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Background: Oncotype DX Recurrence Score (RS) has been widely used to predict
chemotherapy benefits in patients with estrogen receptor-positive breast cancer.
Studies showed that the features used in Magee equations correlate with RS. We aimed
to examine whether deep learning (DL)-based histology image analyses can enhance
such correlations.

Methods: We retrieved 382 cases with RS diagnosed between 2011 and 2015 from the
Emory University and the Ohio State University. All patients received surgery. DL models
were developed to detect nuclei of tumor cells and tumor-infiltrating lymphocytes (TILs)
and segment tumor cell nuclei in hematoxylin and eosin (H&E) stained histopathology
whole slide images (WSIs). Based on the DL-based analysis, we derived image features
from WSIs, such as tumor cell number, TIL number variance, and nuclear grades.
The entire patient cohorts were divided into one training set (125 cases) and two
validation sets (82 and 175 cases) based on the data sources and WSI resolutions. The
training set was used to train the linear regression models to predict RS. For prediction
performance comparison, we used independent variables from Magee features alone or
the combination of WSI-derived image and Magee features.

Results: The Pearson’s correlation coefficients between the actual RS and predicted
RS by DL-based analysis were 0.7058 (p-value = 1.32 × 10−13) and 0.5041 (p-
value = 1.15 × 10−12) for the validation sets 1 and 2, respectively. The adjusted R2

values using Magee features alone are 0.3442 and 0.2167 in the two validation sets,

Frontiers in Medicine | www.frontiersin.org 1 June 2022 | Volume 9 | Article 886763

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2022.886763
http://creativecommons.org/licenses/by/4.0/
mailto:bill.li@emory.edu
https://doi.org/10.3389/fmed.2022.886763
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2022.886763&domain=pdf&date_stamp=2022-06-14
https://www.frontiersin.org/articles/10.3389/fmed.2022.886763/full
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/medicine#articles


fmed-09-886763 June 10, 2022 Time: 10:33 # 2

Li et al. DL Features Enhance RS Correlation

respectively. In contrast, the adjusted R2 values were enhanced to 0.4431 and 0.2182
when WSI-derived imaging features were jointly used with Magee features.

Conclusion: Our results suggest that DL-based digital pathological features can
enhance Magee feature correlation with RS.

Keywords: deep learning-based algorithm, digital pathology, Oncotype DX score, ER+ breast cancer, Magee
equation

BACKGROUND

Breast cancer is the most common cancer in women in the
United States. Breast cancers are clinically classified by the
expression of estrogen receptor (ER), progesterone receptor (PR),
and human epidermal growth factor receptor 2 (HER2) gene
amplification as ER+/ HER2-, HER2+, and triple-negative (ER-
/PR-/HER2-) subtypes. Each subtype has unique tumor biology,
treatment options, and prognosis (1–7). Approximately 70%
of the breast cancers are ER+/HER2-. Patients with HER2+
and triple-negative breast cancer are generally treated with
chemotherapy. However, only a portion of the patient with
ER+/HER2- breast cancer benefit from chemotherapy (6, 8–
10). Whether patients with ER+/HER2- breast cancer benefit
from chemotherapy depends on such clinicopathological features
as tumor grade and size, tumor cell proliferation, staging, and
molecular profile biomarkers. Before the clinical validation of
molecular biomarkers, most patients with high-risk ER+/HER2-
breast cancer were treated with chemotherapy (11, 12). Oncotype
DX Recurrence Score (RS) uses a 21-gene expression profile to
predict prognosis and determine the benefit of chemotherapy in
patients with ER+/HER2- breast cancer (13–15). The predictive
value of RS was validated by large prospective trials and
prospective-retrospective studies (14, 15).

The TAILORx trial has validated RS predictive value for
patients with ER+/HER2- and lymph node (LN) negative breast
cancer. The first publication in 2015 from the TAILORx trial
showed that patients with an RS of 0–10 had an excellent
prognosis and were highly unlikely to benefit from chemotherapy
(16). The second publication from the TAILORx trial showed
patients > 50 years old and some young patients (≤50 years
old) with a medium RS could be spared from chemotherapy (13).
Recent results from the RxPONDER study showed that RS could
also predict chemotherapy benefits in patients with ER+/HER2-
and 1–3 LN+ breast cancer (17).

