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Abstract: The inducible Mar phenotype of Escherichia coli is associated with increased 

tolerance to multiple hydrophobic antibiotics as well as some highly hydrophobic organic 

solvents such as cyclohexane, mediated mainly through the AcrAB/TolC efflux system. The 

influence of water miscible alcohols ethanol and 1-propanol on a Mar constitutive mutant 

and a mar deletion mutant of E. coli K-12, as well as the corresponding strains carrying the 

additional acrAB deletion, was investigated. In contrast to hydrophobic solvents, all strains 

were killed in exponential phase by 1-propanol and ethanol at rates comparable to the parent 

strain. Thus, the Mar phenotype does not protect E. coli from killing by these more polar 

solvents. Surprisingly, AcrAB does not contribute to an increased alcohol tolerance. In 

addition, sodium salicylate, at concentrations known to induce the mar operon, was unable 

to increase 1-propanol or ethanol tolerance. Rather, the toxicity of both solvents was 

increased in the presence of sodium salicylate. Collectively, the results imply that the 

resilience of E. coli to water miscible alcohols, in contrast to more hydrophobic solvents, 

does not depend upon the AcrAB/TolC efflux system, and suggests a lower limit for 

substrate molecular size and functionality. Implications for the application of 

microbiological systems in environments containing high contents of water miscible organic 

solvents, e.g., phage display screening, are discussed. 
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1. Introduction 

Many, but not all, organic solvents are toxic to microorganisms. The toxicity of organic solvents in 

two-phase water-solvent systems correlates inversely with the log Pow (the partition coefficient 

between n-octanol and water) of the solvent; in the range between 1 and 5. The ability of solvent 

molecules to partition into the water phase and into the cell membrane(s) is of great importance for 

toxicity as highly non-polar solvents (log Pow above 5) show no adverse effect on the metabolic 

activity in several bacterial species [1]. For readily water-miscible organic solvents such as short-chain 

alcohols (e.g., methanol, ethanol and 1-propanol), toxicity correlates directly with  

hydrophobicity [2,3].  

The cytoplasmic membrane is the main site of action for organic solvents. Using  

1,2,3,4-dihydronaphthalene (tetralin), Sikkema and coworkers [4] demonstrated a decrease in 

membrane potential (p), chiefly dependent on a lowered internal pH and transmembrane pH, in 

cytochrome C oxidase-reconstituted liposomes. This effect was ascribed to an increased H+-

permeability of the membrane, and was concomitant with growth arrest in similarly treated sensitive 

bacteria. Furthermore, cyclic hydrocarbons were shown to dissipate both the pH gradient and the 

electrochemical potential [5]. Ethanol has been shown to affect the proton motive force [6], and to 

increase leakage of metabolites from cells [7]. 

Inducible multi-antibiotic-, disinfectant- and oxidative stress agent-tolerance regulons have been 

identified in several bacterial species [8–10]. The E. coli mar operon contains a promotor under 

negative control of the MarR repressor, which is co-transcribed with the marA gene [11]. This gene 

encodes a transcriptional activator affecting the expression of some 60 chromosomal genes [12] 

including the up-regulation of the AcrAB plasma membrane efflux transporter and TolC outer 

membrane channel. As a result, structurally unrelated hydrophobic or amhiphilic compounds such as 

-lactams, tetracycline, chloramphenicol, fluoroquinolones [13,14] as well as bile salts [15] and some 

disinfectants [16,17] may be pumped across both membranes. Null mutations in marR cause the 

overexpression of marA and constitutive multi-antibiotic tolerance (the Mar phenotype). In addition, 

the mar operon is inducible in wild-type strains, e.g., by low levels of tetracycline or chloramphenicol, 

but not ampicillin [18]. In the absence of the AcrAB pump, marR mutations fail to display the Mar 

phenotype [19]. 

Salicylate has been shown to induce the mar operon by directly binding to, and inactivating MarR 

[20,21]. The redundancy in hydrophobic substance-extruding pumps is evident in that salicylate 

weakly increases antibiotic tolerance (excluding aminoglycosides) in marA-deleted E. coli [22]. 

Indeed, salicylate has been shown to relieve emrRAB repression by binding to EmrR [23]. 

