marker for Kupffer cells
and PD-L1. Colocalization analysis on images acquired by
confocal microscopy determined a strong correlation between
4vol. 4 j 100388
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PD-L1 with both Kupffer cells and liver sinusoidal endothelial
cells and an inverse correlation with hepatocytes (Fig. S4).

Viral antigen burden is heterogeneous and does not correlate
with the liver immune microenvironment
Next, we determined if there was a correlation between viral
load and immune activity in the liver. Surprisingly, none of the
viral biomarkers (HBV DNA, HBV RNA, HBcrAg, HBsAg or
JHEP Reports 2022
HBeAg) correlated with liver immune microenvironment
(Fig. 5A). We have also observed a lack of correlation between
HBsAg and the immune microenvironment in previous
studies.25 However, ALT was lower in the immune low patients
and the p value (p = 0.054) neared statistical significance
(Fig. 5A). Analysis of the HBcAg and HBsAg burden in the liver
demonstrated significant heterogeneity in the number of pos-
itive hepatocytes (Fig. S5). HBcAg ranged from undetectable in
7vol. 4 j 100388
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some samples to a high of 87% HBcAg-positive hepatocytes
(mean is 14.8% for HBeAg+ and 0.52% for HBeAg-). HBsAg
ranged from 2% to 56% HBsAg-positive hepatocytes (mean is
25.44% for HBeAg+ and 20.24% for HBeAg-)(Fig. S5). Correlation
analyses confirmed that HBcAg staining correlated with pe-
ripheral viral antigens more strongly than HBsAg staining,
likely due to the presence of HBsAg+/HBcAg- hepatocytes with
HBV DNA integrations.26 Image overlays consisting of both
lymphocytes (CD3 and CD20 merged into one channel, white)
and viral antigens (HBcAg in red and HBsAg in green) demon-
strate that periportal lymphoid aggregates appear in patients
irrespective of viral burden (Fig. 5B, i vs. iii). Additionally, two
liver biopsies with similarly high antigen burden had markedly
different levels of periportal lymphoid infiltrate (Fig. 5B, i vs. ii
and iii vs. iv). In addition, single-plex IHC was performed on a
larger cohort of samples and demonstrated a high heteroge-
neity in viral antigen burden in the liver and no correlation to
the liver immune microenvironment (Fig. S5).
ICAM-1 and CXCL10 levels in the periphery correlate with liver
immune gene signatures
Since the heterogeneity of the liver immune microenvironment
did not correlate with established viral biomarkers, we per-
formed a targeted screen for peripheral biomarkers of liver
inflammation. Our screen consisted of 41 host cytokines and
chemokines including 39 analytes in the MSD Human V-plex
Screening Panel 1 biomarker set as well as soluble PD-1 (sPD-1)
and soluble PD-L1 (sPD-L1). The level of each serum biomarker
was correlated to its corresponding liver gene expression
(Fig. 6A). We then determined if biomarkers with strong corre-
lation to their intrahepatic expression levels could identify the
immune high and immune low populations. This analysis yiel-
ded two chemokines: ICAM-1 and CXCL10 (Fig. 6B). Intrahepatic
gene expression for CXCL10 (p <0.0001) and ICAM-1 (p = 0.0004)
was significantly higher in immune high vs. immune low pa-
tients. In addition, both CXCL10 (p = 0.0001) and ICAM-1 (p
<0.0001) liver gene expression correlated to the peripheral
chemokine values. Next, we correlated all the peripheral bio-
markers with the EPIC immune cell types and hallmark immune
pathways and found that CXCL10 correlates with intrahepatic
interferon signaling pathways (Fig. 6C and D). In addition, sPD-1
levels correlated with intrahepatic T-cell signatures (Fig. 6C).
sPD-1 also correlated with intrahepatic PDCD1 gene expression
but did not reach statistical significance with immune high and
immune low sample sets.

