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Abstract: Trees have a distinctive and generally long juvenile period during which vegetative growth
rate is rapid and floral organs do not differentiate. Among trees, the juvenile period can range from
1 year to 15–20 years, although with some forest tree species, it can be longer. Vegetative propagation
of trees is usually much easier during the juvenile phase than with mature phase materials. Therefore,
reversal of maturity is often necessary in order to obtain materials in which rooting ability has been
restored. Micrografting has been developed for trees to address reinvigoration/rejuvenation of elite
selections to facilitate vegetative propagation. Generally, shoots obtained after serial grafting have
increased rooting competence and develop juvenile traits; in some cases, graft-derived shoots show
enhanced in vitro proliferation. Recent advances in graft signaling have shown that several factors,
e.g., plant hormones, proteins, and different types of RNA, could be responsible for changes in the
scion. The focus of this review includes (1) a discussion of the differences between the juvenile and
mature growth phases in trees, (2) successful restoration of juvenile traits through micrografting, and
(3) the nature of the different signals passing through the graft union.

Keywords: reinvigoration; rejuvenation; in vitro grafting; rooting capacity; woody plants; long
distance signaling

1. Introduction

The life cycle of trees can be divided into four distinct phases: embryonic, juvenile,
transitional, and mature [1]. In the embryonic phase a mature embryo is formed within
the seed which can be either orthodox or recalcitrant. The juvenile phase occurs after seed
germination and is characterized by an indeterminate growth type due to the proximity of
the root system and the reduced plant size [2]. During the transitional phase (vegetative
transition), gradual changes in morphology, including growth habit and progressive acqui-
sition of reproductive ability, takes place. Concurrently, juvenile and adult cells are present,
and these changes are associated with “ontogenetic maturation” or phase change (transi-
tion from juvenile to adult stage in plants) [3]. Reproductive structures can be observed
following application of inductive treatments, but plants cannot flower under normal
conditions [4,5]. Cuttings or in vitro explants demonstrate a general decline of regenerative
ability with increasing age of the mother plant [5]. The mature phase culminates with repro-
ductive maturation, whereas growth rate declines and regenerative ability is progressively
lost [5]. Trees require several years to reach maturity, ca. one year for the woody vines Vitis
spp., 2–8 for Citrus and Prunus spp., 15–20 for Acer pseudoplatanus and Fraxinus excelsior and
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up to 40 years for Fagus sylvatica [5]. There occur age-related postmaturation morphological
and physiological changes that are linked to increased shoot size resulting in decreased
vigor, also known as physiological aging [5]. However, according to Greenwood et al. [2]
the developmental decline in height could be due to a change in growth habit with aging
rather than the result of a general loss of vigor. Postmaturation changes are not as drastic
as in the juvenile–mature transition [6] and can be reversed following successive pruning
or grafting onto vigorous rootstocks among other treatments [2,5,7]; afterwards, a reinvigo-
rated (with increased vigor) mother plant is thereby obtained. Similarly, changes related
to vegetative maturation are also reversible, although traits do not all behave in a similar
manner and do not show the same degree of reversion [8,9]. Reversion to the juvenile stage
(rejuvenation) has generally been gauged on the basis of plant morphology rather than by
physiological and/or molecular markers. This has made it difficult to differentiate whether
reinvigoration (reversion of physiological aging) or rejuvenation (reversion of ontogenetic
aging) has been achieved [1,5]. Restoration of a single trait such as rooting ability or a
temporary increased vigor, is not an indication that long term rejuvenation, which would
include increased growth rate, will also occur [1,5,8]. It is widely accepted that reversion of
physiological aging is a prerequisite for rejuvenation [5]. There can also be morphological
and physiological changes occurring in shoot appearance due to effects of environmental
factors (light, temperature, etc.) which sometimes resemble those occurring in vegetative
transition; however, it is not clear whether they share regulatory mechanisms [3].

Differences occur between juvenile and adult materials with respect to hormonal
responses [10]; juvenile tissues show a higher hormone sensitivity [6], higher endogenous
auxin level [11], or indole-3-acetic acid/abscisic acid (IAA/ABA) ratio [12] while Z-type
cytokinins (CKs) have been shown to increase with maturation, showing accumulation
at the postflowering stage [13]. Appearance of the J16 membrane-associated protein [14],
accumulation of oxygen evolving enhancer protein 2 (OEE2) [15], and appearance of specific
restricted fragments of mtDNA [16] have also been found in juvenile in contrast with
mature tissues in which a higher level of esterases, peroxidases, tyrosine phosphorilated
proteins [17,18], and a higher degree of methylation [6,10,19,20] have been reported.

Investigations with maize have shed light on the role of miRNAs in controlling
phase change in plants. Lauter et al. [21] observed that miR172 accumulates during
maize shoot development and promotes the transition to the adult phase, being also
involved in the degradation of an APETALA2 like transcription factor (Gl15) responsible
to maintain juvenile traits. Using maize mutants, Chuck et al. [22] demonstrated that
overexpression of miR156 decreased miR172 levels and resulted in maintenance of juvenile
traits through overexpression of Gl15. A similar trend occurs in Arabidopsis [23]. These
observations suggest that relative abundance of these two miRNAs could regulate phase
transition in plants [3,22,24]. This has been confirmed in several woody perennials, e.g.,
Acacia confusa, Acacia colei, Eucalyptus globulus, Hedera helix, Quercus acutissima, and Populus
x canadensis [25], Malus asiatica x Malus domestica [26], Persea americana [27], and Olea
europaea [28]. With Macadamia integrifolia and Mangifera indica [27], although abundance
of miR156 decreased with age, accumulation of miR172 could not be observed as time
progressed. Furthermore, Wang et al. [25] observed a longer juvenile phase in Populus x
canadensis plants overexpressing miR156, and these authors concluded that this could be
the master regulator of juvenility. Moreover, they speculated that it would be desirable to
determine if traits of economic importance related with age, e.g., rooting competence, are
under the control of miR156. The expression level could also be used to determine the effects
of different factors on ontogenetic maturation (phase change) when morphological changes
are not associated with vegetative transition. Feng et al. [29], working with tobacco, found
several traits, e.g., leaf shape, number of leaf veins, and size and density of epidermal cells,
were affected by miR156 expression levels. This marker could be used in the Solanaceae
family to better understand changes associated with phase change. With Prunus spp. and
strawberry, the miR156 expression pattern was altered after in vitro culture, with a marked
increase with strawberry and an erratic behavior with Prunus spp. [30,31]. Recently Guo
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et al. [32], working with Arabidopsis, showed that miR159 was involved in timing control of
phase change through avoidance of continuous activation of miR156. Redox signals and
sugars also appear to be involved in modulating miR156 levels [33,34].