The previous isolation of cyclohexane-tolerant E. coli K-12 mutants that showed multi-antibiotic 

tolerance [24] raised the question as to whether there was a common denominator between solvent- 

and antibiotic tolerance in E. coli. Indeed, one such mutant proved to be marR [25], suggesting a 
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common stress-dependent resistance mechanism. Clinical isolates of E. coli exhibiting fluoroquinolone 

resistance, have shown an increased proportion of cyclohexane-tolerant strains [26]. Moreover, 

plasmid-mediated overexpression of marA has been shown to increase tolerance to both cyclohexane 

and hydrophobic antibiotics [25]. The objective of the present study was to establish if Mar activation 

could also increase tolerance to water-miscible solvents (ethanol, 1-propanol). 

2. Results and Discussion 

2.1. Exponential-phase Killing by Ethanol or 1-Propanol Is Unaffected by the mar Phenotype 

At 10.0% (w/w) and 4.05% (w/w), respectively, ethanol and 1-propanol killed the mar as well as 

the parent E. coli strains exponentially, with single-hit kinetics (Figure 1). Despite the rapid loss of 

viability, optical density of the cultures increased slightly during the first 30–60 min after alcohol 

addition (not shown), which is indicative of a growth in the size of viable bacteria, with no apparent 

osmotic lysis.  

No statistically significant differences between any strains in 30-, 60- or 90-minute survival 

fractions could be detected, neither in the ethanol-treated (Figure 1a), nor in the 1-propanol-treated 

(Figure 1b) cultures. The Mar phenotype expressed in E. coli AG112 does not protect this strain 

against ethanol- or 1-propanol-mediated killing, compared to the parent strain. The deletion of marA in 

E. coli AG100/Kan does not render this strain more susceptible to ethanol or 1-propanol, thus mar 

induction may not significantly contribute to tolerance towards these alcohols. 

Figure 1. Relative survival of E. coli AG100 (black diamonds), AG112 marR (open 

squares) and AG100/Kan Δ(marCORAB) (open circles) after exposure to (a) 10.0% (w/w) 

ethanol, or (b) 4.05% (w/w) 1-propanol. Cells were cultured in modified LB (see Materials 

and Methods section) until late exponential phase before the addition of solvent and further 

incubation. Error bars represent 95% confidence intervals based upon 8 replicates. 

 

Growing E. coli are generally more solvent-sensitive than non-growing cells [2], therefore cultures 

in mid- to late exponential phase were chosen for subsequent solvent addition. In the stationary phase, 

solvent tolerance mechanisms other than Mar would take effect. Stationary-phase-dependent 
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expression of the alternative sigma factor RpoS up-regulates uspB, which is required for stationary-

phase resistance to ethanol [30]. 

Growth is but one indicator of the physiological status of bacterial cells. E. coli generation times 

increase in the presence of low concentrations of ethanol [31], presumably through the diminished 

cellular energy status. At 5% (v/v), ethanol causes growth arrest after one mass doubling with 

incomplete septation, also indicating an effect on cell wall synthesis [31]. This growth arrest could be 

alleviated by dilution with fresh medium. In contrast, the ethanol- and 1-propanol effect observed here 

is irreversible, killing the cells. In minimal medium, 5% (v/v) of ethanol has been shown to cause 

cellular lysis in the absence, but not in the presence, of 0.1 M NaCl. Peptidoglycan cross-linking was 

also shown to decrease [2]. It was proposed that peptidoglycan cross-linking enzymes may be inhibited 

because ethanol generally weakens hydrophobic interactions within the periplasm as well as the 

membrane interior, and that this may be overcome by NaCl, as well as other antichaotropic salts. 

Similar lysis has been reported in E. coli grown in Luria-Bertani broth containing up to 5% (v/v) of 

ethanol [32]. That no gross lysis ensued in our case may be surprising, especially since NaCl was 

omitted from the growth medium. However, actively growing cells, simultaneously synthesizing 

poorly cross-linked peptidoglycan and displaying autolysin activity, would be expected to readily lyse. 

Rapid cellular inactivation due to other mechanisms, at the relatively high alcohol concentrations used 

here may hence mask any impairment of cell wall synthesis, or autolysins may simply be just as 

rapidly inhibited.  