Magee equations use routinely available clinicopathological
parameters (or Magee features) and are strongly associated
with RS (18–20). Furthermore, machine learning-based histology
analysis has been shown to correlate with prognosis and
behaviors in diseases, including breast cancer (21–26). Therefore,
the aim of this study was to examine whether histopathological
features from whole slide images (WSIs), when used with
Magee features, would improve the RS prediction. Due to

Abbreviations: DFS, disease-free survival; DL, deep learning; ER, estrogen
receptor; HD, Hausdorff distance; H&E, hematoxylin and eosin; IOU, intersection
over union; MRCNN, mask region-based convolutional neural network; OS,
overall survival; PR, progesterone receptor; RS, Oncotype DX Recurrence Score;
TIL, tumor-infiltrating lymphocytes; WSI, whole-slide image.

the overwhelming gigapixel scale of histopathology WSIs and
artifacts in histopathology WSIs, it is technically challenging
to extract imaging features with predictive value. Recent
applications of artificial intelligence techniques in a large number
of biomedical investigations (27–29) show that the deep learning
(DL) model can be a potential solution to this challenge. In this
study, a DL-based pipeline for WSI analysis was developed to (1)
detect the tumor cell nuclei and tumor-infiltrating lymphocyte
(TIL) nuclei for cell density evaluation and (2) segment tumor cell
nuclei for nuclear-grade assessment. Such large-scale detection
and segmentation analyses enable automatic image feature
extraction from gigapixel WSIs. We examined whether the image
features could enhance the correlation of Magee features with RS.

MATERIALS AND METHODS

Datasets and Clinicopathological
Information
Three independent patient cohorts with available RS were
collected from two institutions and divided into training and
validation sets based on the data sources and WSI resolutions.
RS was defined as low (≤15), intermediate (16–25), and high (26–
100) according to the results from the TAILORx trial (30). ER, PR,
and HER2 interpretations were based on the updated ASCO/CAP
recommendations (31, 32). All patients received surgery.

Training set: A total of 125 cases of ER+/HER2-/LN- breast
cancer with RS diagnosed from 2011 to 2015 were collected from
the Ohio State University. The RS ranged from 0 to 40. Among
these 125 cases, 53, 59, and 13 cases had low scores, intermediate
scores, and high scores, respectively.

Validation set 1: A total of 82 cases of ER+/HER2-/LN- breast
cancer with RS diagnosed from 2012 to 2014 were retrieved from
the Emory University. The RS ranged from 0 to 52. Among 82
cases, 40, 15, and 27 cases had low scores, intermediate scores,
and high scores, respectively.

Validation set 2: Additional 175 cases of ER+/HER2-/LN-
breast cancer with RS diagnosed from 2012 to 2014 were retrieved
from the Emory University. The RS in this dataset ranged from 0
to 100. Among 175 cases, 68, 73, and 34 were low-, intermediate-,
and high-score cases, respectively.

All three datasets included age at diagnosis, ER and PR
IHC staining percentage (0–100) and intensity (1, 2, and 3),
HER2 amplification by IHC and FISH (negative and equivocal),
Nottingham tumor grade, and tumor size. Additional features
retrieved for validation sets 1 and 2 included Ki-67 score,
stage, chemotherapy, radiation therapy, overall survival (OS),
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disease-free survival (DFS), and distant metastasis (metastasis
other than axillary LN metastasis). One representative tumor
hematoxylin and eosin (H&E) stained WSI from each case
in the training set and validation set 1 was scanned at
40 × magnification and validation set 2 at 20 × with an
Aperio AT2 scanner.

The clinicopathological information of these three datasets
is summarized in Table 1. The ER and PR expressions for
all three cohort datasets were evaluated with an H-score
(percentage × intensity). This study was approved by the
Institutional Review Board at the Emory University and the Ohio
State University.

Data Preprocessing
Image normalization: As 40 × images have a higher resolution
for annotations, we chose the 40 × for data analysis. After
linearly resizing with a scaling factor of two along the image
width and height directions, all images in validation set 2 had the
same magnification of 40 × as training set and validation set 1.
We also used the sparse non-negative matrix factorization-based
color transfer method (33) to normalize the image color styles in
all three cohort datasets (Figure 1).

