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SUMMARY

Levodopa-induced dyskinesia (LID) refers to involuntary motor movements of chronic use of levodopa in
Parkinson’s disease (PD) that negatively impact the overall well-being of peoplewith this disease. Themo-
lecularmechanisms involved in LIDwere investigated throughwhole-blood transcriptomic analysis for dif-
ferential gene expression and identification of new co-expression and differential co-expression net-
works. We found six differentially expressed genes in patients with LID, and 13 in patients without LID.
We also identified 12 co-expressed genes exclusive to LID, and six exclusive hub genes involved in 23
gene-gene interactions in patients with LID. Convergently, we identified novel genes associated with
PD and LID that play roles in mitochondrial dysfunction, dysregulation of lipid metabolism, and neuroin-
flammation. We observed significant changes in disease progression, consistent with previous findings of
maladaptive plastic changes in the basal ganglia leading to the development of LID, including a chronic
pro-inflammatory state in the brain.

INTRODUCTION

Parkinson’s disease (PD) is the secondmost common neurodegenerative disease and the one amongmovement disorders, affecting 1–2% of

the population over the age of 60. PD is the fastest-growing neurological condition andmay become the primary neurodegenerative disease

in the next two decades.1,2 PD is a complex and multisystemic disease, characterized by widespread alpha-synuclein aggregates, mitochon-

drial and lysosomal dysfunction, synaptic transport, and neuroinflammation, which lead to the death of neurons, especially dopaminergic.3,4

There are currently no specific diagnostic biomarkers to detect its early stages, and diagnosis occurs decades after the onset of neuronal

degeneration.3

The available treatments for PD are effective in alleviating the symptoms, moreover, does not modify the neurodegenerative process. The

main treatment with levodopa significantly improves motor symptoms of people with PD.5,6 Levodopa can cross the blood-brain barrier and

restores the dopamine levels. Despite its effectiveness in the early stages of treatment, disease progression coupled with the need for

increased levodopa dosage can lead to the development of levodopa-induced dyskinesia (LID), characterized by involuntary movements.5,7

LID can affect approximately 30–51.2%of people with PD after only five years of levodopa treatment, becomingmore prevalent as the disease

progresses, particularly in female individuals and those with a younger onset age of PD.5,8,9

Several known molecular mechanisms contribute to the development of LID, such as the dysregulation of dopamine storage and release

control in the synaptic cleft, increased D1 receptors in post-synaptic neurons, release of dopamine by serotonergic and noradrenergic neu-

rons as a replacement of the nigrostriatal degeneration, and greater spontaneous glutamate release, all of which lead to overstimulation of

the direct pathway in the basal ganglia, resulting in further movement dysregulation.7,10–13 Shifts on gene expression at various levels may

affect neurotransmitters, but there is still much to explore about the underlying molecular processes involved in the onset and pathophysi-

ology of LID to seek better treatment strategies.5,10

System biology approaches such as differentially expressed genes (DEGs) and differentially co-expressed gene network (DCGNs) in LID is

still unexplored, thatmay help identifying altered gene-gene interactions between conditions.14 The present study aimed at investigating the
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gene expression, co-expression, and differential gene co-expression based on the transcriptome analysis of peripheral blood in controls (CT)

and people with PD with LID (PD-D group) and absence of LID (PD-ND group).

RESULTS
Epidemiological and clinical data

Our data analysis flowchart is depicted in Figure 1. A comprehensive analysis of clinical and epidemiological data revealed that the PD-D

group exhibited lower age at disease onset, longer disease and levodopa use durations, and higher levodopa doses when compared to

the PD-ND group. Sex and age at evaluation were matched between groups and the analysis is represented in the Table 1. (See also the

Table S1; Figure S1 for general data of samples and RNA-sequencing).

Differential gene expression reveals new blood biomarkers in levodopa-induced dyskinesia

We conducted individual comparative analysis of the PD-D and PD-ND groups among themselves and with the CT group. No DEG was

observed between PD-D vs. PD-ND samples. When comparing each PD group individually with the CT, we found 13 DEGs in PD-ND and

six DEGs in PD-D group.We conducted an exclusion analysis considering all the results and identified ten exclusive DEGs in PD-ND and three

exclusive DEGs in PD-D. (DEGs are represented in Table 2; Figures 2A and 2B).

Gene Ontology analysis of the 6 DEGs between PD-D vs. CT primarily enriched for nucleotide biosynthesis and energy metabolism, high-

lighting the genesACAT1 and TK2 (Figure 2C). When investigating the 13 DEGs between PD-ND vs. CT, the genesHBA1,HBA2,CYTB,ND5,

and ND6 were related to gas transport, response to reactive oxygen species (ROS), and mitochondrial metabolism (Figure 2D).

Our research identified ten new transcripts associated with PD and two of these new transcripts (HBBP1 and ENSG00000281383) have not

been thoroughly studied in terms of their function.We also accessed the potential of prediction of PD for these genes through the ROC curve.

The HBA2, HBBP1, and ENSG00000281383 genes were commonly altered in both PD-ND and PD-D groups and exhibited an area under the

curve (AUC) over 0.8 (Figure S2A).