2.2. Salicylate Increases the Killing Rate of Ethanol and 1-Propanol, Irrespective of mar Induction 

E. coli AG100/Kan is a mar deletion mutant lacking most of the mar operon including the mar 

repressor and Mar activator genes. Salicylate can elicit no MarA-dependent solvent tolerance in this 

strain, but hypothetically so in the parent strain AG100 as cyclohexane tolerance was earlier shown to 

increase by salicylate addition (or marA overexpression) in E. coli W3110; not carrying any mar 

mutation [25]. Addition of 10.0% ethanol to E. coli AG100 and AG100/Kan grown in the presence of 

2 mM sodium salicylate results in an increased killing rate, compared to AG100 grown without 

salicylate (Figure 2a). Similarly, salicylate increases the killing rate of 4.05% 1-propanol in both 

strains (Figure 2b). The 60- and 90-minute survival fractions of salicylate/solvent-exposed AG100 as 

well as AG100/Kan differ significantly from non-salicylate treated AG100, for both solvents. In 

contrast, no statistically significant differences between AG100 and AG100/Kan survival rates in the 

presence of salicylate can be shown. Therefore, salicylate (2 mM) significantly enhances ethanol- and 

1-propanol mediated killing of E. coli K-12, irrespective of any salicylate-mediated Mar induction. 

This further strenghtens our view that the Mar phenotype cannot protect E. coli against lower primary 

alcohol (ethanol, 1-propanol) mediated killing.  

Interestingly, synergism between a weak acid and ethanol in killing of E. coli has been described 

before [33]. 50 mM of lactate in combination with 5% (v/v) ethanol enhanced killing of E. coli 

O157:H7 about four log units in the exponential phase (first hour after addition), compared to ethanol 

only. It was also found that both lactate and ethanol independently lowered the cytoplasmic pH of the 

cells. We have not investigated cellular pH, but salicylate at 2.5 mM, close to the concentration used 

here, has been shown to increase bacterial sensitivity towards aminoglycosides [34,35]. This has been 
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proposed to partly result from intracellular deprotonation following salicylic acid diffusion across the 

cytoplasmic membrane [36,37]. 

Figure 2. Relative survival of E. coli AG100 (open squares) and AG100/Kan 

marCORAB) (open circles) grown in the presence of sodium salicylate, and E. coli 

AG100 grown in LB without salicylate (black diamonds) after subsequent exposure to (a) 

10.0% (w/w) ethanol, or (b) 4.05% (w/w) 1-propanol. Cells were cultured in modified LB 

(see Materials and Methods section) containing 2 mM sodium salicylate until late 

exponential phase before the addition of solvent and further incubation. Error bars 

represent 95% confidence intervals based upon 8 replicates. 

 
2.3. Deletion of acrAB Does Not Increase Sensitivity to Ethanol or 1-Propanol 

Ma and coworkers [14] have described the induction of acrAB transcription by 4% ethanol, even in 

a mar strain; thus independently of the Mar response. In this study they did establish whether ethanol 

was a substrate of the AcrAB pump. AcrAB and TolC are both necessary to extrude solvents with a 

Pow greater than 3.4 [38]. We measured the killing rate of ethanol and 1-propanol in acrAB) as well 

as acrAB) marR strains (Figure 3). Again, no statistically significant differences between AG100, 

AG100A and AG102/K survival rates after ethanol or 1-propanol exposure could be shown. This 

suggests that the AcrAB efflux pump cannot pump ethanol or 1-propanol across the membrane. 

In summary, the fact that salicylate similarly enhanced ethanol- and 1-propanol-mediated killing, 

and that a lower concentration of the more hydrophobic 1-propanol was required to reach a 

comparable killing rate, suggest a common, synergistic relationship between salicylate and the 

alcohols, as well as a common, general killing mechanism presumably based on the partitioning of 

solvent into the plasma membrane. Neither the Mar phenotype, a well-characterised multi-drug and 

organic solvent tolerance phenotype, nor any stress-dependent induction of Mar or its central 

component AcrAB could alleviate the effect of ethanol- and 1-propanol. Collectively, these results 

establish a lower limit in terms of size and functionality for substrates for the AcrAB pump, 

information which should prove valuable for understanding resistance mechanisms, and for the use of 

microorganisms in biotechnological processes involving organic solvents [39,40].  
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Figure 3. Relative survival of E. coli AG100 (black diamonds), AG100A acrAB) (open 

squares) and AG102K marR acrAB) (open circles) after exposure to a) 10.0% (w/w) 

ethanol, or b) 4.05% (w/w) 1-propanol. Cells were cultured in modified LB (see Materials 

and Methods section) until late exponential phase before the addition of solvent and further 

incubation. Error bars represent 95% confidence intervals based upon 8 replicates. 