Data preprocessing for DL training: Although we had three
datasets for RS prediction analysis, we used two independent
image datasets for cell detection and segmentation training,
one from our lab and the other from the public MoNuSeg-
2018 dataset. We collected 797 images with tumor nuclei point
annotations, 500 images with TIL point annotations, and 26
images with annotations of tumor nuclei contours from the
independent dataset. All the annotations were produced and
confirmed by the pathologists (Supplementary Figure 1). Two
pathologists made the annotations with Aperio ImageScope
and GIMP. Additionally, 30 H&E images from the public
MoNuSeg-2018 dataset were used in the segmentation dataset.
They had annotations of cell nucleus contours (Supplementary
Figure 1C). Each DL dataset was randomly divided into
training, validation, and testing groups with an approximate
proportion of 70:15:15.

Deep Learning Model
For detection, classification, and segmentation analyses, we
used the Mask R-CNN (MRCNN) (34) to construct the image
processing models in this project. MRCNN was extended from
Faster R-CNN (35) that was in turn developed based on Fast
R-CNN (36). The overall schema of the developed WSI image
processing pipeline is presented in Figure 2. The DL MRCNN
pipeline was constructed with library TensorFlow and Keras.
The image processing module contained three MRCNN models
specifically for tumor cell detection, TIL detection, and tumor
nucleus segmentation, respectively. Image tiles with tissue were
extracted from WSIs by thresholding the “Saturation” channel of
the HSV color space with the threshold set to 30. Each image
tile was then analyzed by three MRCNN models separately.
The center of each bounding box is considered the center of
a detected cell of interest. The segmentation branch in the
MRCNN model produced nucleus contours. Since the tumor cell
detection had superior performance, the detected tumor cells
were used to exclude the TIL and tumor nucleus false positive. All

computational analyses were executed on a computational server
with two CPUs of 22 2.10 GHz cores each, 192 GB memory, and
six Nvidia GeForce RTX 2080 Ti GPUs with 11 GB memory each.

Linear Regression Model Incorporating
Deep Learning-Based Imaging Features
and Magee Equation Variables
We partitioned each WSI into image tiles with a size of
1,024 × 1,024 by pixels to identify tissue regions of high tumor
cell density with the DL-based processing pipeline. The top ten
image tiles with the highest tumor cell density in each WSI were
selected for feature extraction. To generate interpretable models,
we chose to select image features of interpretability instead of
hidden or intermediate features by machine learning algorithms.
Since tumor cells and TILs were reported high correlation with
the prognosis or recurrence (37, 38), we extracted three tile-
wise features from each image tile, including (1) the tumor cell
number, (2) the TIL number, and (3) the tumor cell percentage.
Additionally, nuclear grade and TIL number variance were
extracted from the ten image tiles collectively. The nuclear grade
of each tumor cell was determined by comparing the tumor nuclei
size with the adjacent TIL nuclei size. The TIL nuclei size was
304.7 in pixels averaged from representative TILs selected by
pathologists. Nuclear grade 1 was defined when the ratio of tumor
nucleus size to TIL nucleus size was 1–2.5. Nuclear grade 2 was
made when such a ratio was 2.5–3.5. Nuclear grade 3 was made
when such a ratio was > 3.5 (Supplementary Figure 2). Tumor
cell nuclear grades from the ten image tiles were collected and
aggregated to a final nuclear grade by the following rules: (1)
if ≥ 10% of the tumor cells had nuclear grade 3, the aggregated
nuclear grade was 3; (2) if ≥ 10% of the tumor cells had nuclear
grade 2 and rule (1) did not hold, the aggregated nuclear grade
was 2; (3) if ≥ 10% of the tumor cells had nuclear grade 1 and
neither rule (1) nor (2) held, the final nuclear grade was 1. The
image feature of TIL number variance was also computed from
the top ten image tiles by cell density as follows:

V =
∑10

i = 1 (ni − n)
10− 1

where V is the TIL number variance; ni represents the TIL
number in the i-th image tile; n is the average TIL number
from the ten image tiles. In total, there were 32 image features
extracted from each WSI.