With respect to control of morphogenetic capacity, Zhang et al. [35] demonstrated
that decreased shoot regeneration competence during aging could be explained by a
lower cytokinin sensitivity due to binding of the SQUAMOSA PROMOTER BINDING
PROTEIN-LIKE (SPL), a target of miR156, to B-type ARRs, a key factor in cytokinin
signaling. In Malus xiaojinensis an increase in miR156, ARF7, and ARF9 was observed after
15 in vitro subcultures of adult material with shoots recovering their rooting competence
after three additional subcultures [11]. Xu et al. [36] working with juvenile (obtained from
suckers of trees of apomictic origin), adult and rejuvenated adult (obtained via meristem
culture) leafy cuttings of the same species, demonstrated that lSPL26 was responsible
for adventitious root inhibition in adult shoots. Accordingly, targeting of this factor by
miR156, found at higher levels in juvenile and rejuvenated adult materials, was responsible
for their higher rooting competence. Moreover, miR156 acts independently of PIN and
ARF family members in root induction. Heide [37] indicates that rejuvenation observed
during adventitious organogenesis and somatic embryogenesis is linked to a shift in
expression levels of miR156 and miR172, with accumulation of the former. In Arabidopsis,
overexpression of miR156 is responsible for enhancing rooting in adult tissues but had
no effect on juvenile material [38]; however, these results could not be confirmed by Ye
et al. [39], who showed that increasing expression of miR156 in adult leaves of Arabidopsis
thaliana restored some juvenile traits, i.e., loss of leaf trichomes, but did not increase rooting
capacity or cause flowering delay. This could be explained if once the adult phase is reached,
epigenetic status of SPL-regulated genes cannot be modified. Ye et al. [39] also suggest
that rejuvenation could be associated to changes in DNA sequence, DNA methylation and
differential gene expression or that an unknown pathway related with aging occurs and
miRNAi induction cannot overcome it. The role of miR156 in rooting capacity has also
been questioned, e.g., in Eucalyptus spp. in which miR156 was higher in juvenile tissues
in comparison with adult material, no relationship between miRNA156 expression and
rooting capacity could be found [40]. As previously reported with Castanea, Hedera, Larix,
and Pinus [6], in Eucalyptus, decreased rooting competence with age could be explained
by several factors, i.e., lower auxin content and sensitivity [41]. Several miRNAs, e.g.,
miR160, miR167, and miR390, have been shown to play a key role in rooting through
modulation of the auxin response [42–47]. miRNA169, known to be down regulated by
nitrogen starvation [48] is also down regulated in micropropagated strawberry where N
deficiency is absent [49] while miRNA390 was upregulated. This controversy prompted
Us-Camas et al. [50] to suggest that miRNA regulation could be different in vivo and
in vitro, with auxin playing a more pivotal role in vitro, favoring dedifferentiation and
enhancing the appearance of juvenile traits.

2. Micrografting for Reinvigoration/Rejuvenation of Plus Trees

Micrografting involves the in vitro grafting of small shoot apices or lateral buds onto
decapitated rootstock seedlings (Figure 1). The efficacy of micrografting as an alternative
method for reinvigoration/rejuvenation of ancient trees in forestry and horticulture has
been evaluated with different degrees of success. In some cases, partially recovered juvenile
morphology in scions and/or restoration of rooting competence or in vitro establishment
of rejuvenated material was reported (Table 1) while in others, micrografting resulted in
growth enhancement of the scion and no further evaluation of other morphogenic responses
(capacity to form roots, axillary or adventitious shoots, changes in leaf morphology) of
graft-derived material was indicated (Table 2).
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Figure 1. Hypocotyl micrografting in olive. Graft establishment through insertion of nodal section with lateral buds onto the hypo-
cotyl; a silicone ring is used to hold the graft union (A). Sprouted shoots after 8 weeks in OM medium supplemented with zeatin (B). 
Bar: 1 cm. 

Table 1. Woody species in which the micrografting of adult scions onto juvenile rootstocks was used to reinvigorate/reju-
venate the scion. Evaluation of changes in the scion other than increased growth was included. 

Species Scion Source Scion Size 

Mineral 
Formulation + 

Growth 
Regulators 

Morphogenic Response Reference 

FRUIT TREES: SUBTROPICAL 
Anacardium 

occidentale L. (cv. 
AC-4) 

Greenhouse grown 
plants, 4–5 years old 

Shoot tips MS 
Rooting: 13.3% after one graft vs. 0% 

for ungrafted adult shoots 
[51] 

Annona cherimola 
M. (cvs. Fino de 

Jete, Bonita, 
Pazicas)  

Actively growing shoots 
collected in spring from 

mature plants growing in 
a glasshouse 

Nodal segment (1–
2 cm) with a lateral 

bud  
MS 

Rooting for ‘Fino de Jete’, ‘Bonita’ and 
‘Pazicas’ after 3 micrografts: 70, 60, and 

50%, respectively 
Rooting capacity was lost when shoots 

were removed from the grafts, 
cultured on multiplication medium 

and subsequently rooted 

[52] 

Citrus reticulata 
B. (cv. Ponkan 
mandarin) and 

Citrus sinensis O. 
(cv. Liu Tseng, 
sweet orange) 

Mature trees Shoot tips (2 mm) Liquid MS 

Both materials showed similar 
performance 

Increased rooting after 7 micrografts: 
69% 

Vigor and elongation of the shoots 
improved with repeated grafts 

[53] 

Garcinia indica 
(selected 

genotype) 

In vitro shoots from nodal 
sections of a 20-year-old 

elite tree  

Shoot apices (5–10 
mm) 

½ MS 
Rooting capacity of shoots after 5 
micrografts was 75% vs. 0% for 

ungrafted and 100% juvenile shoots 
[54] 

Persea americana 
M. (cv. Duke 7) 

Flowering-age 
plants growing in 

greenhouse 

Lateral buds with a 
stem piece at the 

base 
MS + BA 

Rooting: ca 50% vs. 0% (ungrafted 
shoots) 

Rooting and vigor of shoots did not 
improve with successive grafts 

[55] 

Persea americana 
M. (cv. Gvar-

Am13) 

Mature plants grafted in 
the greenhouse 

Lateral buds with a 
stem piece at the 

base 

N45K 
macroelements + 

MS 
microelements + 

BA 

Rooting after 13 micrografts was 56% 
vs. 5% and 84% for adult and juvenile 

shoots, respectively 
Proliferation rate of micrografted and 

adult shoots was very poor 

[56] 

Figure 1. Hypocotyl micrografting in olive. Graft establishment through insertion of nodal section
with lateral buds onto the hypocotyl; a silicone ring is used to hold the graft union (A). Sprouted
shoots after 8 weeks in OM medium supplemented with zeatin (B). Bar: 1 cm.

Table 1. Woody species in which the micrografting of adult scions onto juvenile rootstocks was used to reinvigo-
rate/rejuvenate the scion. Evaluation of changes in the scion other than increased growth was included.

