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Abstract: The phenothiazine derivatives, tricyclic 10H-3,6-diazaphenothiazine (DPT-1) and penta-
cyclic 7-(3′-dimethylaminopropyl)diquinothiazine (DPT-2), have recently been shown to exhibit
promising anticancer activities in vitro. In this report, we demonstrated that DPT-1 and DPT-2 could
be pro-apoptotic agents in lung carcinoma, the human lung carcinoma A549 and non-small lung
carcinoma H1299, in the range of IC50 = 1.52–12.89 µM, with a protective potential to healthy cell lines
BEAS-2B and NHDF. The compounds showed higher activity in the range of the tested concentrations
and low cytotoxicity in relation to normal healthy cells than doxorubicin, used as the reference drug.
The cytostatic potential of DPT-1 and DPT-2 was demonstrated with the use of MTT assay. Cell cycle
analysis via flow cytometry using Annexin-V assay showed the pro-apoptotic and pro-necrotic role
of the studied diazaphenothiazines in the cell cycle. DPT-1 and DPT-2 initiated a biological response
in the investigated cancer models with a different mechanism and at a different rate. Based on these
findings, it can be concluded that DPT-1 and DPT-2 have potential as chemotherapeutic agents.

Keywords: dipyridothiazine; diquinothiazine; cancer cell lines A549 and H1299; anticancer activity;
apoptosis; long-term live cell observations; BEAS-2B and healthy NHDF cell lines

1. Introduction

Worldwide, lung cancer has been the most common diagnosed carcinoma for the last
several decades. It is the world’s leading cause of cancer death [1,2]. This is due to the fact
that it is completely asymptomatic in the initial stage and usually detected in the advanced
stages [3]. Globally, lung cancer cases and deaths are rising. In 2018, GLOBOCAN indicated
2.09 million new cases (11.6% of total cancer cases) and 1.76 million deaths (18.4% of total
cancer deaths), higher than 2012 reported rates making it the most frequent cancer and
cause of cancer death in men and women combined [4–7]. Tobacco smoking remains the
biggest risk factor for lung cancer. However, nontobacco risk factors such as environmental
and occupational exposures, chronic lung disease, and lifestyle factors contribute to lung
cancer risk too [1]. Therapies for lung cancer include surgical removal, radiotherapy, and
chemotherapy. Chemotherapy was reported to be the most efficient treatment, although
it is commonly associated with side effects on normal cells [8]. Therefore, it is imperative
to discover and develop new, more potent anticancer agents with better selectivity and
reduced side effects.

The heterocyclic ring system plays an important role in the development of novel
scaffolds with improved pharmaceutical properties in anticancer research [9]. Tricyclic
phenothiazines are an important class of heterocycles showing important biological and
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chemical properties. For many years, this class of organic compounds has been recognized
as neuroleptic, antihistaminic, antitussive, and antiemetic drugs [10,11]. Novel derivatives
of phenothiazines have been obtained via modification of the parent phenothiazine via
the introduction of a new substituent at the thiazine nitrogen atom or via the substitution
of one or two benzene rings with homoaromatic and heteroaromatic rings. As a result,
azaphenothiazines were obtained containing a pyridine and quinoline ring (or rings) in their
structure [12,13]. Modified phenothiazines have exhibited promising biological activities
such as anticancer, antibacterial, and potential treatment in Alzheimer’s and Creutzfeldt-
Jakob diseases. These numerous scientific reports are the subject of many reviews that have
appeared in world literature [14–16]. Additionally, azaphenothiazines (dipyridothiazines
and diquinothiazines) are promising heterocycles with anticancer, immunosuppressive,
and antioxidant properties [17–19].