The gene set enrichment analysis (GSEA) for PD-NDgroup revealed that themain exclusive enriched pathways for genes with high expres-

sion levels were DNA methylation, RNA polymerase I promoter opening, assembly of the ORC complex at the origin of replication, SIRT1

negatively regulates rRNA expression and HDMs demethylate histones. Pathways with lower enrichment score were RUNX1 regulates tran-

scription of genes involved in differentiation of hematopoietic stem cells, DNA double-strand break repair, metabolism of carbohydrates,

heme signaling, and binding and uptake of ligands by scavenger receptors (Figure S2B).

In PD-D group, GSEA revealed that the set of over-expressed genes was particularly associated with the fatty acid metabolism pathways,

NCAM1 interactions, integrin cell surface interactions, extracellular matrix organization, and neutrophil degranulation. The main pathways

enriched for the under-expressed genes were PD-1 signaling, mitochondrial translation, mitochondrial metabolism, RNA processing, and im-

mune system. Details of these pathways and the involved genes are represented in Figure S2C.

Figure 1. Flowchart for RNA-Seq data analysis to investigate differential expression, co-expression, and differential co-expression
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Distinct gene co-expression patterns in levodopa-induced dyskinesia

Gene co-expression analysis was performed for 15,372 transcripts regarding CT, PD-ND, PD-D groups, and a pool of samples (CT + PD-ND+

PD-D). Sixmodules of co-expressed geneswere identified in the PD-Dgroup and threemodules in the PD-NDgroup. In the overall analysis by

exclusion gene modules and pathways we identified 92 gene-gene interactions in PD-D group and 98 in PD-ND group (all results of co-

expression analysis can be observed in the Table S2). The complete network of co-expressed genes in PD-ND and PD-D groups can be found

in Figures S3A and S3B.

To focus on exclusive interactions, we systematically compared the interaction results across different groups (Figure S3C). Notably, 23

interactions involving 25 genes were presented in the PD-ND group and 12 exclusive interactions involving 12 genes were found in the

PD-D group (Figures 3D and 3E).

The over representation analysis (ORA) results revealed significantly enriched pathways for the co-expressed gene modules in all investi-

gated groups (FDR-adjustedp value <0.05). Specifically, 54 enriched pathways were found in the PD-Dmodules, two in PD-ND, two in CT, and

31 in the pooled sample group. The analysis of exclusive pathways was conducted to identify those specifically associated with PD-ND or

PD-D groups. We identified 24 exclusive pathways enriched with PD-D (Figure 3F; Table S3) and the main of these pathways associated

with LID were showed in Figure 3G. No metabolic pathway was exclusively represented in the PD-ND group.

Exclusive dyskinesia-specific differential co-expression network

We conducted a comprehensive analysis of differential co-expression patterns in people with PD with and without LID. An analysis of 15,372

transcripts highlighted differential co-expressed links (DCLs) and differentially co-expressed genes (DCGs). In the PD-D group, we identified

79 gene-gene interactions, while in the PD-ND group, 3,055 interactions were detected. All interactions were specific to each investigated

group, and six DCGs were identified in the PD-D group and 200 in the PD-ND group. Upon examining the similarity between the two inves-

tigated groups using the Jaccard index, we confirmed that the gene sets represented in the DCLs of PD-D and PD-ND do not show similarity

(Jaccard = 0.0), implicating in distinct molecular mechanisms in each condition.

We used the DCGs from each group to filter their respective DCLs to investigate specific interactions involving these hub genes. In PD-ND

group, 200 hub genes are involved in 48 gene-gene interactions among themselves (Figure 4A), and in PD-D we observed that six hub genes

are involved in 23 gene-gene interactions (Figure 4B). GeneOntology analysis for the biological processes in PD-D group was conducted, but

no enriched processes were identified through the STRING, g:Profiler, or ToppGene platforms.

The Gene Ontology analysis was performed for the complete DCLs of the PD-D and PD-ND groups and found that all enriched pathways

were also exclusive to each condition. We identified 152 enriched biological processes in the PD-D group and 220 in the PD-ND group. Sub-

sequently, we performed the exclusion analysis, revealing 110 biological processes exclusive to PD-D group and 178 exclusives to PD-ND

group. With a focus on LID, the top 10 most significant processes enriched in the PD-ND and PD-D groups were represented in

Figures 4C and 4D, respectively.

Finally, we analyzed the overall distribution of genes identified in the DCLs andDCGs and intersected with the results of co-expression. No

overlap was observed between the co-expressed and DCGs in the PD-ND group (Figure 4E) and the PD-D group (Figure 4F). Overall, the

analysis revealed a network of DCGs specific to the PD-D group, which helps elucidate the genetic background involved in the LID.

DISCUSSION

In our study, we detected DEGs, gene co-expression networks, and differential co-expression in the blood of people with PD, indicating sub-

sequent molecular adaptations throughout the disease progression. To better discuss our results, we divide into sections offering new in-

sights into molecular changes in PD development and dyskinesia.