Species Scion Source Scion Size

Mineral
Formulation +

Growth
Regulators

Morphogenic Response Reference

FRUIT TREES: SUBTROPICAL
Anacardium

occidentale L. (cv.
AC-4)

Greenhouse grown
plants,

4–5 years old
Shoot tips MS

Rooting: 13.3% after one
graft vs. 0% for ungrafted

adult shoots
[51]

Annona cherimola
M. (cvs. Fino de

Jete, Bonita,
Pazicas)

Actively growing
shoots collected in

spring from
mature plants
growing in a
glasshouse

Nodal segment
(1–2 cm) with a

lateral bud
MS

Rooting for ‘Fino de Jete’,
‘Bonita’ and ‘Pazicas’ after
3 micrografts: 70, 60, and

50%, respectively
Rooting capacity was lost

when shoots were
removed from the grafts,

cultured on multiplication
medium and subsequently

rooted

[52]

Citrus reticulata B.
(cv. Ponkan

mandarin) and
Citrus sinensis O.
(cv. Liu Tseng,
sweet orange)

Mature trees Shoot tips (2 mm) Liquid MS

Both materials showed
similar performance

Increased rooting after 7
micrografts: 69%

Vigor and elongation of
the shoots improved with

repeated grafts

[53]

Garcinia indica
(selected genotype)

In vitro shoots
from nodal
sections of a
20-year-old

elite tree

Shoot apices
(5–10 mm)

1
2 MS

Rooting capacity of shoots
after 5 micrografts was

75% vs. 0% for ungrafted
and 100% juvenile shoots

[54]
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Table 1. Cont.

Species Scion Source Scion Size

Mineral
Formulation +

Growth
Regulators

Morphogenic Response Reference

Persea americana M.
(cv. Duke 7)

Flowering-age
plants growing in

greenhouse

Lateral buds with a
stem piece at the

base
MS + BA

Rooting: ca 50% vs. 0%
(ungrafted shoots)

Rooting and vigor of
shoots did not improve
with successive grafts

[55]

Persea americana M.
(cv. Gvar-Am13)

Mature plants
grafted in the
greenhouse

Lateral buds with a
stem piece at the

base

N45K
macroelements +

MS microelements
+ BA

Rooting after 13
micrografts was 56% vs.

5% and 84% for adult and
juvenile shoots,

respectively
Proliferation rate of

micrografted and adult
shoots was very poor

[56]

Ziziphus mauritiana
L. (cv. Gola)

Grafted plants
growing in a

greenhouse and
nodal explants

cultured in vitro

Apical or axillary
bud (5–10 mm) Liquid 1

2 MS

Rooting of microcuttings
obtained after 1 and 3

micrografts were 4 and
40% respectively, vs. 71 for

juvenile material

[57]

FRUIT TREES: TEMPERATE

Castanea sativa M.
(cvs. Loura
and Parede)

In vitro shoots
maintained for 10
years from ‘forced’
branch segments

of adult trees
grafted for 75 years

Shoot apices
(20 mm) WPM + BA

Rooting capacity after 3
micrografts: ca 50%

(similar to ungrafted
controls)

Multiplication rate after 3
micrografts: 2.1 vs. 1.3

(ungrafted shoots)
No improved response in
cv. Parede after one graft

[58]

Castanea sativa M.
(clone P2)

In vitro shoots
maintained for 28

years from the
crown of an 80
year-old tree

Nodal segments
(10 mm) WPM + BA

After 5 micrografts and
subsequent in vitro

subculturing,
multiplication and rooting

rates were similar to
material from basal

sprouts of the same tree

[59]

Juglans regia L.
(cv. Serr) Mature trees - DKW + BA + IBA

After 2 micrografts,
rooting capacity did not

increase significantly;
however, successive

subculturing improved
rooting

[60]

Malus domestica B.
(cvs. Remo,

Rewena, Reanda,
and JTE-F
rootstock)

Field-grown adult
plants of 3

cultivars and JTE-F
rootstock

Shoot tips 1
2 MS + Wuxal

The JTE-F rootstock was
successfully established
in vitro, while grafted

material of the 3 cultivars
died after 2–3 subcultures

[61]
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Table 1. Cont.

Species Scion Source Scion Size

Mineral
Formulation +

Growth
Regulators

Morphogenic Response Reference

Olea europaea L.
(cv. Arbequina)

Mature trees
(rooted cuttings

growing in a
greenhouse for

12 years)

Terminal shoots
(10–15 mm) DKW + BA + IBA

Rooting after 1 micrograft
57% vs. 2% for ungrafted

shoots
Rooting capacity did not

increase after the 2nd
micrograft

Rooting of material from
micrografts after

reintroduction in vitro:
100% (same as juvenile

material)

[62]

Olea europaea L.
(cv. Zard)

Mature plants
(rooted cuttings

growing in a
greenhouse for 4

years)

Lateral meristems
(10–15 mm) OM + Z

Shoot elongation
improved with serial

grafting
Shoots from 3 successive

grafts cultured on OM
medium supplemented
with 2-iP, showed a 4X

proliferation rate

[63]

Olea europaea L.
(cv. Arbequina)

Severely pruned
mature tree

growing in a
greenhouse

Nodal segments OM + Z

In vitro rooting increased
with grafting (13% for 1st
vs. 61% for 5th micrograft)

Shoots derived from the
grafts were rooted,
acclimatized, and

maintained in greenhouse
for 2 years; rooting of

cuttings from these plants
increased with the number

of grafts (92% for 5th
micrograft vs. 75% for
control mother plant)

[64]

FOREST TREES: ANGIOSPERMS

Acacia mangium W.

(A) 6 month-old
seedlings (ju-
venile)

(B) 3–5 year-old
seedings (ma-
ture)

Shoot apical
portions

(0.3–0.4 mm)

1
2 MS

Scions of juvenile and
adult origin were

micrografted successfully,
although those of juvenile

origin elongated faster

[65]

Acacia mangium W.
Lower part of the

crown of 5- to
12-year-old trees

Shoot apices
(0.2–0.4 mm)

1
2 MS

Some of the scions had
composed or pinnate

leaves characteristic of the
juvenile stage

[66]

Cedrela odorata L.
(8 trees selected for

phenotypic
quality)

Mature trees >30
years old Shoot tips (2–4 cm) MS

Morphogenic characters
after 2 micrografts (height,
internodal distance, stem
phenotype, capacity for

adventitious shoot
formation) were similar to

juvenile plants

[67]
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Table 1. Cont.

Species Scion Source Scion Size

Mineral
Formulation +

Growth
Regulators

Morphogenic Response Reference

Faidherbia albida
A.C.

(A. albida D.)

Suckers obtained
from root

fragments of a
40-year old tree

grown in the
greenhouse

5–10 mm stem
sections with an

axillary bud

1
2 MS

Rooting percentages and
scion growth after 3

micrografts were 75% and
5.1 cm, similar to juvenile
material (85% and 6.7 cm)

[68]

Hevea brasilensis M.
A. (PB 235 and

IRCA 18)

Grafted plants
from clones PB 235

and IRCA 18
selected in 1950

and 1970,
respectively

Shoot tips MB + IBA + BA

Rooting capacity of 70%
after 1 micrograft and 3
culture cycles vs. 3% for

mature control in clone PB
235

73% rooting after 1
micrograft and 3 culture
cycles vs. 7% for mature
control in clone IRCA 18

[69]

Hevea brasilensis M.
A. (clones PB 235

and GTI)

2–3-year old
grafted plants from

PB 235 and GTI
clones selected in

1950 and 1920,
respectively

Shoot tips
(1–2 mm) MB + IBA + BA

Rooting of 60% after 1
micrograft vs. 0% for

mature control in clone PB
235

35% rooting after 6
micrografts vs. 0% for

mature control in clone
GTI

Zeatin levels were higher
in grafted material than in

ungrafted controls

[70]

Sterculia setigera D.