 

3. Experimental Section 

3.1. Bacterial Strains and Media 

E. coli AG100 (K-12 argE3 thi-1 rpsL xyl mtl (gal-uvrB) supE44) [27], AG112 (marR 5-bp 

deletion) [28], AG100A ((acrAB)::Kan) [19], AG102K (marR(acrAB)::Kan) [19] and AG100/Kan 

((marCORAB)::Kan) [29] were all kindly donated by Dr. S. B. Levy, Center for Adaptation Genetics 

and Drug Resistance, Tufts University School of Medicine, Boston MA, USA. All strains were 

maintained on Luria-Bertani (LB) Agar (10 g Tryptone (Merck), 5 g Yeast extract (Merck), 5 g NaCl, 

12 g agar (Difco) and 10 mL 10% (w/v) D-glucose, separately autoclaved l−1); and where appropriate 

supplemented with 12.5 g kanamycin mL−1. 

3.2. Solvent Killing Assay 

Overnight cultures of E. coli in modified LB Broth (10 g Tryptone (Merck), 5 g Yeast extract 

(Merck) and 10 mL 10% (w/v) D-glucose, separately autoclaved l−1) were re-inoculated (1:100) into 

the same medium with or without sodium salicylate (2 mM) and shaken vigorously at 37 C. In mid- to 

late exponential phase (≈5  108 cfu mL−1; 3–4 h), 1-propanol (4.05%, w/w) or ethanol (10.0%, w/w) 

was added. Shaking was continued at 37 C with samples being removed every 30 min for subsequent 

dilution in cold Dil (1 g Nutrient Broth (Merck), 5 g NaCl L−1) before plating on LB Agar. Plates were 

incubated overnight at 37 C for the determination of viable counts. Survival at each time point was 

calculated as fractions of the viable count at the time of solvent addition. Data were statistically treated 

using the unpaired t-test. Optical density of liquid cultures was measured at 635 nm using an Aquanal-

plus Spectro™ water analyser (Riedel-de-Haën, Germany).  
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4. Conclusions 

In this study we have investigated the influence of small water miscible alcohols ethanol and  

1-propanol on a Mar constitutive mutant and a mar deletion mutant of E. coli K-12, as well as the 

corresponding strains carrying the additional acrAB deletion. In contrast to hydrophobic solvents, all 

strains were killed in exponential phase by 1-propanol and ethanol at rates comparable to the parent 

strain. Although the inducible Mar phenotype of Escherichia coli is associated with increased 

tolerance to multiple hydrophobic antibiotics as well as some highly hydrophobic organic solvents 

such as cyclohexane, mediated mainly through the AcrAB/TolC efflux system, the Mar phenotype 

does not appear to protect E. coli from killing by these more polar solvents. Interestingly, sodium 

salicylate, at concentrations known to induce the mar operon, was unable to increase 1-propanol or 

ethanol tolerance. Rather, the toxicity of both solvents was increased in the presence of sodium 

salicylate. Collectively, the results imply that the resilience of E. coli to water miscible alcohols, in 

contrast to more hydrophobic solvents, does not depend upon the AcrAB/TolC efflux system. 

Importantly, these results help define the structural limits, in terms of molecular size and functionality, 

necessary for AcrAB/TolC efflux system substrates.  

Furthermore, the inherent stability of microbiological systems, both phage [41] and host cells, 

towards media containing high contents of organic solvents is of importance when using phage display 

strategies for screening for recognition motifs selective for relatively hydrophobic targets of non-

biological origin [42]. Moreover, the establishment of phage display protocols suitable for use in 

media of low dielectricity [43], requires host cell systems capable of withstanding solvent-induced 

stress. Again, the results presented should assist in the development of such protocols. 
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