Among the anticancer active diazaphenothiazine (DPT) series, two derivatives deserve
special attention: tricyclic 10H-3,6-diazaphenothiazine (dipyrido [2,3-b;4′,3′-e][1,4]thiazines)
(DPT-1, with two pyridine rings) and pentacyclic 7-(3′-dimethylaminopropyl)diquinothiazine
(DPT-2, with two quinoline rings) (Figure 1). From a chemical perspective, DPT-1 was
obtained efficiently via a Smiles rearrangement reaction using a 3-amino-3′-nitro-2,4′-
dipyridinyl sulfide [20]. In contrast, DPT-2 was obtained in a multi-step synthesis using 2,2′-
dichloro-3,3′-diquinolinyl disulfide and diquinodithiin [21]. 10H-3,6-diazaphenothiazine
(DPT-1) exhibited an extremely strong action against the glioblastoma SNB-19, melanoma
C-32, and breast cancer MCF-7 cell lines with IC50 values of 0.46 and 0.72 µg/mL and
non-toxic action against the normal fibroblast HFF-1 cell line [20]. This compound induced
apoptosis through upregulation of pro-apoptotic genes such as Bax, p53, and CDKN1A
(p21) and downregulation anti-apoptotic genes such as Bcl-2 and H3 (a histone indicator
for proliferation of cellular DNA) [20]. Anticancer action of DPT-1 was also studied on
A2780 ovarian cancer cells via an investigation on cytotoxicity profiles, the mechanism
of apoptosis, and cell invasion. This compound induced a dose-dependent inhibition on
A2780 cancer cells (IC50 = 0.62 µM), with significantly less cytotoxicity towards normal
kidney HEK293 cells and normal heart H9C2 cells. This compound induced the generation
of reactive oxygen species (ROS) and the polarization of mitochondrial membrane potential
(∆Ψm). It is connected with inducting cell death through oxidative damage. This compound
elicited an upregulation of caspase-6, -3, and -7, which are actively involved in the formation
of cell shrinkage, chromatin condensation, and the fragmentation of DNA. Additionally,
the activation of caspase-3 brought about increased enzymatic activity of DFFA (DNA
fragmentation factor-α). DPT-1 induced apoptosis via intrinsic (mitochondria-dependent)
and extrinsic (cell death receptor-dependent) pathways [22].
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Figure 1. Structures of diazaphenothiazines DPT-1 (10H-3,6-diazaphenothiazine) and DPT-2 (7-(3′-
dimethylaminopropyl)diquinothiazine).

Pentacyclic 7-(3′-dimethylaminopropyl)diquinothiazine (DPT-2) exhibited strong an-
tiproliferative activity in vitro against glioblastoma SNB-19, colorectal carcinoma Caco-2,
breast cancer MDA-MB-231, and lung cancer A549 cell lines (activity in the range of
IC50 = 0.3–3.44 µM). DPT-2 characterized low cytotoxicity against normal human dermal
fibroblasts NHDF. Significant anti-proliferative activity of DPT-2 against human cancer
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cell lines and low cytotoxicity prompted a careful study of its activity against lung cancer
tumor cell lines [21].

Based on the promising results above, the aim of the current study is to investigate
anticancer activities and the detailed apoptosis pathway induced by DPT-1 and DPT-2
towards two lung cancer cell lines: the human lung carcinoma (A549), non-small lung
carcinoma (H1299), and human non-tumorigenic lung epithelial cell line (BEAS-2B), with
comparison to normal human dermal fibroblasts (NHDF). Regarding DPT-1, these studies
are completely innovative, while in the case of DPT-2, they are an extension of earlier
preliminary studies.

2. Results and Discussion
2.1. Anticancer Activity

In the first stage of the research, the antitumor potential of both compounds was
determined, as shown in Table 1, Figure 2, and Figure 3 with comparison to doxorubicin
as a reference drug. Cellular viability was estimated after 72 h of incubation with tested
compounds, and for IC50 the dose-effect calculations were performed [23–25]. A standard
anticancer drug, such as doxorubicin, was simultaneously used at the same concentrations
range: 100, 50, 25, 12.5, 6.25, 3.15, 1.56 µM. Finally, the cell line’s sensitivities were estab-
lished, whereby the tested phenothiazine DPT-1, according to the IC50 values, was the most
active towards the cancer A549 cell line (Table 1).

Table 1. IC50 value after 72 h of incubation with tested phenothiazines and doxorubicin for tissue-
dependent effects in NHDF, A549, and H1299 cell lines.