Table 1. Epidemiological and clinical data and inclusion/exclusion criteria of patients with PD and control group

General Characteristics CT (n = 20) PD-ND (n = 11) PD-D (n = 15) p value

Sex (Male/Female) 13/7 8/3 11/4 0.839a

Age at clinical evaluation 59.50 (53–64) 54 (49.5–60) 53 (50–60) 0.228c

Age at onset of PDb – 50 (46–55) 41 (38.5–49) 0.042d

Disease duration (years)b – 4 (2–7) 10 (6–11.5) 0.0006d

LEDD (mg/day)b – 550 (300–600) 1200 (737.5–1562) 0.001d

Dose of levodopa (mg/day)b – 300 (250–475) 700 (450–1188) 0.003d

Levodopa duration (years) – 3 (1–4.5) 10 (6.5–12) 0.0001d

CT, control group; NA, not applied; PD-D, people with Parkinson’s disease and levodopa-induced dyskinesia; PD-ND, people with Parkinson’s disease without

levodopa-induced dyskinesia.
aChi-squared test comparing frequencies between CT, PD-ND and PD-D groups.
bValues in median (interquartile range).
cKruskal-Wallis test comparing medians between CT, PD-ND and PD-D groups.
dMann-Whitney test comparing medians between PD-ND and PD-D groups.
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Differential gene expression analysis reveals novel biomarkers in Parkinson’s disease

Our results showed no significant difference in gene expression between the PD-D and PD-ND groups. However, as observed in the co-

expression analysis results, a composition of different genes was co-expressed within their respective groups. This finding suggests that

the fundamentalmolecularmechanismsdistinguishing these groupsmay involve complex interaction and regulation ofmultiple genes, rather

than isolated changes in gene expression.

DEG analysis revealed ten new genes associated with PD. This finding highlights the complexity of the genetic architecture of PD, which is

still not well understood, particularly in admixed populations from the Amazon.15 Of these, three were downregulated in PD overall with

AUC > 80% (HBA2, HBBP1, and ENSG00000281383).

Currently, there is no available information regarding the function of the long non-coding RNAs (lncRNA) ENSG00000281383 and its in-

teractions with other genes. There is also no information on the role of HBBP1 in PD, but studies have associated its downregulation with

reduced hemoglobin levels and the development of beta-thalassemia.16,17 There are no previous data associating these genes with PD,

and a potential regulatory role in neurodegenerative mechanisms of PD needs further clarification through functional investigations.

HBA1 andHBA2 are genes encoding the alpha subunit of hemoglobin, which is expressed in blood cells and dopaminergic neurons of the

mesencephalon, where its under-expression is linked to disease severity in postmortem brain tissue from people with PD.18–21 Furthermore,

the downregulation ofHBA2 in the blood observed in our results may indicate a reduction in oxygen transport in the body and, consequently,

a depletion of its availability in neurons, contributing to oxidative stress and mitochondrial damage, a hallmark characteristic in PD. Another

evidence of mitochondrial damage observed in our results is the reduction in the heme signalingmetabolic pathway, a molecule produced in

the mitochondria that is essential for gas transport in hemoglobin in blood cells and in dopaminergic neurons susceptible to degeneration in

PD, as well as in other protein complexes such as the cytochrome family and peroxidase, which are essential for the cellular response to oxida-

tive stress.22

Dysregulation of mitochondrial function and stress response occurs in early and intermediate stages of PD

Mitochondria are organelles that play a crucial role in cellular homeostasis and survival. Mitochondrial dysfunction is described in PD, where

genetic and environmental risk factors contribute to the dysregulation of its bioenergetics, biogenesis, transport, and internal quality

Table 2. Characterization of differentially expressed genes between peoplewith Parkinson’s disease and control subjects, according to the presence of

levodopa-induced dyskinesia

PD–ND vs. CT

Gene Log2 Fold-Change p value p. adjusted (FDR) Regulation

MT-CYB �0.74 <0.001 0.005 Downregulated

CWC27a �0.77 <0.001 0.018 Downregulated

MT-ND5 �0.85 <0.001 0.005 Downregulated

RAPH1a �1,11 <0.001 0.003 Downregulated

HBA1 �2,10 <0.001 0.005 Downregulated

MT-ND6 �2,15 <0.001 0.008 Downregulated

MT-TYa �2,38 <0.001 0.040 Downregulated

MT-TFa �2,55 <0.001 0.002 Downregulated

MT-TQa �2,62 <0.001 0.012 Downregulated

MT-TEa �2,71 <0.001 0.040 Downregulated

HBA2 �2,75 <0.001 <0.001 Downregulated

HBBP1a �3,89 <0.001 <0.001 Downregulated

ENSG00000281383a �4,23 <0.001 <0.001 Downregulated

PD-D vs. CT

BTNL8a 0.98 <0.001 0.005 Upregulated

TK2 0.84 <0.001 0.009 Upregulated

ACAT1a �0.65 <0.001 0.045 Downregulated

HBA2 �1.84 <0.001 0.011 Downregulated

ENSG00000281383a �2.66 <0.001 0.003 Downregulated

HBBP1a �2.84 <0.001 0.003 Downregulated

CT, control group; PD-D, people with Parkinson’s disease with levodopa-induced dyskinesia; PD-ND, people with Parkinson’s disease without levodopa-induced

dyskinesia; FDR, false discovery rate.
aNew transcripts associated with Parkinson’s disease.
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control.23 Exclusive to people with PD before the onset of motor complications, such as LID (PD-ND group), we observed downregulated

mitochondrial genes involved in the electron transport chain (MT-CYB, MT-ND5, and MT-ND6) and mitochondrial transfer RNAs, as MT-