As this liver biopsy collection was associated with a clinical
trial, we integrated clinical outcomes to the liver immune
microenvironment analysis. HBV DNA, HBsAg and ALT were
plotted from 33 patients who completed treatment from base-
line to week 96 and divided by immune high and immune
clusters (Fig. 7). Eight patients from our collection experienced
HBeAg loss (Fig. 7, orange lines) including 4 immune high and 4
immune low patients. Unfortunately, no patients from which we
have biopsies experienced HBsAg loss. Although we did not
observe differentiated outcomes between immune high and
immune low clusters, this analysis is confounded by the fact that
patients were evenly randomized across 4 different treatment
arms and most receive TDF. We would not anticipate that TDF
treatment response would be influenced by the liver immune
microenvironment.
JHEP Reports 2022
Discussion
We examined the intrahepatic immune microenvironment in
biopsies collected through voluntary donation within the GS-US-
174-0149 clinical trial.9 Biopsies were predominantly from
baseline treatment-naïve patients, although a small number of
biopsies were obtained post-treatment. Using hierarchical un-
supervised clustering of the transcriptome, two different liver
immune microenvironments were identified. Immune high pa-
tients had elevated immune pathways including interferon
signaling pathways, and elevated immune cell signatures corre-
sponding to B cells, T cells and macrophages (Fig. 1) as opposed
to immune low patients. Additionally, these patients had peri-
portal lymphoid aggregates, as shown by mIF. Post-treatment
samples demonstrated even further suppressed immune path-
ways and cell type signatures compared to immune low samples
(Fig. 2). Surprisingly, neither liver nor peripheral viral burden
correlated with the immune microenvironment at baseline
(Fig. 5). However, suppression of HBV DNA did correlate with
decreased liver inflammation.

Immune high and immune low samples were assessed by mIF
to determine the location of the intrahepatic immune cells. We
observed CD3+, CD4+, CD8+, CD20+ and CD68+ cells aggregating
in periportal regions of immune high samples (Fig. 3). Although
we did not quantify T follicular helper cells or follicular dendritic
cells, the organization of these immune cells in tissue, outside of
lymph nodes, resembles TLS. In support of this observation, we
noticed an increase in gene signatures associated with TLS in
immune high samples (Fig. S3).22,27-30 We have previously
observed similar follicular structures assembling in CHB chim-
panzees treated with the TLR7 agonist, GS-9620, and formation
of these structures was temporally correlated with antiviral
response to treatment.31 The immune high samples trended to-
wards elevated ALT, suggesting that the intrahepatic immune
aggregates were leading to hepatocyte killing. Whether this is
non-specific or HBV-specific hepatocyte death is unknown.
However, TCR and BCR clonality was assessed using RNA-Seq and
did not suggest that the infiltrating T and B cells were enriched
for any specific clonotypes (Fig. S3C). Studies have shown that
non-specific intrahepatic T cells are a driver of liver inflamma-
tion, and that patients without liver inflammation have a higher
proportion of HBV-specific T cells and a lower intrahepatic viral
burden.32,33 This further suggests that the intrahepatic T cells
observed here are unlikely to represent a largely HBV-specific
population. In addition to traditional T-cell subsets, we were
also able to use Ki67 and FOXP3 staining to determine that im-
mune high samples had increased numbers of Tregs and prolif-
erating CD4 and CD8 T-cell subsets (Fig. 3A). We were unable to
differentiate whether this reflects a specific change in intra-
hepatic immune cell subsets or if this is reflective of the overall
increase in total immune cells.

The immune high samples demonstrated a significantly
higher expression level for several key immune checkpoints, as
well as elevated PD-1 and PD-L1 staining by IHC (Fig. 4). Elevated
expression of checkpoint receptors and ligands during chronic
infection is typically associated with T-cell exhaustion and
dysfunctional immune responses. Suppression of checkpoint
inhibition in cancer has demonstrated significant clinical out-
comes, and this is more apparent in “hot” tumors with elevated
immune activity.23,24 One study, investigating nivolumab (anti-
PD-1), demonstrated safety and modest efficacy in patients with
9vol. 4 j 100388
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Fig. 7. Clinical outcomes analysis for immune high vs. immune low patients. Clinical parameters (A) HBsAg, (B) ALT, (C) HBV DNA were plotted over time
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CHB, as indicated by HBsAg declines from baseline.23 However,
this study only enrolled nucleos(t)ide analogue-suppressed in-
dividuals. Our data demonstrate that PD-1 expression is sup-
pressed in this patient cohort and may limit target engagement
and T-cell activation. Nucleos(t)ide analogue-treated patients
with CHB may mimic “cold” tumors which correlate with
decreased efficacy of checkpoint inhibition. Although treatment
of viremic patients with elevated immune checkpoint expression
may lead to the highest target engagement, balancing efficacy
with safety in these studies will be imperative as that patient
population will likely have elevated ALT at baseline (Fig. 5 and
Table S1).