Cuttings from
20-year-old trees

grown in
greenhouse for one

year Nodal
sections from these

plants cultured
in vitro for a

month prior to use
as microscions

Shoot apex MS + BA

Rooting percentages were
25% (juvenile), 21% (adult)

and 29% (adult after 3
micrografts)

Scion vigor was similar in
juvenile and grafted adult

materials

[71]

FOREST TREES: GYMNOSPERMS

Larix decidua M. 140-year-old trees Terminal bud with
removed bud scale B

Micrografts were
transferred to the

greenhouse where they
had plagiotropic growth

[72]

Larix decidua M. 140-year-old trees

Shoot tips (apical
dome and first ring
of leaf primordia,

0.3–0.5 mm in
diameter)

Autoclaved Jiffy-7
peat pellets in

sealed Petri dishes

After micrograft
acclimatisation, material

could be multiplied
in vitro

Rooting was close to 50%
for grafts derived shoots

while no rooting was
obtained in ungrafted

adult material

[73]

Picea abies (L.) H.
K.

Rooted cuttings
from an

18-year-old tree

Apical meristems
0.1–0.25 mm length

Margara
macronutrients +

MS micronutrients

Some grafted shoots
showed active growth and

juvenility
[74]
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Table 1. Cont.

Species Scion Source Scion Size

Mineral
Formulation +

Growth
Regulators

Morphogenic Response Reference

Pinus radiata
D. D.

30-year-old grafted
trees

Needle fascicle
with sheath

removed

1/3 QL
macronutrients +

MS microelements
+ NAA + BA

Grafted material could be
established in vitro; after 6

months they showed similar
growth rates as juvenile

shoots

[75]

Pinus radiata
D. D. 9-year-old trees Apical bud (2 mm) QL

Heterografts on Pinus
caribaea showed better

development than
homografts on Pinus radiata
ABA increase linked to IAA

decrease was observed in
micrografts; obtained values

were similar to juvenile
material

[76]

Pseudotsuga
menziesii M.

3–4 year-old rooted
cuttings from a
15-year-old tree

Apical meristems
(0.1–0.25 mm)

1
2 QL

macronutrients +
MS micronutrients

Scion responses were
variable: from resting buds

to actively growing
juvenile-like shoots

[77]

Sequoia
sempervirens D. D.

(selected tree)

In vitro stocks
established from a
500-year-old tree

Shoot apices
(4–5 mm) MER

Some scions showed
morphological and

physiological juvenile traits
After rooting and

acclimatization they showed
orthotropic growth

[78]

Sequoia
sempervirens D. D.

In vitro stocks
established from

mature trees
1.5 cm long shoots MS

After 4 grafts, shoots rooted
at a 100% rate similar to

seedlings vs. 20% rooting
for grafted adult

[79]

Phosphorylation of 32-kDa
protein occurred in adult

material while 31-kDa
protein appeared

phosphorylated in juvenile
and grafted shoots

[80]

Appearance of
isoperoxidases and

isoesterases in grafted and
juvenile shoots

[18]

Four small mtDNA
molecules associated with
juvenile and rejuvenated

shoots

[16]

Higher level of miR156 in
juvenile and micrografted
shoots in relation to adult
material while an opposite

trend was observed for
miR172

[81]

B-formulation [82]; BA (6-benzyladenine); DKW (Driver and Kuniyuki, [83]); IBA (indole-3-butyric acid); MB [84]; MER (Root elongation
medium, [85]); MS (Murashige and Skoog, [86]); N45K (MS macroelements modified as [87]); NAA (naphthalene acetic acid); OM (Olive
medium, [88]); QL (Quoirin and Lepoivre, [89]); WPM (Woody Plant Medium, [90]); Z (zeatin); ZR (zeatin riboside).
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Table 2. Woody species in which the micrografting technique was used to induce growth of the scions.

Species Scion Source Scion Size

Mineral
Formulation +

Growth
Regulators

Observations Reference

FRUIT TREES: SUBTROPICAL

Anacardium
occidentale L. (elite

trees)

In vitro shoots from
grafts (1–2-years old) of

adult material
maintained in the

greenhouse

Shoot apices
(6–15 mm)

Liquid MS with
1
2 macronutrients

Elongation of scion [91]

FRUIT TREES: TEMPERATE
Ceratonia siliqua L.
(adult female tree) In vitro shoots Shoots of uniform

size and diameter
MS + BA + GA3 +

IBA
One month after grafting,

growth of scions was evident [92]

Malus domestica B.
(cv. Royal Gala) In vitro shoots Shoot tips (≈30 mm) 1

2 MS + Wuxal

Four weeks after
acclimatization of grafts,

scion length reached
minimum 10 cm with several

leaves

[93]

Olea europaea L. (5
selected trees, in base

to production)

I. Adult trees growing in
urban zone:

(a) one (ca 80-years-old)
(b) four (15–20-years-old)
II. Grafted plants from (a)
and (b) maintained in a
greenhouse for 120 days

Apical segments
(with 2–3 pairs of

axillary buds)
MS + 2-iP

Better shoot development and
axillary shoot formation in
scions from grafted plants
than those derived from

urban zone-grown plants

[94]

Pistacia vera L.
(cv. Mateur) In vitro shoots

Shoot tips (8–10 mm
long) containing 2–3

axillary buds
Liquid MS

Enhanced growth of the scion
and development of axillary

shoots
[95]

Pistacia vera L.
(cv. Siirt)

(a) Juvenile (1-year-
old) grown in
greenhouse

(b) Mature trees (5–10-
30-year-old) in an
orchard

(c) In vitro shoots from
mature trees

Shoot tips (5–10 mm) MS

Age of explant source
strongly affected shoot

development with poorer
elongation as age increased

Explants from in vitro
cultures showed better

performance
<50% of micrografts for all

age classes survived after ex
vitro transplantation

[96]

Pistacia vera L.
(cv. Siirt)

(a) Mature tree (30-
year-old) in orchard

(b) In vitro shoots
(maintained for 1
year)

Shoot tips (4–6 mm) MS + BA

Better growth with explants
derived from in vitro cultures

than with scions obtained
directly from the tree

[97]

Prunus dulcis M. (cvs.
Ferragnes

and Ferraduel)
In vitro shoots Shoots tips

(4–15 mm) MS + BA + IBA
Grafted scions showed an

increase in shoot elongation
and vigorous growth

[98]

Pyrus spp. L.
(cv. Le-Cont)

In vitro shoots from
field-grown mature trees

Shoot tips (meristem
plus 2–3 leaf

primordia) (>5 mm)

WPM + BA + IBA

Scions showed noticeable
length increase, axillary shoot
development, and formation

of new buds
75% of micrografts survived

acclimatization

[99]

FOREST TREES: ANGIOSPERMS

Acacia tortilis (F.) H.
subsp. raddiana (S.) B.