TY, MT-TF, MT-TQ, and MT-TE. Alterations in MT-CYB, MT-ND5, and MT-ND6 have been linked to the dysregulation of ATP synthesis

and an increase in ROS, which contribute to the elevated damage to bothmitochondrial DNA and nuclear DNA.24–27 Furthermore, the disrup-

tion of tRNA metabolism becomes critical for ATP production and protein synthesis in people with PD.28

The gene co-expression analysis for the PD-NDgroup resulted in a network of genes involved inmitochondrial functions, such as the regu-

lation of apoptosis, response to stress (LYN, PAG1, and MAP3K1), regulation of glucose levels (GAB1 and IRS2), and neurodegeneration

(ROCK1 and CXCR4).29–35 Also, the PIK3CB gene showed a direct or secondary interaction with all genes involved in these processes. A

GWAS study conducted in multi-ethnic populations identified new genes associated with PD, including IRS2 and a gene from the PIK3CA

family (related to the PIK3CB gene).36 The PIK3CB gene generates a kinase protein primarily associated with immune signaling and apoptosis

regulation.37,38 Regarding IRS2, there is an increase in phosphorylation and a simultaneous reduction in the IRS2 gene, along with a decrease

in insulin signaling in the basal ganglia of an animal model of PD.31 Furthermore, studies have shown that the dysregulation of insulin path-

ways, as seen in type II diabetes mellitus, may be a risk factor for PD. These pathways are typically altered in the brains of people with PD,

contributing to neurodegeneration and affecting various mitochondrial and autophagy processes.39

The differential gene co-expression analysis revealed over 3,000 statistically significant interactions and 178 unique metabolic processes

for the PD-ND group, converging toward mitochondrial functions such as cellular respiration, oxidative phosphorylation, and the electron

transport chain, alongwithmethylation and ribosomal RNAmetabolic processes. All these factors contribute to the persistent oxidative stress

and mitochondrial energy crisis observed in PD, which suggest a series of responses involving the activation of the immune response,

response to ROS, DNA repair systems, and selective mitophagy. As mitochondrial damage and cellular stress persist, a cascade of molecular

signals leads to programmed neuronal death.40

Dysregulation of lipid homeostasis, endoplasmic reticulum stress, and immune signaling may be related to LID

DEG analysis demonstrated an increased expression of TK2, which is produced in the nucleus and plays role in nucleotide synthesis and the

maintenance of mitochondrial DNA. Considering LID usually emerges in advanced stages of the disease, this overexpression is likely to occur

in response to frequent oxidative stress and mitochondrial damage.41 Variants in this gene have already been identified in individuals with

mitochondrial maintenance disorders, and a comprehensive proteomic analysis observed high expression of this protein in synaptosomes

of the substantia nigra in the brains of people with PD.42,43

ACAT1 gene was under expressed and is linked to alterations in other neurological phenotypes, and its inhibition led to the stimulation of

autophagy and lysosomal activity in an Alzheimer’s animal model.44–49 This gene is typically enriched in the mitochondria-associated endo-

plasmic reticulum membrane, regulating the connection between these organelles.45

In the co-expression analyses of the PD-D group, SEC22B and TMED10 are hub genes identified in our analysis. These genes are respon-

sible for the regulation of protein and vesicle trafficking associated with the endoplasmic reticulum and the Golgi complex.50,51 Other co-ex-

pressed genes, such as HBA1 and RPS/RPL family genes involved in oxygen transport and protein synthesis regulation, respectively, were

observed in the PD-D group. A module containing the genes KLRB1, GZMA, GZMK, CD2, and CD2AP, which mediate immune response,

neuronal survival, and membrane trafficking, was also observed.52–55 Furthermore, the enrichment analysis of the co-expression network in

LID pointed to important pathways that may be involved in the uptake and metabolism of levodopa, such as amino acid metabolism,

axon guidance, L1CAM interactions, and extracellular matrix organization. This is noteworthy since these processes could lead to increased

BBB permeability,56,57 potentially influencing the bioavailability of levodopa in the brain and further contributing to dopamine imbalance.

Similarly, the results of differential co-expression between the PD-D group and control subjects also converged on modifications in genes

associated with the following functions: endoplasmic reticulum stress and lipid and protein homeostasis (SIL1, BORCS6, SWT1, TTK, TBC1D1,

CDC42BPA, and DCUN1D1)58–61; DNA repair and cell survival (ATAD5, APLF, PARPBP, and ZNF280B)62–65; mitochondrial metabolism, regu-

lation of cell death, immune signaling, and neurogenesis (CISD1, ALAS1, TLR4, and CDC27)66–69; and reorganization of the cytoskeleton and

formation of the mitotic spindle, cilia and flagella, microtubules, and centrioles (CFAP45, CEP57L, KIF11, and TBC1D31).70–74 Except for

CFAP45 and RPL17P39, the remaining DCGs do not have a described function. They are classified as long intergenic non-coding RNAs

(lincRNA) such as LINC02596 and ENSG00000279082, or lncRNAs like ENSG00000261416 and STX16-NPEPL1. Functional studies aiming

to identify the regulatory role of these non-coding RNAs should be conducted for a better understanding of their involvement in PD.