IC50 [µM]
Cell Line

NHDF BEAS-2B A549 H1299

DPT-1 2.246 ± 0.01 2.4679 ± 0.01 1.526 ± 0.004 2.515 ± 0.005

DPT-2 18.77 ± 0.038 11.2648 ± 0.038 3.447 ± 0.054 12.895 ± 0.013

doxorubicin 116.061 ± 0.002 0.0651 ± 0.001 5.289 ± 0.004 7.749 ± 0.004
Mean values from three experiments ± standard deviation.
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Figure 2. Dose effect of the DPT-1 and DPT-2 treatment on the viability of A549 cells after 72 h of
treatment, followed by MTT assay (control—untreated cells; positive control—doxorubicin-treated
cells). Data are presented as mean ± SD. *** or **—statistical significance in comparison to the control
was calculated with a t-test, and p-value < 0.05 is indicated with a star.
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Figure 3. Dose effect of the DPT-1 and DPT-2 treatment on the viability of H1299 cells after 72 h of
treatment, followed by MTT assay (control—untreated cells; positive control—doxorubicin-treated
cells). Data are presented as mean ± SD. *** or ** or *—statistical significance in comparison to the
control was calculated with a t-test, and p-value < 0.05 is indicated with a star.

In comparison to the doxorubicin, which is the most active against human non-small cell
lung carcinoma cell line, H1299 (IC50 = 7.749± 0.004 µM), selectiveness against both cancer cell
lines, A549 and H1299, is also preset for DPT-1 and DPT-2. DPT-1 is the most active against
the A549 cell line (IC50 = 1.526± 0.004 µM) and then against H1299 (IC50 = 2.515 ± 0.005 µM);
normal fibroblasts NHDF are sensitive at a similar level (IC50 = 2.246 ± 0.01 µM) as the human
bronchial epithelial cells, BEAS-2B (IC50 = 2.4679 ± 0.01µM). Structural changes of phenoth-
iazines in DPT-2 decreased its activities a little bit against A549 (IC50 = 3.447 ± 0.054 µM)
and H1299 (IC50 = 12.895 ± 0.013 µM) cancer cell lines. However, the cytotoxicity of the
compound DPT-2 against normal cells NHDF or BEAS-2B is not observed at the same
doses (IC50 = 18.77 ± 0.038 µM and IC50 = 11.2648 ± 0.038 µM, respectively). These find-
ings are promising for the application of modified phenothiazines DPT-1 and DPT-2 in
combined chemotherapies, e.g., with doxorubicin exclusion for more sensitive patients,
because of strong anticancer effects decreasing the viability of cancer cell lines A549 and
H1299 and at the same time a lower toxicity observed in normal NHDF and BEAS-2B
cells (Table 1). That means the lowest doses of DPT-1 or DPT-2 are not as toxic in healthy
cell lines. When doxorubicin is used against cancer cells, the side effect is observable in
the healthy neighborhood, e.g., in epithelia, for BEAS-2B the cytotoxicity of this drug is
very high (IC50 = 0.0651 ± 0.001 µM), which excludes it from therapies. Phenothiazines
are good candidates for in vitro testing, especially on 3D cultures where a mix of sensitive
healthy cell lines are used together with chemoresistant cancer cell lines. A low lethal effect
is observed in NHDF or BEAS-2B cells at doses of IC50 against A549 or H1299 cells, hence,
the selectivity against cancers is confirmed (Table 1).

Viability results, followed by MTT 72 h assay, showed better anticancer potential
against H1299 cells than that observed for doxorubicin (positive control on Figure 2),
especially for DPT-1. Both tested compounds displayed typical dose-effect activities at low
doses, between 1.56 and 6.25 µM, which confirms previous findings for bioactive molecules,
such as phenothiazines.

The A549 cell line used seems to be more resistant to the tested compounds, DPT-1 and
DPT-2; additionally, the lowest sensitivity was observed against doxorubicin (Figure 3). All
these findings suggest the resistance of the adenocarcinoma human alveolar basal epithelial
cells, as the A549-DOX-res cell line. Although the results look similar at dosing protocols
for doxorubicin, the role of the phenothiazines DPT-1 and DPT-2, as an alternative for the
doxorubicin-resistant cancer cell lines anticancer therapies, is still promising.
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2.2. Cytostatic Potential of Modified Phenothiazines

In the second stage of the research, the role of the phenothiazines DPT-1 and DPT-2
in the cancer cell lines A549 and H1299 as potentially cytostatic drugs was investigated in
order to assess the antitumor activity (Figure 4).
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(B) treated for 72 h at a dose of 50 µM, followed by flow cytometry cell cycle measurements.