A linear regression model was used to correlate with RS.
In the regression model, the dependent variable was the RS,
while imaging features and Magee features were independent
variables. To retain features with high predictive value, we
selected features by both domain knowledge and statistical
analysis. The independent variables in Magee equations are as
follows (39). Magee equation 1 includes Nottingham score, ER
and PR H-scores, HER2, tumor size (cm), and Ki67 index; Magee
equation 2 includes Nottingham score, ER and PR H-scores,
HER2, and tumor size (cm); Magee equation 3 includes ER and
PR H-scores, HER2, and Ki67 index. As the feature “HER2”
is categorical with two possible values, i.e., “Negative” and
“Equivocal,” we used one dummy variable, “HER2_Equivocal,”
to represent “HER2” in the regression models. We focused on
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TABLE 1 | Clinicopathological information of the three datasets.

Training set Validation set 1 Validation set 2

Nottingham grade (case number)

1 33 (26.4%) 31 (37.8%) 64 (36.6%)

2 75 (60.0%) 39 (47.6%) 92 (52.6%)

3 17 (13.6%) 12 (14.6%) 19 (10.8%)

ER intensity (case number)

0 0 (0.0%) 0 (0.0%) 0 (0.0%)

1 0 (0.0%) 2 (2.4%) 3 (1.7%)

2 9 (7.2%) 9 (11.0%) 33 (18.9%)

3 116 (92.8%) 71 (86.6%) 139 (79.4%)

ER percentage

Mean 94.21 89.63 87.59

Range 40–100 5–100 10–100

PR intensity (case number)

0 8 (6.4%) 17 (20.7%) 19 (10.9%)

1 3 (2.4%) 3 (3.7%) 5 (2.9%)

2 30 (24.0%) 16 (19.5%) 38 (21.7%)

3 84 (67.2%) 46 (56.1%) 113 (64.6%)

PR percentage

Mean 66.29 55.15 62.3

Range 0–100 0–100 0–100

HER2 (case number)

Negative 123 (98.4%) 81 (98.8%) 173 (98.9%)

Equivocal positive 2 (1.6%) 1 (1.2%) 2 (1.1%)

Ki-67 score (Not available) (105/175 cases available)

Mean N/A 24.26 29.09

Range N/A 1–100 1–91

Tumor size (cm)

Mean 2.19 1.81 1.64

Range 0.4–7.8 0.5–5.3 0.3–7.1

Age (year)

Mean 58.00 60.29 56.97

Range 32–82 31–81 30–91

Oncotype DX RS

Mean 16.62 19.15 18.93

Range 0–40 0–52 0–100

Real chemotherapy (case number) (80/82 cases available) (168/175 cases available)

Yes N/A 24 (29.3%) 48 (27.4%)

No N/A 56 (68.3%) 120 (68.6%)

OS (months)

Mean N/A 32.80 81.45

Range N/A 1–250 0–272

DFS (months) (4/82 cases available) (9/175 cases available)

Mean N/A 75.25 64.74

Range N/A 3–151 12–174

Real radiation therapy (case number) (80/82 cases available) (168/175 cases available)

Yes N/A 49 (59.8%) 99 (56.6%)

No N/A 31 (37.8%) 69 (39.4%)

(Continued)
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TABLE 1 | (Continued)

Training set Validation set 1 Validation set 2

Stage (case number)

1 91 (72.8%) 55 (67.1%) 122 (69.7%)

2 29 (23.2%) 26 (31.7%) 50 (28.6%)

3 5 (4.0%) 1 (1.2%) 3 (1.7%)

Distant metastasis (case number) (81/82 cases available) (169/175 cases available)

Yes N/A 2 (2.4%) 6 (3.4%)

No N/A 79 (97.6%) 163 (96.6%)

FIGURE 1 | Demonstrations of image color normalization. With the learned color and brightness information from the reference image on the left, three randomly
selected images before and after color normalizations are presented on the top and bottom rows on the right.

Magee equation 2 as the Ki-67 index information was missing
for more than half samples (195/382, 51.0%) in our datasets.
Additionally, the tile-wise features from the first x out of the
ten image tiles (x = 1, 2, . . ., 10), i.e., the tumor cell number,
TIL number, and tumor cell percentage, were used jointly. The
feature selection was completed in the training set. Various
feature combinations were used to construct the linear regression
models. The adjusted coefficient of determination R2 was used
to assess the combinations’ correlation with RS. The feature
combination with the highest adjusted R2 was selected for
the final model.