HBV liver burden was determined using both mIF and single-
plex IHC analyses and was found to be highly heterogeneous
among patients. HBcAg was expressed at higher levels in HBeAg-
positive samples compared to HBeAg-negative samples, however
no such relationship was observed for HBsAg staining. HBeAg-
negative samples contained many cells that were HBsAg-
positive, but HBcAg-negative, suggesting that these cells may
be expressing HBsAg from integrated HBV. We observed no
correlation between the viral load, as measured in the liver or
the periphery, to the immune microenvironment (Fig. 4 and
Fig. S5). As HBsAg has been demonstrated to regulate the im-
mune response we anticipated that we may observe an inverse
JHEP Reports 2022
correlation between HBsAg burden and intrahepatic inflamma-
tion; however, this was not observed.34 We have also observed
this lack of correlation between HBsAg and intrahepatic immune
signatures in other sample collections.25 Immune tolerant pa-
tients are characterized as having high levels of HBV DNA and
HBsAg in serum and a high burden of infected hepatocytes, yet
have limited intrahepatic immune activity, suggesting that the
presence of virus alone is not sufficient to activate an immune
response. However, treatment and the corresponding decrease in
HBV DNA levels did correlate with ALT reduction and a reduction
in liver immune cells suggesting an underlying relationship. The
fact that elevated levels of HBV DNA can be recognized by
macrophages may represent part of the link between nucleos(t)
ide analogue suppression and ALT normalization.35

We performed a targeted biomarker screen to correlate pe-
ripheral chemokines and cytokines to the liver immune micro-
environment. We identified serum CXCL10 and ICAM-1 as
peripheral biomarkers that correlated with their liver gene
expression and differentiated immune high and immune low
microenvironments (Fig. 6). CXCL10 also correlated with intra-
hepatic immune cell signatures for T cells, B cells and monocytes
as well as the interferon-a and interferon-c signaling pathways.
Elevated baseline CXCL10 has been demonstrated to correlate
with response to PEG-IFNa.11 These data further characterize this
11vol. 4 j 100388
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relationship and imply a PEG-IFNa response mechanism that
relies on preexisting intrahepatic immune cells – stimulation of
these immune cells may drive HBV clearance. The exact immu-
nological mechanism underlying response still requires further
clarification. The periportal lymphoid aggregate structures that
we observed may function similar to TLS found in other tissues.22

We are unsure if T-cell and B-cell priming is occurring within
these structures. Future mIF studies that incorporate markers for
T follicular helper cells and follicular dendritic cells may help
uncover the function of these lymphoid aggregates. At baseline,
we do not see evidence for TCR and BCR clone enrichment that
would indicate intrahepatic expansion (Fig. S3). However, one
hypothesis is that treatment with PEG-IFNa, or other immune
JHEP Reports 2022
modulators, may drive expansion of HBV-specific T and B cells
from within these structures and drive HBV cure.

As HBV cure strategies continue to explore immune modu-
lator therapy, further characterization of the liver immune
microenvironment, its heterogeneity, how it is affected by
nucleos(t)ide analogue treatment, and the continued identifica-
tion of peripheral biomarkers will be critical to ensure that the
most suitable patients are enrolled in these early studies. These
data indicate that nucleotide analogue treatment decreases the
level of intrahepatic immune activity, including downregulation
of immune checkpoints. The intrahepatic immune microenvi-
ronment is likely to have implications for both the safety and
efficacy of many of these future investigational medicines.
Abbreviations
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