A lowered viability, followed by the MTT assay, could be a perfect indicator of the
anticancer potential of drugs. However, this procedure measures the mitochondrial activity
of the enzymatic complex [24,25]. The real cytotoxicity against the antiproliferative action
of drugs could be distinguished using the next step procedure, a cytometric cell cycle
distribution, compared to the untreated controls [26–28]. For that reason, the cell cycle
was measured, followed by 72 h of incubation with DPT-1 and DPT-2. High doses of
phenothiazines (50 µM) arrested the cell cycle at different phases, dependent on the cancer
cell line. On typical histograms of cellular DNA content, the S and G2/M arrest is visible
after 72 h of treatment with DPT-1 and DPT-2 in the A549 cell line (Figures 5A and 6A).
The phenomenon of sub-G1 phase reduction (lowered necrotic/apoptotic and general
dead cells fraction), in comparison to the untreated control, could be explained by the
cytostatic potential of phenothiazines. Their mode of action is rather antiproliferative than
cytotoxic—the cells skipped a cell cycle, and the number of cells in comparison to the
untreated control decreased. The MTT estimations of cells viability, calculated from the
lowered absorbance, resulted from the antiproliferative and cytostatic role of DPT-1 and
DPT-2 in the A549 cell line for S and G2/M cell cycle phases.

A different mode of action is presented in the H1299 cell line; the cell cycle is stopped in
the G0/G1-phase after DPT-1 incubation (50 µM), and a strong cytotoxic effect is presented
after DPT-2 addition, where the sub-G1 fraction (necrotic/apoptotic and dead cells fraction)
as well as the G2/M fraction increased (Figures 5B and 6B).

The high fraction of sub-G1 in controls of A549 and H1299 cells is connected with
the regular proliferation during 72 h assay. At that time, the contact inhibition occurred
and control cells started dying with the physiological process of apoptosis (Figure 4).
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Calculations, followed by cytometric cell cycle measurements, allowed for the inclusion of
the background and the visualization of the proper cell cycle distribution (Figure 5) [26–28].
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2.3. Pro-Apoptotic and Pro-Necrotic Role of Phenothazines

Followed by Annexin-V apoptosis assay after 72 h of incubation with DPT-1 and
DPT-2 at a dose of 50 µM, the type of cellular death is possible to determine (Figures 6
and 7). A prolonged treatment of cancer cell lines A549 and H1299 showed a pro-apoptotic
activity of DPT-1 in both cell lines, whereas DPT-2 induced apoptosis, as well as necrosis
(Figure 6A,B). After 72 h of incubation of cells in both controls, some of the early and late
apoptotic cells were observable, without necrotic ones. Typical dot plots from cytometric
measurements are presented in Figure 6.
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Figure 6. Typical dot plot followed by Annexin-V apoptosis assay and iodium propide (PI) staining.
Cellular death in control and DPT-1- and DPT-2-treated A549 (A) and H1299 cells (B) treated for
72 h at a dose of 50 µM, followed by flow cytometry measurements (normal cells: Annexin-VI−/PI−;
early apoptosis: Annexin-V+/PI−; late apoptosis: Annexin-V+/PI+; necrosis: Annexin-V−/PI+).

The dose of 50 µM, almost ten times higher than the calculated IC50 = 5.289± 0.004 µM
in the A549 cancer cell line for doxorubicin, was used for induction of cellular death. DPT-1
induced an apoptosis pathway after 72 h of treatment, which is present as a late apoptotic
fraction (Annexin-V+/PI+). Both cancer cell line responded with almost 90% of cells
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apoptotic (Figure 7A,B). More toxic and lethal effects after a long-term exposure induced by
DPT-2 was observed, with circa 30 % of the tested population necrotic (Annexin-V−/PI+)
(Figure 7A,B).