RESULTS

Validated Deep Learning Models
Accurately Identified Tumor Nuclei,
Tumor-Infiltrating Lymphocyte Nuclei,
and Tumor Cell Nuclear Grade
A total of 7,609 annotated tumor nuclei from 120 testing
images and 4,000 annotated TILs from 75 testing images were
collected to validate the MRCNN model for tumor nuclei and TIL

detection. The trained models correctly detected 6,101 (80.2%)
tumor nuclei and 3,304 (82.6%) TILs. Multiple metrics were
used for performance assessments, including precision, recall,
F1-score, true positive number, false-positive number, and false-
negative number. The metrics of precision, recall, and F1-score
were defined as follows.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 score = 2 ×
Precision × Recall
Precision+ Recall

where TP, FP, and FN represent the number of true positive,
false-positive, and false-negative samples, respectively. The
true positive samples were correctly detected samples. The
false-positive samples were cells erroneously detected. Finally,
the false-negative samples were missed ground truths from
pathologists. The MRCNN models for the tumor nuclei and TIL
detection achieved 0.7765 and 0.7171 for the F1-score, 0.7528
and 0.6337 for the precision, and 0.8018 and 0.826 for the
recall, respectively.
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FIGURE 2 | The overall schema of the developed deep learning (DL)-based whole slide image (WSI) processing pipeline is presented. Three DL models were
established and trained for tumor cell detection, tumor-infiltrating lymphocyte (TIL) detection, and tumor cell segmentation, respectively. The tumor cell detection
results were used to remove TIL false positive and retain nuclei contours for tumor cell segmentation.

The Hausdorff distance (HD) was used to measure the
tumor nucleus contour concordance between the ground
truths from pathologists and predictions using the DL process
(Supplementary Figure 3). The metric of intersection over union
(IOU) was used to match the ground truth to predicted contours.
When IOU was greater than or equal to a cutoff value K, the
ground truth and predicted nucleus contours were considered
as a matched pair. When there was more than one prediction
matching the same ground truth, the prediction with the largest
IOU was retained for the match. When one prediction was
matched to more than one ground truth, the prediction was
assigned to the first matched ground truth. The cutoff value K was
set as 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9, respectively. We
computed the mean equivalent nuclei diameter for each nuclear
grade. The mean equivalent diameters for nuclear grades 1, 2, and
3 were 26.30, 34.29, and 48.67 pixels, respectively. We present
the mean HD between matched pairs and the ratio of mean HD
to the mean equivalent diameter of tumor nuclei in Table 2.
Representative cell detection and segmentation results from the
DL models are shown in Figure 3.

The Deep Learning-Based Analysis
Enhances the Correlation Between
Features in Magee Equation 2 and
Recurrence Score
We detected an overwhelmingly large number of cells in each
WSI (Supplementary Table 1). With detection results from
image tiles, tumor cell and TIL density distributions were
estimated and represented as density maps (Figure 4). The
top ten image tiles of each WSI were selected based on the
tumor cell density.

Eight variables from the training set included Nottingham
grade, ER and PR H-score HER2 status, tumor size (cm), tumor

TABLE 2 | Performance of the Mask R-CNN (MRCNN) model for tumor
nucleus segmentation.

IOU cutoff
value

Mean HD for
G1 (pixels)

and ratio %

Mean HD at
G2 (pixels)

and ratio %

Mean HD at
G3 (pixels)

and ratio %

0.1 5.07 (19.28%) 6.29 (18.33%) 11.48 (23.59%)

0.2 5.05 (19.21%) 6.29 (18.33%) 11.30 (23.23%)

0.3 5.03 (19.14%) 6.29 (18.33%) 10.94 (22.48%)

0.4 4.97 (18.88%) 6.15 (17.94%) 10.50 (21.58%)

0.5 4.70 (17.89%) 5.84 (17.04%) 9.10 (18.69%)

0.6 4.32 (16.44%) 5.63 (16.41%) 7.77 (15.97%)

0.7 3.85 (14.65%) 4.94 (14.42%) 6.21 (12.77%)

0.8 3.13 (11.91%) 4.04 (11.77%) 5.14 (10.56%)

0.9 2.24 (8.53%) 2.34 (6.84%) 3.42 (7.03%)

The mean Hausdorff distances (HDs) of the matched ground truth and predicted
contours of tumor nuclei at nuclear grades G1, G2, and G3 were computed with
different intersection over union (IOU) cutoff values. For each grade, we computed
the mean equivalent diameter. Additionally, we computed the ratio of mean HD to
the mean equivalent diameter in percentage for each grade. The resulting mean HD
and the ratio% are presented for each nuclear grade and each IOU cutoff value.

cell number in the densest tile, TIL number variance, and tumor
nuclear grade (Table 3). The first five variables were from Magee
equation 2, while the last three variables were DL-based image
features derived from WSIs. We established a regression model
with these selected features from the training set and applied the
model to validation sets 1 and 2 for RS correlation.