Supporting our results, the dysregulation of lipid metabolism and neuroinflammation have also been identified in the plasma and cere-

brospinal fluid metabolic profiles of patients with LID.75 Furthermore, a recent study conducted a transcriptomic analysis in the peripheral

blood of PD patients and observed several DEGs involved in protein synthesis and ribosomal function.76 Finally, some studies have demon-

strated that the use of tetracyclines has significant anti-inflammatory therapeutic potential. For instance, doxycycline has been shown to

Figure 2. Differentially expressed genes and enrichment analysis

(A) Boxplot of DEG in PD-ND.

(B) Boxplot of DEG in PD-D.

(C) GO for differentially expressed genes of PD-ND group, with enriched pathways (left) and representative genes for the main pathways (right).

(D) GO for differentially expressed genes of PD-D group, with enriched pathways (left) and representative genes for the main pathways (right). CT, control group;

PD-D, people with Parkinson’s disease with levodopa-induced dyskinesia; PD-ND, people with Parkinson’s disease without levodopa-induced dyskinesia; DEG,

differentially expressed genes; GO, Gene Ontology. p.adjust, p-value adjusted by FDR.
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protect dopaminergic neurons from 6-hydroxydopamine (6-OHDA) induced degeneration and reduce LID in hemi parkinsonian rats, indi-

cating that there may be a pro-inflammatory state contributing to the onset of LID.77–79

Transcriptome reveals altered molecular plasticity in the developmental progression of PD and LID

According to these results, we suggest that the disease progression, from the early to the advanced stage when the onset of LID occurs, is

crucially influenced by mitochondrial damage. Initial mitochondrial changes promote a series of immune and cellular survival responses that

enhances oxidative stress, leading to a cycle of mitochondrial dysfunction across the PD neurodegenerative process. Simultaneously, other

mechanisms (alterations in nucleotide and lipid metabolism, inflammation, protein synthesis, endoplasmic reticulum stress, modifications in

the membrane, and extracellular matrix) are influenced by multiple dysfunctions in mitochondria and enhances mitochondrial damage.

Together, these pathogenic processes may lead to a chronic pro-inflammatory state in the basal ganglia, which has been associated with

the development of LID.80–87 See the details of these processes in the Figure 5.

In conclusion, we have identified novel genes and gene-gene interaction networks associated with the progression of PD and the onset of

LID. Our findings align with previous research on the pathophysiology of LID, indicating that dynamicmaladaptive plastic changes contribute

to motor complications. Furthermore, genes such as HBA2, HBBP1, and ENSG00000281383 are of particular interest, as they seem to play a

significant role in PD progression and the development of LID. In individuals with PD but without motor complications, we noticed downre-

gulation of mitochondrial genes involved in the electron transport chain (MT-CYB, MT-ND5, andMT-ND6). These alterations are associated

with dysregulation of ATP synthesis and an increase in reactive oxygen species (ROS). Furthermore, gene co-expression network analysis in

the PD-ND group revealed a network of genes associated with mitochondrial functions, apoptosis regulation, stress glucose level regulation,

and neurodegeneration.Our findings suggest thatmitochondrial damage plays a crucial role in the progression of PD and neuroinflammatory

chronic stages in PD. Our study highlights the importance of addressing mitochondrial dysfunction as a potential therapeutic target in man-

aging PD progression and the development of LID.

Limitations of the study

We acknowledge certain limitations that could be addressed in future research. While blood serves as an excellent tissue for investigating

systemic alterations in individuals, it is known that the administration of levodopa can cause changes in gene expression in inflammatory path-

ways in the central nervous system (CNS) and blood, as dopamine participates in the regulation of the immune system through its binding to

DAR receptors, which are also present in the blood cells.88,89 Thus, our findings related to inflammatory pathways may be more linked to pe-

ripheral events than to CNS events. To study this more precisely, cerebrospinal fluid (CSF) samples or the isolation of extracellular vesicles

from blood derived from the CNS are good strategies, representingmore specifically molecular changes in the CNS that occur during neuro-

degeneration in PD.

Other limitations include the absence of experimental validations through in vitro or in vivomodels of the identified genes and pathways;

the lack of a prodromal PD group, which would be crucial for better distinguishing the CT; the small number of samples, which could be

expanded to improve the study’s statistical power; and the lack of functional studies to confirm the role of the identified transcripts in PD

and LID.

Among the strengths, we highlight that by pairing the groups for age and gender, controlling for various other variables, we present a

controlled analysis of gene expression. Also, we explored the data using various methodologies and identified a convergence of results, con-

firming the pathways and mechanisms involved in PD and LID. We emphasize the importance of genetically characterizing a highly diverse

and underrepresented population on the global stage, so that themolecularmechanisms described here can serve as a foundation for further

studies aiming to improve the quality of life for patients and explore new therapeutic strategies.