Much higher doses, than IC50 for the A549 cancer cell line (Table 1), for DPT-1 and
DPT-2 (IC50 = 1.526 ± 0.004 µM and IC50 =3.447 ± 0.054 µM, respectively) showed the
strong anticancer potential of modified phenothiazines, with both pro-apoptotic and pro-
necrotic activities (Figure 8A,B). Considering the 72 h particular dose-dependent effects, at
the lower doses, at a range of 0.78–12.5 µM of DPT-1, the necrosis is visible (Figure 8A). The
higher doses, at a range of 25–100 µM of DPT-1, induced cellular death via an apoptosis
pathway (Figure 8A). DPT-2 at the same doses induced early apoptosis at a low range of
0.78–12.5 µM, whereas higher doses at a range of 25–100 µM induced toxic, necrotic death
(Figure 8B). In resumption, that kind of sudden cellular death is desired in cancer cell lines;
however, in the surrounding tissues it could also be pro-inflammatory [28,29].
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Figure 7. Cellular death in control and DPT-1- and DPT-2-treated A549 (A) and H1299 cells (B) treated
for 72 h at a dose of 50 µM, followed by flow cytometry measurements of Annexin-V apoptosis assay
and iodium propide (PI) staining (normal cells: Annexin-V−/PI−; early apoptosis: Annexin-V+/PI−;
late apoptosis: Annexin-V+/PI+; necrosis: Annexin-V−/PI+).
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Figure 8. Dose-dependent cellular death in control and (A) DPT-1- and (B) DPT-2-treated A549
cells treated for 72 h, followed by flow cytometry measurements of Annexin-V apoptosis assay and
iodium propide (PI) staining (normal cells: Annexin-V−/PI−; early apoptosis: Annexin-V+/PI−; late
apoptosis: Annexin-V+/PI+; necrosis: Annexin-V−/PI+).

2.4. Microscopic Long-Term Live Observations

The long-hour microscopic observations [30,31] shown in Figures 9 and 10 confirm all
previous observations.
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Figure 9. Dose-dependent cellular death in control and DPT-1- and DPT-2-treated BEAS-2B cells
treated for 72 h, followed by Live Cell Analyzer images acquisitions. Magnification 100×; scale
bar 500 µM.

Using both analogs of phenothiazines DPT-1 and DPT-2, at the highest doses of
100 µM for 72 h of exposure, typical morphological changes for cellular death could be
observed in lung epithelial cells BEAS-2B (Figure 9) or in lung carcinoma A549 cells
(Figure 10). The cells stayed mostly unattached and floating with some shrunken, which
indicates a late stage of apoptosis and necrosis. Using cancer cell lines A549 and H1299,
the cellular apoptotic and necrotic death was confirmed, followed by cell cycle cytometric
analysis for the sub-G1 fraction (please compare Figures 4 and 5). Typical images taken
from the BEAS-2B (Figure 9) or A549 cells (Figure 10) at a concentration of 50 µM resulted
in a survival fraction at a level of 5–30% in comparison to the untreated controls, which
was similar for DPT-1 and DPT-2 in A549 and H1299 cells, respectively (Figure 2 and 3).
Such observations additionally explained the results of Annexin-V apoptosis assays, where
some of the cells, mainly carcinomas, presented an early apoptosis fraction (Figures 6–8).
Lower doses, 25 µM, showed selectivity of phenothiazines, with more neutral impact on the
healthy epithelial BEAS-2B cells (Figure 9) and slight cytotoxicity against lung carcinoma
A549 (Figure 10), mostly for DPT-1.

2.5. ADME Analysis and Target Prediction of DPT-1 and DPT-2

The tested compounds, DPT-1 and DPT-2, were subjected to preliminary in silico anal-
yses of pharmacokinetic parameters, an ADMET profile with bioavailability analysis, and
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prediction of biological targets using Web platform SwissADME [32] and Way2Drug [33]
(Table 2).
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Table 2. The molecular descriptor and parameters of Lipinski’s, Ghose’s and Veber’s rules for DPT-1
and DPT-2 [32].

No Molecular
Mass (M)

H-bond
Acceptors

H-bond
Donors

Rotatable
Bonds TPSA Lipinski’s

Rules
Ghose’s

Rules
Veber’s
Rules

DPT-1 201 2 1 0 63 + + +
DPT-2 386 3 0 4 57 + + +

These compounds show no significant differences in molecular descriptors and ADME
parameters (Tables 3 and 4). Basically, they differ in lipophilicity and molecular mass,
which will undoubtedly contribute to the achievement of the molecular target. All tested
derivatives meet the requirements of Lipinski’s rule of five and Ghose’s and Veber’s rules
which point out that they could become drugs with the ability to be used as orally active
drugs (Table 2). The tested compounds are characterized by positive passive human
gastrointestinal absorption (GI), the ability to penetrate the blood-brain barrier (BBB), the
ability of the permeability glycoprotein (Pgp), and the interaction with cytochromes P450
(major isoforms (CYP1A2, CYP2C9, CYP2D6)) (Table 3).
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Table 3. The ADME activities predicted for DPT-1 and DPT-2 [32].