We divided cases into low, intermediate, and high RS
categories with the stratification rules from the TAILORx study
(30). The concordances between the RS and our model were
56.10% and 68.0% for validation sets 1 and 2, respectively
(Table 4). Additionally, the one-step discordance rates for
validation sets 1 and 2 were 39.02% and 48.0%, respectively.
The Pearson’s correlation coefficients between the RS and our
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FIGURE 3 | Demonstration of representative cell detection and segmentation results from DL models. Detected TIL and tumor nuclei are indicated by green and red
circles, respectively. The predicted contours of tumor nuclei are indicated in yellow.

model were 0.7058 (p-value = 1.32 × 10−13) and 0.5041 (p-
value = 1.15 × 10−12) for validation sets 1 and 2, respectively.
The tumor and TIL density maps from validation sets 1 and 2 are
illustrated in Supplementary Figures 4, 5.

The performance of the model correlation with RS was
further evaluated by R2 and adjusted R2 (Table 5). When
the image features were integrated with features in Magee
equation 2, the adjusted R2 value increased from 0.3442

(p-value = 5.17 × 10−10) to 0.4431 (p-value = 1.32 × 10−13) in
validation set 1 and from 0.2167 (p-value = 6.52 × 10−12) to
0.2182 (p-value = 1.15 × 10−12) in validation set 2. Similarly,
the R2 increased from 0.3846 to 0.4981 in validation set 1
and from 0.2392 to 0.2541 in validation set 2. Additionally, we
demonstrated the adjusted R2 and R2 of the linear regression
model that was constructed only with the image features. The
resulting adjusted R2 and R2 are 0.3048 (p-value = 1.61 × 10−8)
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FIGURE 4 | Demonstration of WSI density maps from (left) the low [Oncotype DX Recurrence Score (RS) = 3], (middle) intermediate (RS = 19), and (right) high
(RS = 39) RS group. For each group, we present (top) a WSI, (middle) a TIL density map, and (bottom) a tumor cell density map, respectively.

and 0.3306 (p-value = 1.61 × 10−8) for validation set 1 and
0.0139 (p-value = 0.0199) and 0.0309 (p-value = 0.0199) for
validation set 2, respectively. It is noted that the image features
perform much worse than Magee features in validation set 2.
Such performance degradation can be related to the fact that
images in validation set 2 were originally scanned at 20 × and
later computationally scaled to 40 × magnification. The
inconsistency in the original image magnification can contribute
to a significant error in the following analyses, leading to a worse
prediction result.

To investigate the correlations between Magee and image-
derived features, we computed their pair-wise absolute Pearson
correlation coefficients. As shown in Figure 5, the largest
correlation coefficient of 0.35 was found by the Nottingham
score and tumor nuclear grade. Five Magee and image feature
pairs present correlation coefficients close to 0.1. All remaining
9 pairs present correlation coefficients less than 0.1. Such weak
correlations indicate the complementary prediction value by the
image features for RS prediction enhancement.

For further correlation analyses between Magee and
image features, we applied the least absolute shrinkage
and selection operator (LASSO) regression method to our

data and compared the resulting feature coefficients with
those in the model trained by Ordinary Least Squares
(OLS). The comparison results are presented in Figure 6.
As LASSO includes an L1-norm regularizer, it penalizes
the excessive feature inclusion and reduces uninformative
feature coefficients to zero. From Figure 6, the non-zero
feature coefficients from the two models trained by LASSO
and OLS present similar values. Coefficients of only three
features (i.e., tumor size, HER2, and tumor nuclear grade)
were reduced to zero by LASSO. The only removed image
feature by LASSO is tumor nuclear grade that presents an
absolute Pearson correlation coefficient of 0.35 with the
Nottingham score.