RESOURCE AVAILABILITY

Lead contact

Any additional information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Ândrea Ribeiro-dos-Santos
(akelyufpa@gmail.com).

Materials availability

This study did not generate new unique reagents.

Figure 3. Networks of co-expressed genes

(A) Complete Network of co-expressed genes in PD-ND.

(B) Complete Network of co-expressed genes in PD-D. Network of exclusive co-expressed genes in PD-ND group.

(C) Number of intersections of gene-gene interactions across all groups.

(D) Network of exclusive co-expressed genes in PD-ND group and biological process enriched to each gene.

(E) Network of exclusive co-expressed genes in PD-D group and biological process enriched to each gene.

(F) Number of intersections of enriched pathways for co-expressed genes.

(G) The main pathways enriched in the group of patients with dyskinesia. CT, control group; PD-D, people with Parkinson’s disease with levodopa-induced

dyskinesia; PD-ND, people with Parkinson’s disease without levodopa-induced dyskinesia.
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Data and code availability

� All raw sequences are deposited at the European Nucleotide Archive (ENA), with the accession number PRJEB72411 and are publicly available as of the
date of publication.

� All data analysis codes are available in the GitHub repository: https://github.com/tati-souz/RNA-Seq-data-analysis.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
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Figure 4. Networks of differentially co-expressed genes

(A) Network of DCLs of hub genes involved in 48 gene-gene interactions among themselves in PD-ND group, filtered by DCGs.

(B) Network of DCLs of hub genes involved in 23 gene-gene interactions exclusive co-expressed genes in PD-D group, filtered by DCGs.

(C) Top 10 most significant biological processes enriched for differentially co-expressed genes in the PD-ND.

(D) Top 10 most significant biological processes enriched for differentially co-expressed genes in the PD-D.

(E) Overall intersection of co-expression and differential co-expression results in PD-ND group.

(F) Overall intersection of focused LID co-expression and differential co-expression results. PD-D, people with Parkinson’s disease with levodopa-induced

dyskinesia; PD-ND, people with Parkinson’s disease without levodopa-induced dyskinesia; DCGs, differentially co-expressed genes; DCLs, differentially co-

expressed links.

Figure 5. Mitochondrial damage leads to levodopa-induced dyskinesia (LID) through the chronic pro-inflammatory stage and other processes

(1) Mitochondrial dysfunction is observed during Parkinson’s disease (PD), reinforcing a pro-inflammatory state; (2) initial mitochondrial damage and inflammation

contribute to the dysregulation of lipid metabolism and protein synthesis/regulation; (3) these changes affect the permeability of the blood-brain barrier, leading

to increased flow of levodopa and immune cells and molecules; (4) the ongoing dysregulation in these systems increasingly reinforces inflammation to a chronic

pro-inflammatory stage; (5) chronic neuroinflammation can negatively regulate dopamine (DA) biosynthesis through the reduction of tetrahydrobiopterin (BH4),

which is essential for DA synthesis81,82; (6) chronic neuroinflammation reduces serotonin (5-HT) levels in the striatum and contributes to LID by dysregulating DA

release through stimulation of the MAPK pathway83 and increasing of serotonin transporter (SERT) expression84,85; (7) Chronic neuroinflammation induces

modifications in a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and 32 kDa cyclic AMP-regulated phosphoprotein (DARPP32), affecting

corticostriatal glutamatergic synapses and post-synaptic D1 dopamine receptor stimulation.86,87 Created with BioRender.com. Abbreviations: DA,

Dopamine; BH4, Tetrahydrobiopterin; 5-HT, Serotonin; MAPK, Mitogen-Activated Protein Kinase; SERT, Serotonin Transporter; AMPA, a-Amino-3-hydroxy-5-

methyl-4-isoxazolepropionic Acid; DARPP32, 32 kDa Cyclic AMP-Regulated Phosphoprotein.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Peripheral blood (whole blood) from

patients with Parkinson‘s disease with dyskinesia

Movement Disorders

Clinic of the Hospital

Ophir Loyola

N/A

Peripheral blood (whole blood) from

patients with Parkinson‘s disease without dyskinesia

Movement Disorders

Clinic of the Hospital

Ophir Loyola

N/A

Peripheral blood (whole blood) from heathy donors Movement Disorders

Clinic of the Hospital

Ophir Loyola

N/A

Chemicals, peptides, and recombinant proteins

TRIzol LS Reagent Thermo Fisher Scientific

by Invitrogen�
Cat#10296010

Critical commercial assays

TruSeq Stranded Total RNA Library

Prep Kit with Ribo-Zero Gold kit

Illumina Inc., Chicago,

IL, USA

Cat# RS-122-2301, RS-122-2302, and RS-122-2303

Deposited data

Raw sequences of RNA-Seq This study ENA: PRJEB72411

Software and algorithms

Code of RNA-Seq Data analysis This study https://github.com/tati-souz/RNA-Seq-data-analysis.