No LogPcalc.
GI

Absorption
BBB

Permeant
Pgp

Substrate
CYP1A2
Inhibitor

CYP2C9
Inhibitor

CYP2D6
Inhibitor

DPT-1 1.78 high + + + + +
DPT-2 4.45 high + + + + +

Table 4. Probability of activities of DPT-1 and DPT-2 using PASS Program [33].

DPT-1
Probability of Activity

DPT-2
Probability of Activity

Histone deacetylase SIRT1 stimulant
Histone deacetylase stimulant

Angiogenesis factor

X-methyl-His dipeptidase inhibitor
Tumor necrosis factor alpha release inhibitor

Immunomodulator
Anti-inflammatory Angiogenesis factor

Using the Internet platform Way2Drug [33] and the PASS (Prediction of Activity Spectra
for Substance) application available in it, the probability of interaction with the molecular
targets of the tested compounds DPT-1 and DPT-2 was determined in order to confirm the
validity of the research.

The obtained results (Table 4) confirmed the high probability of the compounds having
an influence on the structure of histones and the tumor necrosis factor and an influence on
angiogenesis. Additionally, possible anti-inflammatory and immunomodulatory effects
were indicated respectively for DPT-1 and DPT-2.

3. Materials and Methods
3.1. Chemicals

Tricyclic 10H-3,6-diazaphenothiazine (DPT-1, with two pyridine rings) and penta-
cyclic 7-(3′-dimethylaminopropyl)diquinothiazine (DPT-2, with two quinoline rings) were
obtained according to previously described methods [20,21]. The 1 mM stock of both
phenothiazines was prepared in 100 % DMSO (Sigma Aldrich, Poznań, Poland), and before
addition to the cells, the appropriate solutions, in fresh, complete sterile DMEM-F12, were
prepared (final solutions used for biological experiments were as follows: 100, 50, 25, 12.5;
6.25; 3.15; 1.56; 0.78 µM). DMEM-F12 medium, trypsin, sodium phosphate buffer saline
(PBS, pH = 7.4), and doxorubicin were bought from Merck (Poznań, Poland). Annexin-V
apoptosis assay was obtained from BioLegend (San Diego, CA, USA). Propidium iodide
solution (PI) was obtained from BD Biosciences (San Jose, CA, USA). Fetal bovine serum
(FBS, EURx, Gdańsk, Poland), physiological saline (PBS without Ca and Mg, PAN-Biotech
Gmbh, Aidenbach, Germany), and Annexin-V binding buffer (BD Biosciences, San Jose,
CA, USA) were used after dissolving sterile H2O 10 times prior to usage [23].

3.2. Cell Culturing

Biological experiments were conducted on a panel of cancer cell lines, adenocarcinoma
human alveolar basal epithelial cells (A549), and human non-small cell lung carcinoma
cell line (H1299). In order to determine the potential side effects of treatments, research
was performed simultaneously on the human bronchial epithelial cells (BEAS-2B) and
normal human dermal fibroblasts (NHDF); all cells received were received from the ATCC
collections (Manassas, VA, USA). Cells were grown in DMEM F-12 medium (PAA, War-
saw, Poland) supplemented with 10% (v/v) heat-inactivated FBS (Eurx, Gdańsk, Poland)
and 100 units/mL penicillin and 100 µg/mL streptomycin (Sigma-Aldrich, Darmstadt,
Germany) at 37 ◦C in a humidified atmosphere with 5% CO2 [23,27,29].

3.3. MTT Viability Assay

Examination of cytotoxicity using MTT assay is the most convenient and fastest
method for screening of cytotoxic action of the drugs. MTT assay is a colorimetric method
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for evaluation of cell viability based on mitochondrial dehydrogenase enzyme activity. The
survival rate of the cells was calculated relative to the control cells, grown in standard
conditions. Using this assay, IC50 values were calculated for each cell line treated with
standard compounds and drugs. For MTS assay, cells were seeded in 96-well plates at
1 × 104 cells/well in 0.2 mL completed medium 24 h before drug treatment. In the next
step, cells were incubated for 72 h with the compounds (doses: 100; 50; 25; 12.5; 6.25; 3.15
and 1.56 µM) and then were washed three times with PBS (PAA, Laboratories GmbH,
Cölbe, Germany). They were then incubated for 2 h with 20 µL of MTT solution (0.5
mg/mL; Promega) in 100 µL of PBS (PAA, Laboratories GmbH, Cölbe, Germany) until
the color in the control changed from light yellow to purple, and the colorimetric reaction
was developed. Finally, the formazan crystals were dissolved in 75 µL of isopropanol/HCl
mixture (v/v 1:0.04). The levels of absorbance were measured at a wavelength of λ = 570 nm
using a microplate spectrophotometer (Epoch; BioTek, Winooski, VT, USA) and expressed
as a % of the untreated control, named the survival fraction [SF] [23,27,29].