Analyses of Cases With Discrepant Risk
Scores Between Recurrence Score and
Deep Learning-Based Prediction
We analyzed the cases with discordant risk categories
by RS and our model (Table 6). There were totally 54
discordant cases in validation sets 1 and 2. Among these
54 cases, 40 were recommended to have chemotherapy by
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TABLE 3 | Summary of independent variables from training set, validation set 1,
and validation set 2 for the regression model.

Training set Validation set 1 Validation set 2

Nottingham grade (case number)

1 33 31 64

2 75 39 92

3 17 12 19

ER H-score

Mean 277.14 262.18 246.03

Range 80–300 5–300 19–300

PR H-score

Mean 188.07 156.07 174.47

Range 0–300 0–300 0–300

HER2 (case number)

Negative 123 81 173

Equivocal positive 2 1 2

Tumor size (cm)

Mean 2.19 1.81 1.64

Range 0.4–7.8 0.5–5.3 0.3–7.1

Tumor cell number in the densest tile

Mean 346.13 316.23 262.55

Range 140–612 112–531 58–567

TIL number variance

Mean 714.95 792.67 331.42

Range 2.49–8,227.6 4.68–10,850.01 1.17–5,849.39

Tumor nuclear grade (case number)

1 1 3 9

2 81 50 102

3 43 29 64

RS but not by our DL-based model; of these 40 cases, 28
received chemotherapy.

In total, 14 cases were not recommended to have
chemotherapy by RS, while our DL-based model did; of
these 14 cases, 2 received chemotherapy. The chemotherapy
recommendation based on RS and our DL model was determined
by the suggested rules from the TAILORx study. Overall,
none of these 54 discordant cases developed recurrence
regardless of whether received chemotherapy, indicating
that the role of chemotherapy in these discordant cases was
not clear.

DISCUSSION

Multiple studies have demonstrated the correlations between
clinicopathological features and RS. Some used regression
models to predict the RS directly from the clinicopathological
features (20, 39–43), while others used classifiers to predict the RS
risk categories (44–53). Additionally, a few studies have shown
that the tumor imaging features from mammographic and
sonographic imaging (54) and MRI (55, 56) are associated
with RS. Magee equations include routinely evaluated
clinicopathological features and have been shown to strongly
correlate with RS (18–20, 57, 58). In this study, the regression
models using the combination of the WSI-derived image features
and Magee features as independent variables outperformed the
models based on Magee features alone for RS correlation. The
small correlation coefficients between the Magee and image
features in Figure 5 and similar model coefficients in Figure 6
indicate the image features capture complementary prediction
values for RS prediction. These results suggest that Magee
features can enhance RS correlation when they are jointly used
with the phenotypic information from WSIs.

In contrast with the substantial prediction improvement for
validation set 1, a marginal improvement with validation set
2 is noticed. In Table 5, the adjusted R2 is 0.3048 and 0.0139
when the model trained with image features alone is applied
to validation sets 1 and 2, respectively. This suggests a much
stronger predictive value of image features from validation
set 1 than validation set 2. One possible reason for limited
success with validation set 2 is that images in validation set 2
were originally scanned at 20 × and computationally scaled
to 40 × magnification. Such an inconsistent tissue scanning
configuration may result in a significant downstream analysis
difference accounting for a degraded prediction improvement.
Additionally, we noticed from Table 3 that the average “TIL
number variance” from validation set 2 is substantially less than
that of the training set and validation set 1. To further investigate
the individual feature impact on the prediction output, we
computed the numerical product of each feature average value
and its regression coefficient from the linear regression model.
All such feature products are comparable across training set,
validation set 1, and validation set 2, except for “TIL number
variance.” Specifically, the numerical product for “TIL number
variance” from validation set 2 (i.e., 0.16) is less than half

TABLE 4 | Oncotype DX Recurrence Score (RS) group confusion matrix for validation sets 1 and 2.