Fastp tool Chen et al.90

Star Aligner Software Dobin et al.91 https://doi.org/10.1093/bioinformatics/bts635

HTSeq software Anders et al.92 https://academic.oup.com/bioinformatics/

article/31/2/166/2366196

DESeq2 package Love et al.93 https://www.bioconductor.org/packages/

release/bioc/html/DESeq2.html

RStudio 4.2.3 software R Core team (2023)94 https://www.R-project.org/

pROC package Robin et al.95 https://bmcbioinformatics.biomedcentral.com/

articles/10.1186/1471-2105-12-77

ClusterProfiller package Yu et al.96 https://www.liebertpub.com/doi/10.1089/omi.2011.0118

Ggplot2 package Wilkinson et al.97 https://academic.oup.com/biometrics/article/

67/2/678/7381027?login=false

CEMitool package Russo et al.98 https://bmcbioinformatics.biomedcentral.com/

articles/10.1186/s12859-018-2053-1

Cytoscape software Shannon et al.99 https://genome.cshlp.org/content/13/11/2498

Diffcoexp package Wei et al.100 https://github.com/hidelab/diffcoexp

Other

Qubit 2.0 Fluorometer Thermo Fisher Scientific Cat#32866

NanoDrop ND1000 Thermo Fisher Scientific Cat# ND2000CLAPTOP

2200 TapeStation System Agilent Cat#G2964AA

NextSeq Sequencing 550 System Illumina Cat# SY-415-1002
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Human participants

The use of human subjects was approvedby theHospitalOphir Loyola Ethics Committee (Number 82848118.5.0000.5550), and all participants

provided written informed consent. We conducted an observational cross-sectional study to profile gene and gene-gene co-expression net-

works in people with PD with LID (PD-D), people with PD without LID (PD-ND), and non-PD controls (CT). Participants with PD diagnosed

according to the UK Parkinson’s Disease Society Brain Bank were recruited in the Movement Disorders Clinic of the Hospital Ophir Loyola,

in Belém, Brazil, between January 2018 andDecember 2021. People with PD and control subjects were recruited using a 1:1 ratiomatching for

sex and age within four years (See the detailed information of clinical characteristics is Table S1).

Brazilian populations have a high rate ofmiscegenation, reflecting the different ethnic contributions throughout our history. Consequently,

our genomes and/or biological markers represent mosaics of European, African, indigenous, and other ancestries. In the Amazon region, we

observed an average contribution of European ancestry genes at 60%, indigenous (original peoples) at 28%, and African ancestry at 12%.101 It

is worth noting that the Amazon region has the largest contribution of genes from indigenous peoples. Additionally, previous work by our

group on Parkinson’s patients did not observe statistically significant differences in the average contribution of genomic ancestry genes

(59% European, 26% indigenous, and 15% African).102

Inclusion and exclusion criteria for participants

As inclusion criteria, we enrolled participants with age at evaluation over 40 years and, for people with PD, a stable levodopa dose in the pre-

vious month. CT samples were obtained from volunteers who were invited to participate in the research. Participants with a history of auto-

immune, inflammatory, cancer and other neurological diseases were excluded. In addition, PD patients with severe psychotic symptoms

(score >2 in item 1.2 of the Movement Disorder Society – Unified Parkinson’s Disease Rating Scale, MDS-UPDRS) and clinical diagnosis of

dementia were removed or control subjects with a family history of PD.

METHOD DETAILS

Clinical evaluations

All participants with PD were evaluated by the same movement disorders specialist (B.L.S.-L.) using the MDS-UPDRS in the ON-stage. We

defined the presence of LID by a score R1 on item 4.1 of the MDS-UPDRS Part IV (time spent with dyskinesia) and confirmed if the patient

presented abnormal movements at evaluation. Blood samples were collected on the same day of clinical evaluation.

Blood collection and total RNA extraction

Peripheral bloodwas collected on the sameday andperiod, between 09:00 and 11:00 a.m., without fasting. All peoplewith PDwere instructed

to take their regularmorning antiparkinsonian drugs before peripheral blood intravenous puncture. Blood samples were storedwith TRIzol LS

(Thermo Fisher Scientific) following the manufacturer’s instructions at �20�C until further use. Total RNA extraction from the blood samples

followed the nucleic acid extraction protocol using TRIzol LS (Thermo Fisher Scientific), in accordance with the manufacturer’s instructions.

After extraction, the total RNAwas assessed for integrity, purity, and concentration using theQubit 2.0 Fluorometer (Thermo Fisher Scientific),

NanoDrop ND1000 (Thermo Fisher Scientific), and 2200 TapeStation System (Agilent).