In vitro stocks from
2-day-old seedling and a

15-year-old tree
Shoot tips (2–8 mm) MS

% of elongated buds was
higher for juvenile scions

(82%); for mature scions, a
preculture step induced 42%

bud elongation while for
direct grafting it was 12%

[100]

Santalum album L.
(candidate plus tree)

Materials from a 50–60
year-old field-grown tree

or after in vitro
establishment

Shoot tips (1–2 cm) Liquid 1
2 MS

In vitro grown shoots gave
better response than scions

from the field
[101]
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Table 2. Cont.

Species Scion Source Scion Size

Mineral
Formulation +

Growth
Regulators

Observations Reference

FOREST TREES: GYMNOSPERMS

Pinus pinea L. 5 genotypes of
11-year-old trees

Needles from
fascicles with sheath

removed

1
2 WPM

Genotype effect regarding
establishment and

developmental rate with 43%
average success

[102]

Pinus radiata D. D. 6-year-old trees Apical bud excised
from brachyblasts QL + IBA + BA

Apical buds in grafts
established during summer

gave better response
[103]

BA (6-benzyladenine); GA3 (Gibberellic acid); IBA (indole-3-butyric acid); MS (Murashige and Skoog, [86]); 2-iP (2-isopentenyl adenine);
QL (Quoirin and Lepoivre, [89]); WPM (Woody Plant Medium, [90]).

Reinvigoration/rejuvenation can also be achieved following sequential grafting of
mature scions onto juvenile rootstocks in vivo, i.e., in Cupresuss dupreziana appearance of
acicular juvenile type leaves and increased rooting capacity was observed after a single graft
while three grafts were required to observe leaves with juvenile morphology in Eucaliptus
camaldulensis; in Pseudotsuga menziesii use of microscions accelerated the appearance of
juvenile traits [7]; Eucalyptus trabutii, Pinus caribaea, Pinus oocarpa, Quercus acutissima,
and Tectona grandis could also be rooted from cuttings, although responses varied with
species [104]; there are also reports in which material resulting from in vivo grafts could
be successfully established and multiplied in vitro, e.g., Castanea sativa [105] and Pinus
massoniana [12]. However, the possibility of shortening intervals between grafts, the
proximity of the scion to the root system, a more precise control of environmental conditions,
and the possibility of using a culture medium with hormonal supplements have made
in vitro grafting preferable over in vivo grafting for restoration of juvenile traits in adult
scions [104,106]. Monteuuis [65] obtained much better results with Acacia mangium for graft
uptake and scion vigor with in vitro rather than with in vivo grafting. It was suggested
that graft miniaturized scion from mature trees used in vitro would have cells close to the
apical meristem with more capacity to form callus, facilitating the formation of a successful
graft union. Nursery grafting is widely used to rescue adult clones and prepare material
for other rejuvenation treatments [104]. In Pistacia vera grafted onto Pistacia terebinthus,
grafting in vitro scions onto ex vitro germinated seedlings reduce production time [107].
Taking into account the advantages of in vitro over in vivo grafting, most relevant findings
included in Table 1 are further discussed below.

2.1. Fruit Trees
2.1.1. Subtropical Genera
Citrus

Huang et al. [53] obtained progressive restoration of rooting competence and vigor
following successive micrografting of 2 mm long adult scions from Citrus reticulata Blanco
(Ponkan mandarin orange) and C. sinensis (Liu Tseng sweet orange), onto 2-week-old Troyer
citrange seedlings used as rootstocks. Two cm long shoots were excised from micrografts
and their morphogenic competence was assessed at various levels, ca. 80% of shoots from
the first micrograft developed chlorotic leaves with 50% abscission; however, after the
fifth graft, all shoots showed excellent leaf development. Rooting capacity progressively
increased with grafting, reaching values of 45%, 50%, and 69% for the fifth, sixth, and
seventh micrografts vs. the 100% shown by juvenile material. Callus cultures initiated from
grafted shoots did not form either adventitious shoots or somatic embryos. Persistence of
the rooting capacity on grafted shoots led these authors to conclude that reversion of adult
shoot apices to more juvenile forms had been accomplished.
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Persea

In avocado, Pliego-Alfaro and Murashige [55] restored rooting competence in adult
Duke-7 rootstock by micrografting lateral buds isolated from mature trees onto in vitro
germinated seedlings. Approximately 50% of the micrografted scions regained rooting
capacity although rooting percentage and number of roots per shoot (1.9) were much lower
than that of juvenile material (100% rooting with 3.5 roots per shoot; adult shoots failed to
root). Successive grafting did not improve either rooting or proliferation. Auxin sensitivity
was similar in adult and grafted adult materials, i.e., in the presence of auxin these shoots
showed leaf abscission. Grafted material grew more rapidly than their adult counterparts
although it could not be maintained through successive subculturing.

Adult shoots of the Gvar-am-13 avocado rootstock showed a rooting frequency of
5%; while this increased to 35, 45, and 56% after 1, 4, and 13 micrografts respectively,
in comparison to 84% for juvenile material derived from in vitro germinated seedlings.
During proliferation, the behavior of micrografted shoots was similar to adult material,
showing apical necrosis and low multiplication rate [56].

2.1.2. Temperate Genera
Castanea

Fernández-Lorenzo and Fernández-López [58] evaluated the efficiency of in vitro
grafting for rejuvenating Castanea sativa Mill. using 2 cm long scions from mature trees
grafted onto in vitro-rooted juvenile shoots. Increased multiplication rate of micrografted
material (2.1) was observed compared with nongrafted shoots (1.3), although no differences
in rooting competence could be found between shoots of either origin (ca. 50%). Grafting
up to three times did not increase rooting competence, although the multiplication rate
was improved and maintained through 12 successive subcultures. More recently, Crecente-
Campo et al. [59] used in vitro-derived adult material from the crown of an 80-year-old
tree, for grafting onto in vitro rooted shoots derived from basal sprouts of the same tree.
After five successive micrografts and subsequent in vitro subculturing, multiplication, and
rooting rates of adult scions from the crown and from basal sprouts were similar.

Olea

Revilla et al. [62] reported successful apical micrografting of adult olive (Olea europaea
L.) shoots of ‘Arbequina’ onto juvenile cuttings derived from germinated embryos. Im-
proved rooting from 2% (adult) to 50% was observed in the grafted shoots. A second graft
did not improve rooting in shoots derived from these grafts; however, cuttings from this
material that had been transferred to a greenhouse rooted at the same rate as juvenile
material (100%). Different results were obtained by Vidoy-Mercado et al. [64] with the same
cultivar: increased rooting percentage from 13% (first micrograft) to 61% (fifth micrograft).
Cuttings obtained from donor plants of the fifth micrograft showed 92% rooting. SSR
analysis of grafted material indicated that no variation had occurred on shoots derived
from the grafts.

A protocol for micrografting and micropropagation of the Iranian olive ‘Zard’ was
reported by Farahani et al. [63]. Ten to fifteen mm long adult scions were grafted in vitro
onto three-week-old seedlings. After micrograft establishment, shoot elongation improved
with successive micrografts (3.7 cm; 4.4 cm and 5.2 cm for the 1st, 2nd and 3rd, respectively).
Shoots excised from the grafts could be maintained through successive subculturing on a
cytokinin-supplemented medium [63].