3.4. Cell Cycle Analysis and Apoptosis/Necrosis Analysis via Flow Cytometry Using Annexin-V Assay

Many drugs work by inhibiting cell proliferation and causing cell cycle blockage. Us-
ing flow cytometry, the impact of new compounds on the cell cycle were determined. Cells
incubated with compound were also analyzed for cellular death pathways, apoptosis induc-
tion, followed by Annexin-V assay. Annexin-V is a protein that binds phosphatidylserine
and allows early detection of apoptosis; additionally, iodium propide staining distinguishes
it from necrosis. For apoptosis and cell cycle assays the cell cultures were plated in 6-well
plates at a confluence of 1 × 105 in 2 mL of completed fresh DMEM-F12 medium, 24 h
before drugs addition. An Aria III flow cytometer (Becton Dickinson; Franklin Lakes, NJ,
USA) was used. The flow cytometry analysis was done on a free Flowing Software 2.5.1
program (by Perttu Terho, the Cell Imaging and Cytometry Core, Turku Bioscience Centre,
Turku, Finland, with the support of Biocenter Finland) [23,27,29].

3.5. Microscopic Observation

Microscopic observation and images acquisition with Live Cell Analyzer (JuLI™ Br;
NanoEnTek Inc., Seoul, Korea) was used to directly observe on-plate confluence, density,
and cell viability and images acquisitions [30,31].

3.6. Statistical Analyses

The results are expressed as means± SD from three independent experiments. Results
were analyzed in MS Excel 2010. Statistical significance was calculated with a t-test, and a
p-value < 0.05 is indicated with a star [23–31].

3.7. ADME Analysis and Target Prediction

In silico analyses of the molecular descriptor and parameters of Lipinski’s, Ghose’s
and Veber’s rules and an ADME profile were carried out using a Swiss internet server
SwissADME [32]. Prediction of biological targets was carried out using web platform
Way2Drug [33].

4. Conclusions

In this publication, we presented two synthetic diazaphenothiazines, tricyclic 10H-3,6-
diazaphenothiazine (DPT-1, with two pyridine rings) and pentacyclic 7-(3′-dimethylaminopropyl)
diquinothiazine (DPT-2, with two quinoline rings), demonstrating significant in vitro anti-
cancer activity against lung cancer cell lines, the human lung carcinoma A549 and non-small
lung carcinoma H1299, and protective potential to healthy cell lines, BEAS-2B and NHDF.
The reference compound in the conducted studies was doxorubicin. Using a 72 h MTT
viability assay (Promega) we observed a strong cytotoxic activity of DPT-1 and DPT-2.

Both compounds appear to be good candidates for in vitro tests, especially in 3D
cultures, where a mixture of sensitive healthy cell lines is used together with chemoresistant
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cancer cell lines. A low lethal effect observed in NHDF or BEAS-2B cells at IC50 doses
against A549 or H1299 cells confirms promising selectivity against cancer. The analysis of
the cell cycle revealed different pathways of the mechanism of anticancer activity induced
by the studied diazaphenothiazines. DPT-1 activated the process of apoptosis, in contrast
to DPT-2, which activated the necrosis phase. Both tested compounds showed selectivity
of action. Preliminary in silico analyses of ADME parameters and the biological profile
confirmed the validity of our research.

Based on these primary findings, it can be concluded that DPT-1 and DPT-2 possess
potential as chemotherapeutic agents. Further advanced in vivo and enzymatic studies
are planned.
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12. Pluta, K.; Jeleń, M.; Morak-Młodawska, B. The Smiles rearrangement in the syntheses of azaphenothiazines. Part I. J. Mol. Struct.

2020, 1204, 127501. [CrossRef]
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