Library preparation, sequencing and quality control

For library preparation (total transcriptome), 1 mg of total RNA per sample was used. A total of 46 libraries were constructed (20 controls, 15

PD-D, 11 PD-ND) using the TruSeq Stranded Total RNA Library Prep Kit with Ribo-Zero Gold kit (Illumina Inc., Chicago, IL, USA). The libraries

were normalized and sequenced on the NextSeq Sequencing System (Illumina) using the NextSeq High Output 150 cycles (Illumina). After

sequencing, quality control was performed, where low-quality reads (phred-score = Q30) were discarded, the 30 ends of sequences were
trimmed, and contaminants were removed using the fastp tool.90 For alignment, the STAR software91 was usedwith the human genome refer-

ence GRCh38. Counting of messenger RNAs (mRNAs) and long non-coding RNAs (lncRNAs) was performed using HTSeq.92

Differential gene expression analysis

Differential expression analysis was performed for the PD-D, PD-ND, and CT groups using the DESeq293 package in RStudio software

(v.4.2.3).66–69 DESeq2 normalizes counts by library size and adjusts gene expression, taking gene size into consideration. To compare CT

group vs. general PD group (PD-D + PD-ND) and the subgroups with and without dyskinesia, the controlled covariates were age, sex, and

sequencing batch. Furthermore, when we compared PD-D vs. PD-ND, the covariates controlled were age, sex, sequencing batch, duration

of disease, and levodopa equivalent daily dose (LEDD) to avoid confounding factors and false-positive results. Adjusted p-values (FDR) < 0.05

were considered statistically significant. To identify potential biomarkers associated with PD, we investigated the sensitivity and specificity of

DEGs using the ROC curve through the pROC package in software (v.4.2.1).66–69 Thus, we selected those genes with an area under the curve

(AUC) > 80% as potential disease biomarkers. We conducted Gene Set Enrichment Analysis (GSEA) to identify enriched metabolic pathways

for all genes in PD-D and PD-ND groups. Consequently, pathways with high and positive enrichment scores are presumed to be associated

with over-expressed genes, while those with high and negative scores are linked to under-expressed genes. Furthermore, Gene Ontology
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analyses for DEGs were carried out using theClusterProfiler package96 in R software (v.4.2.1). The graphics are constructed with ggplot2 pack-

age97 in RStudio.

Gene co-expression analysis

Gene co-expression analysis was performed using the CEMitool98 package in RStudio, for PD-D, PD-ND and CT groups. Correlation was

computed to assess the similarity of gene expression within each group. This method allows us to infer modules of co-expressed genes

that may play the same biological process roles. We also performed the joint co-expression analysis of CT + PD-D + PD-ND to select genes

exclusively co-expressed in the PD-D and PD-NDgroups. Finally, co-expression networkswere drawn usingCytoscape software (v.3.10).99 The

CEMitool package also performs Over Representation Analysis (ORA) to assess the pathways enrichment.

Differential co-expression gene network analysis

The differential co-expression gene network analysis aims to identify modules of Differential Co-expressed Links (DCLs), representing pairs of

genes that exhibit statistically differences on correlations between two distinct conditions. Moreover, it identifies Differentially Co-expressed

Genes (DCGs) referring to geneswith a higher number of DCLs than expectedby chance (gene hubs).We employed thediffcoexppackage100

in the RStudio, setting for spearman correlation method for gene pairwise similarity between the groups (PD-D x CT and PD-ND x CT). Sub-

sequently, we constructed differential co-expression networks using Cytoscape software (v.3.10). Significance was determined by adjusted

p-values (FDR) < 0.05, and genes with a correlation coefficient (r) > 0.8 were selected. To assess network specificity for each group, a similarity

analysis utilizing the Jaccard indexwas conducted. This helped to determinewhether the networks of DCGswere exclusive to each group. For

insights into the biological processes involvingDCGs andgenes in DCLs, GOanalysis was performed through theClusterProfiler package96 in

RStudio.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses detailed in the results (Table 1) were performed using RStudio. The selection of tests was based on the data types, num-

ber of samples, and data distribution pattern (see Table S1). To compare the frequency of each sex between groups, the chi-square test was

used. The Kruskal-Wallis test was employed to compare the age at clinical evaluation, and theMann-Whitney test was conducted to compare

the means of age at disease onset, levodopa dosage, and treatment duration.

ll
OPEN ACCESS

iScience 27, 110835, September 20, 2024 17

iScience
Article


	ISCI110835_proof_v27i9.pdf
	Unveiling differential gene co-expression networks and its effects on levodopa-induced dyskinesia
	Introduction
	Results
	Epidemiological and clinical data
	Differential gene expression reveals new blood biomarkers in levodopa-induced dyskinesia
	Distinct gene co-expression patterns in levodopa-induced dyskinesia
	Exclusive dyskinesia-specific differential co-expression network

	Discussion
	Differential gene expression analysis reveals novel biomarkers in Parkinson’s disease
	Dysregulation of mitochondrial function and stress response occurs in early and intermediate stages of PD
	Dysregulation of lipid homeostasis, endoplasmic reticulum stress, and immune signaling may be related to LID
	Transcriptome reveals altered molecular plasticity in the developmental progression of PD and LID
	Limitations of the study

	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Acknowledgments
	Author contributions
	Declaration of interests
	Supplemental information
	References
	STAR★Methods
	Key resources table
	Experimental model and study participant details
	Human participants
	Inclusion and exclusion criteria for participants

	Method details
	Clinical evaluations
	Blood collection and total RNA extraction
	Library preparation, sequencing and quality control
	Differential gene expression analysis
	Gene co-expression analysis
	Differential co-expression gene network analysis

	Quantification and statistical analysis