2.2. Forest Trees
2.2.1. Angiosperms
Cedrela

The Spanish red cedar (Cedrela odorata L.) is an important timber tree. Robert et al. [67]
collected material from >30-year-old adult trees and grafted them on greenhouse-grown
seedlings; after 6 months, these plants were used as a source for scions for in vitro grafting
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onto juvenile rootstocks. Following 2 rounds of successive grafting, shoots could be rooted
and, 6 months after acclimatization, their root appearance and plant height were similar to
seedling controls.

Hevea

Rejuvenation effects of micrografting in Hevea brasiliensis (Willd.) Muell.-Arg. are
highly genotype-dependent, e.g., Perrin et al. [70] obtained 60% rooting of PB235 clone
after a single graft while up to six consecutive grafts were needed for clone GT1 to achieve
35% rooting. These authors used zeatin levels as a rejuvenation marker, e.g., much higher
zeatin levels were found in the grafted material with improved rooting capacity than in
control nongrafted shoots.

2.2.2. Gymnosperms
Pinus

Fraga et al. [75] grafted adult >30-year-old Pinus radiata D. Don. buds from different
clones onto juvenile cuttings, thereby demonstrating that scion age was critical for the
proliferation of shoots derived from the grafts, e.g., younger scions had higher proliferation
rates. Moreover, 50% of scions from basal branches sprouted vs. only 10% from apical
branches. Material derived from the grafts could be established in vitro showing, after
6 months, a growth rate similar to juvenile material.

Measurements of endogenous ABA and IAA levels in P. radiata following micro-
grafting onto P. radiata (homografts) or P. caribaea (heterografts) showed increased ABA
linked to decreased IAA over time in grafted shoots, with peak values for ABA (32 µg g−1

FW) 120 days after micrografting while lowest IAA levels (3 µg g−1 FW) occurred after
60 days. These results were similar to those of juvenile buds and were independent of the
rootstock [76].

Sequoia

Tranvan et al. [78] reported that scions obtained from a 500-year-old Sequoia semper-
virens (D. D.) Endl. tree showed restoration of orthotropy following micrografting onto
juvenile stocks. Huang et al. [79] also demonstrated that progressive rejuvenation occurred
following successive grafting of adult material onto juvenile cuttings, e.g., 100% rooting
was obtained after the fourth graft vs. 22% with the adult material. Moreover, shoot
elongation and branching were similar to those of juvenile shoots. Alterations in protein
phosphorylation patterns of adult shoots were observed after four successive micrografts,
resembling juvenile shoots [80]. Increased rooting occurred in parallel with decreased
esterase and peroxidase isoenzymes, both of which have been associated with the adult
stage [18]. Huang et al. [16] also showed that four small mtDNA molecules are uniquely
associated with juvenile and rejuvenated adult shoots. The mtDNA did not show variation
in their sequence after prolonged subculturing. Chen et al. [81] observed a higher level
of miR156 in rejuvenated shoots in comparison with adult material while the opposite
was observed for miR172. sRNAs target genes involved in photorespiration and jasmonic
acid (JA) mediated restoration of rooting competence showed similar expression levels
in juvenile and rejuvenated adult materials. A high degree of similarity was found for
epigenetic processes (chromatin remodeling and histone acetylation).

3. Rootstock Scion Interactions and Signaling

Progress in understanding of long distance signaling in plants and improved knowl-
edge of communication mechanisms across the graft union in vegetable [108–111], fruit
crops [111–113], and model species such as Arabidopsis thaliana [114,115], could be helpful
for explaining the influence of the root system on the scion. Signaling through grafting
occurs in both directions via the vascular system and it could involve different plant hor-
mones, primary and secondary metabolites, peptides, small organic molecules, and nucleic
acids, as well as water and nutrients [109,116]. Wounding can have drastic effects on cell
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division and regulation of morphogenesis. It triggers calcium influx into cells and ROS
increases, thereby activating signaling cascades [117]. von Aderkas and Bonga [118] indi-
cated that temporary stress caused by wounding in grafts could be responsible for partial
degradation of cytoplasm of shoot meristem cells, as observed in starvation-induced stress,
thereby enhancing rejuvenation; however, the in vitro stress response can vary among
genotypes due to differences in physiological state and hormonal balance at the time of
explanting [119].

Of particular interest for in vitro studies is the graft union position, since it has been
shown to affect the nature of signals coming from the rootstock [120]. In woody perennials,
grafting of lateral buds or shoot tips into the epicotyl, the stem [52–55,62,67,73,75,76,79],
or the hypocotyl [57,63,64] as well as side grafting into the epicotyl or hypocotyl [51]
have been described. Noticeable differences in grafting success have been found in cases
where different grafting procedures have been assayed, with side-grafting being superior
to top-grafting in some cases [51,74], but not in others [92].

Factors deserving consideration in rootstock scion interactions include scion size and
serial grafting. Restoration of morphogenic competence have been achieved with scions
of different size (Table 1); however, in vitro culture of shoot apices of maize with 1–2
leaf primordia resulted in plants that flowered at the same time as seedlings [121], while
apices with 3–4 leaves only showed partial rejuvenation [122]. In Sequoiadendrum giganteum
rejuvenated plants were obtained following meristem culture, with physiological stage of
the explant being critical for success [123]. However, with Sequoia sempervirens micrografts,
Huang et al. [79] used 1.5 cm scions and extent of rejuvenation increased with the number
of grafts. With Citrus, Huang et al. [53] using mature scions >2 mm long and Navarro
et al. [124,125] with 0.14–0.18 mm long scions (when attempting to get virus-free scions)
did not observe rejuvenation on the adult material after one graft; however, phase reversal
was observed after several grafts [53].

3.1. Signaling through Graft Union
3.1.1. Mineral Nutrients and Hormones

Gregory et al. [126] indicated that control of scion growth by the rootstock is influenced
by hydraulic signaling and plant hormones together with other chemical factors. Genotype
of the rootstock has a crucial role and very different responses could be obtained for a
given scion grafted onto different rootstocks [109]. Availability of water and nutrients are
important and studies involving Malus have shown that a high xylem/phloem ratio in
the rootstock favors increased vigor [126], while Santarosa et al. [127] reported a positive
correlation between xylem area, vessel diameter, and vigor with the grapevine. According
to Savvas et al. [128] and He et al. [129], the rootstock could strongly affect the nutrient
status of the scion, either through inhibition of heavy metal and micronutrient uptake
or by enhancing absorbance of macronutrients. However, Else et al. [130] did not detect
differences in ion uptake among apple rootstocks differing in dwarfing traits. Scions could
also modulate rootstock responses under conditions of limited nutrient (Pi) supply [131].
Enhanced nutrient uptake by the rootstock could be related to size of the root system,
although cultural conditions might also be important, e.g., tomato plants showed strong
variations in growth rate when grafted onto different rootstocks under standard cultural
conditions while these differences were not noticeable when grafted plants were grown
under soilless optimal growth conditions [132]. This observation should be considered
when evaluating the improved growth of adult scions following graftage onto different
juvenile rootstocks in vitro. As shown in Tables 1 and 2, mineral formulations with different
ionic content have been used in the vitro grafting assays, generally varying with the species
in question and selecting those that induced a better growth of the scion, e.g., MS at
full [52,53,55] or half strength [54,61,68]; WPM [58,59] and DKW [62] et al.

Plant hormone levels greatly affect the scion response [133]. Generally, the observed
scion vigor increase has been associated with cytokinin supply from the roots, e.g., more
vigorous rootstocks show a higher content of cytokinins in the xylem sap [134,135], al-
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though this has not always been the case [136]. A higher cytokinin content in the shoot
would result in a more active functioning as a sink, favoring the accumulation in the shoot
of mineral elements and amino acids [137,138]. Cytokinin biosynthesis in the roots is
modulated by nitrate availability [139]. This ionic signal when moving through xylem and
reaching the shoot could possibly interfere with auxin supply to the root decreasing root
branching [140]. Intensity of polar auxin transport has been shown to be much lower in
dwarfing than in semi-invigorating apple rootstocks [130,141] and similar observations
regarding auxin signaling have been reported in Citrus [142].

Bud growth regulation should be considered with respect to strigolactones (SL), e.g.,
auxin transported basipetally throughout the stem has a positive effect on SL biosynthesis
in the roots. SL moving up through the xylem would interfere with polar transport
leading to bud competition to release auxin to the stem, hence negatively affecting auxin
biosynthesis. CKs and SLs moving up through the xylem would have opposite effects
on bud growth through interaction with BCR1 transcription factor [143]. Investigations
in rice have shown that SL suppress expression of type A-ARR (Arabidopsis Response
Regulators involved in cytokinin action) in the bud [144,145]. Moreover, expression levels
of SL biosynthetic genes are suppressed by CKs [145], which in turn are also involved in
controlling polarization of auxin transport by modifying the direction of auxin flow [146].
In tomato, transgenic lines with reduced levels of SLs showed more enhanced branching
and profuse development of adventitious roots [147]. The effect of SL appears to be
linked to nutrient availability, showing a stronger effect on bud growth inhibition under
Pi deficiency [148]. In grafted grapevine, rootstocks producing higher levels of SL-like
compounds induced scion growth reduction, and this effect is greater under N-limiting
conditions [149]. Hence, this carotenoid derived hormone is important for root-shoot
signaling although its role in phase change remains to be elucidated.

The inactive gibberellins in the xylem should be converted to active forms in the
shoot [120]. Regnault et al. [150], using micrografted Arabidopsis plants, identified the
gibberellin precursor GA12 as the primary mobile long distance signal in xylem sap while
previous observations of Lavender et al. [151], with Douglas fir, indicated that gibberellins
from the roots are responsible for initiating shoot growth in the spring. A lower xylem
content of the inactive gibberellin GA19, at the beginning of spring, has been associated
with dwarfing caused by M.9 apple rootstock; the inactive form would subsequently be
converted to the active GA1 in the scion [136]. In mandarin grafted onto different Citrus
rootstocks, GA biosynthesis was positively correlated with vigor [142].

The role of ABA signaling has been mainly studied in relation to stress situations
[109,116,152]. The presence of higher ABA in the xylem sap is correlated with shoot growth
inhibition [153,154]. With apple, greater ABA levels have been detected in scions grafted
onto dwarfing rootstocks [130]. Hence, the GAs/ABA ratio in juvenile root systems is an
important factor for reinvigoration of adult scions.

Jasmonic acid is mainly synthesized in leaves and flowers [116]; however, roots could
also be a JA source [155,156]. In Arabidopsis JA is involved with upregulation of auxin
biosynthesis [157], enhancing de novo root formation. The hormone precursor cis-12-oxo-
phytodienoic acid moves from wounded shoots grafted onto undamaged roots where they
are converted to JA and signaling pathways are activated [158]. It is not known how JA
from roots might affect shoot growth [116] although there is evidence that it interacts with
ABA biosynthesis in these organs [156].

Brassinosteroids are involved in root architecture [159]; however, they show a localized
mode of action and do not seem to have a direct effect on long distance signaling although
they are important for auxin transport [160]. Inhibition of brassinosteroids biosynthesis in
apple by overexpression of MdWRKY9 induces a strong dwarfing phenotype [161]. Prassi-
nos et al. [162] identified a number of differentially expressed genes in cherries that are
mostly involved in flavonoid metabolism, brassinosteroid signaling and cell wall biosyn-
thesis, that could be related to the earlier cessation of terminal growth and subsequent
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decreased size caused by dwarfing rootstocks. Warschefsky et al. [113] suggested that
reduction of vigor could be induced through different independent molecular pathways.

Generally, culture media for growing in vitro grafts (Tables 1 and 2) either lack any
hormones [52–54,79] or have included a cytokinin [55,56,59] or a cytokinin-auxin sup-
plement [62,75,103]. Use of either cytokinins [163,164] or gibberellins [165,166], has been
associated with reversion to more juvenile forms. Based on these observations, Huang
et al. [79] tried unsuccessfully to duplicate grafting effects through preincubation of adult
or one-grafted Sequoia semprevirens shoots on media containing either benzyladenine or
gibberellic acid followed by transfer to rooting medium. Experiments to study the effects
of plant hormones together with grafting on rejuvenation have not been performed.

3.1.2. Metabolites

A vast range of metabolites other than ions and hormones are present in xylem sap. Al-
bacete et al. [138] identified ca. 800 primary (amino acids, sugars, sugar phosphates, organic
acids, fatty acids, and polyols) and secondary metabolites (alkaloids, flavonoids, glucosino-
lates, and others) whose biological functions are largely unknown, while for others, e.g.,
sugars, it is known they play a role in signaling, e.g., trehalose-6-phospate is involved
in regulating the pathway linking ontogenetic age and capacity for flowering [3,33,167].
In grapevine, the nature of these metabolites is greatly affected by rootstock [168]. Tietel
et al. [169] found six out of 14 primary metabolites in phloem sap of Citrus scion being
affected by the rootstock, whereas 42 were dependent on the rootstock–scion interaction. To
identify and characterize metabolites occurring at specific developmental stages, Venema
et al. [116] proposed that metabolite profiling and multivariate data mining could be useful
tools.

3.1.3. Proteins

Different omics studies have demonstrated that macromolecules are important as
long-distance signals moving through vascular systems [170]. The FT protein, responsible
for flower induction [171], has been shown to move across the graft union and accelerate
reproductive development when scions of some species have been grafted onto transgenic
rootstocks [172]. In addition, other proteins, i.e., cyclophilin SICyp1, affecting auxin sig-
naling and modulating root growth [173] and RNA-phloem transport proteins, found in
the phloem of grafted vegetables [110], indicate the relevance of sieve tube elements in
stock-scion communication. A clear example of movement from stock to scion can be
found with polygalacturonase inhibiting proteins, that enhance tolerance of pathogens in
grape and tomato [174]. Other proteins possibly involved in rootstock–scion interaction are
peroxidases (ROS scavenging) and Calcineurin-B-Like proteins (calcium signaling) [175].
Toscano-Morales et al. [176] demonstrated movement of the Arabidopsis thaliana Transla-
tionally Controlled Tumor Protein 2 (AtTVTP2) in grafted tobacco from rootstock to scion
and vice versa. Long distance movement of the protein was required for adventitious
rooting. Protein concentration is important for appropriate binding to receptors and tran-
spiration amplifies the signal; afterwards secondary signals are sent back to the whole plant
via phloem [177]. In vitro cultures have low transpiration rates, and the role of protein
signaling under these conditions would require further study.

3.1.4. RNAs

In addition to proteins, movement of mRNAs and small RNAs from source to sink
and across the graft union have also been reported [178–180]. mRNA-protein complexes
move in the phloem across the graft union [181–183]. Pioneer experiments by Kudo and
Harada [184] demonstrated that movement of mRNA from a tomato rootstock could alter
leaf shape in a potato scion. mRNA from gibberellic acid insensitive (gai) gene moves
from root to shoot and vice versa in micrografts of apple and pear [185–187]. In grapevine,
mRNAs involved in stress and signaling are highly abundant [188]. Micrografts have a
higher amount of these genes transmitting mRNAs than mature grafts of field-grown plants.
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Therefore, mRNA movement occurs in a passive or genotype and environment dependent
manner. Liu et al. [189] using DsRED transgenic walnut demonstrated mRNA movement
of the transgene from rootstock to wild-type scion, clearly showing the feasibility of using
micrografting as a tool in fruit tree breeding as well as in physiological studies.

Short RNAs could be involved in inducing mRNA cleavage and DNA methylation
in recipient cells, probably by reinforcing effects of transposons [190–195]. siRNA move-
ment is related to conferring virus resistance from transgenic rootstocks to nontransgenic
scions [196,197] or to silence endogenous genes in the scion [198]. For miRNAs, there is
evidence that both miR156 [199] and miR172 [200] are graft transmissible and they have
been found in phloem exudates of potato during tuber formation. They are also involved
in regulating grafting effects, e.g., leaf petioles from homografts and heterografts in Citrus,
showed reduced expression levels of miRNA156 in comparison to control seedlings [201].
Avocado, grafted either on juvenile (seedlings) or mature (vegetatively propagated) root-
stocks, shows levels of miRNA156 and miRNA172 that are largely under scion control
although transmission through graft union would be affected by the presence of leaves
below it [27].

3.2. Changes in Gene Expression

Changes in gene expression in the scion due to rootstock-derived signals have been
reported in vegetable [202] and fruit grafting [142]. In apple, changes in gene expression
due to grafting on different rootstocks are related to tree size and tolerance of fire blight
and other traits [203,204]. Chitarra et al. [168] reported noticeable changes in grape leaf
transcript profile as affected by the rootstock, while Cookson and Ollat [205] observed
changes in gene expression in the scion meristem with most affected genes being related to
chromatin regulation, cell organization, and hormone signaling.

Epigenetic changes play a key role in cell reprogramming [206,207]. Although no
specific studies have been carried out in woody plants, partially heritable changes in DNA
methylation have been shown to occur in scions of grafted vegetables [208–210]. In vitro
conditions enhance the occurrence of DNA methylation and histone modification processes
not only during the processes of adventitious regeneration [50,211] but also during nodal
culture and axillary shoot formation [212–214]. Changes in DNA methylation patterns
are also associated with phase change, aging, and reinvigoration [10,19,20,215,216]. The
close relation between hormone action and epigenetic changes is important; e.g., CKs
are involved in DNA methylation [217] while recent evidence have revealed the linkage
between auxin biosynthesis, transport and signaling being modulated by miRNAs and
epigenetic factors, e.g., histone modification [218].

4. Conclusions and Future Prospects

In vitro grafting of mature trees onto juvenile rootstocks has been successfully prac-
ticed in order to reinvigorate/rejuvenate grafted scions. Optimal results have generally
been obtained for scions derived from in vitro-grown shoots or greenhouse-grown plants
rather than field-grown trees, notwithstanding differences between species. Higher rooting
competence could be observed following sequential grafting (Citrus, Garcinia, Persea, and
Sequoia, etc.) while in other genera e.g., Castanea, an improved proliferation rate or capacity
for adventitious shoot formation (Cedrela) was detected. Acclimated micrografts of Larix
and Picea exhibited juvenile traits and, in the case of Larix, explants from the scions could
be successfully reintroduced in vitro. With respect to the different size of scions used,
the importance of sequential grafting and the fact that phase reversal has been achieved
either in the presence or absence of plant hormones, experiments are needed to study the
importance of possible interactions between these factors in achieving rejuvenation. Use
of molecular markers such as the relative increase of miRNA156 levels are essential to
quantify the degree of reversion achieved.

Marguerit et al. [219] were able to identify genes in grape rootstock controlling specific
traits of the scion and Ghanem et al. [220] have pointed out the advantages of using root
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system engineering to modify rootstock signaling and improve specific traits of the scion.
Kundariya et al. [221] were able to induce epigenetic changes in Arabidopsis and tomato
scions resulting in enhanced vigor, a trait that could be transmitted to the sexual progeny,
and emphasized the importance of this as a breeding tool. Ellisson et al. [222] empha-
sized the feasibility of using CRISPR guide RNAs from rootstock transgenic lines to edit
nontransgenic scions. These approaches, in combination with the well-established micro-
grafting protocols indicated above (Tables 1 and 2), could be used to modify physiological
and/or ontogenic age in adult materials. Moreover, the feasibility of micrografting using
genetically diverse rootstocks should be explored since interactions between divergent
materials appear to enhance the occurrence of epigenetic changes [223] and specific signals,
i.e., in Solanaceae, interspecific grafting caused extensive and heritable changes in DNA
methylation [224], while in interspecific Pyrus micrografts, NACP mRNA coding proteins,
affecting meristem development, have been found to move in both directions across the
graft union [225].

It is still difficult to distinguish between changes in physiological (reinvigoration)
or ontogenetic (rejuvenation) aging. Restoration of some juvenile traits should not be an
indication that other mature traits do also undergo reversion [1,5]. Important challenges
are to decipher key factors involved in long distance signaling causing changes in the adult
meristem responsible for phase reversal. Moreover, evaluation of material obtained after
rejuvenation should include a long term comparison of time course of maturation with an
appropriate control (seedling plant) to accurately ascertain the degree of reversion that
is achieved; i.e., in theory, complete rejuvenation should be attained in somatic embryo-
derived plants; however, Martinez et al. [226] in Quercus robur found that shoot culture
lines derived from somatic plantlets performed in vitro as shoot lines obtained from basal
sprouts (considered as mature material with some juvenile traits), showing that only
partial rejuvenation had been achieved. The use of temporarily reinvigorated trees as truly
rejuvenated material could result in the emergence of young–old trees [10]. Rejuvenation
associated morphological and physiological variations should be characterized at the
molecular level. Zhang et al. [10] indicated that a challenge for the future should be
obtaining rejuvenated individuals with traits similar to those of seedlings.
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