Validation set 1 Validation set 2

Predict high Predict middle Predict low Total Predict high Predict middle Predict low Total

GT high 11 12 4 27 7 25 5 37

GT middle 0 8 7 15 1 43 26 70

GT low 0 13 27 40 0 32 36 68

Total 11 33 38 82 8 100 67 175

The “low,” “middle,” and “high” RS levels are determined by the RS cutoff values of 16 and 25. Several summary statistics for validation sets 1 and 2 are concordance:
46/82 (56.10%) and 119/175 (68.0%); one-step discordance: 32/82 (39.02%) and 84/175 (48.0%); two-step discordance: 4/82 (4.88%) and 5/175 (2.86%); Pearson’s
correlation coefficient: 0.7058 (p-value = 1.32 × 10−13) and 0.5041 (p-value = 1.15 × 10−12). GT represents ground truth.
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TABLE 5 | Prediction performance of the regression model trained on the training set.

Validation set 1 Validation set 2

Adjusted R2 Magee2
features

0.3442
(p-value = 5.17 × 10−10)

0.2167
(p-value = 6.52 × 10−12)

Image features 0.3048
(p-value = 1.61 × 10−8)

0.0139
(p-value = 0.0199)

Image +
Magee2
features

0.4431
(p-value = 1.32 × 10−13)

0.2182
(p-value = 1.15 × 10−12)

R2 Magee2
features

0.3846
(p-value = 5.17 × 10−10)

0.2392
(p-value = 6.52 × 10−12)

Image features 0.3306
(p-value = 1.61 × 10−8)

0.0309
(p-value = 0.0199)

Image +
Magee2
features

0.4981
(p-value = 1.32 × 10−13)

0.2541
(p-value = 1.15 × 10−12)

The bold values emphasize the greatest value of each metric in the two validation sets.

FIGURE 5 | Matrix of the absolute Pearson correlation coefficients between
the Magee and image features from the training set. Five Magee features
M1-5 are ER H-score, PR H-score, Nottingham score, tumor size, and HER2,
respectively. Three image features I1-3 are TIL number variance, tumor cell
number in the densest tile, and tumor nuclear grade, respectively.

of that from the other two datasets (i.e., 0.35 and 0.39 from
training and validation set 1, respectively), potentially degrading
prediction improvement.

Our regression model used three histopathological image
features extracted from WSIs: “tumor cell number in the densest
tile,” “TIL number variance,” and “tumor nuclear grade.” Tumor
density is understudied in breast cancer prognosis. Tumor
stroma has been shown to play an essential role in breast
cancer prognosis and response to therapies (59–62). High tumor-
stromal content was shown to correlate with poor prognosis in
triple-negative breast cancer (62), although such correlation was
not demonstrated in ER+ breast cancer. Our study showed that
high tumor density was associated with high RS. The role of
stroma and tumor density in ER+ breast cancer may be essential
and warrants more studies. TIL is an important prognostic and

predictive marker in HER2+ and triple-negative breast cancer
(9, 10, 63–65). Although the role of TIL is controversial in ER+
breast cancer (64, 66), high TIL has been found to correlate with
high RS (66, 67). RS is strongly correlated with the proliferative
module (68). One possible explanation for such correlation is
the increased tumor proliferative rate within high TIL areas or
the high proliferative rate of TIL itself. TIL has been shown to
correlate with a high proliferative index in breast cancer (38).
Thus, both the increased tumor proliferation and lymphocyte
proliferation could contribute to the positive correlation with RS.
While evaluations of TILs by pathologists may have intra- and
inter-observation variations (69, 70), machine learning provides
the opportunity to better quantify the TIL assessment (71).
Tumor nuclear grade has been shown as an important prognostic
factor in breast cancer and is a component of the Nottingham
tumor grade (37). Genes associated with tumor grade are part of
the Breast Cancer Index and are strongly correlated with tumor
prognosis in ER+ breast cancer (72, 73).

In our study, 54 cases had discordant recommendations for
chemotherapy treatment by RS and the DL-based model. Some
patients with RS recommendation for chemotherapy and low risk
by DL-based model did not actually receive chemotherapy while
others not recommended for chemotherapy by RS and had low
risk by DL-based model received chemotherapy. However, none
of these patients developed cancer recurrence, including local
and distant recurrence. The absolute benefit from chemotherapy
to prevent distant recurrence in patients with intermediate
RS is < 10% (30). Although it is also possible that these
patients did not benefit from chemotherapy simply by chance,
it is also possible that the benefit from chemotherapy in
these patients with discordant results is not clear, and further
studies are needed.

In this study, we trained three DL models to detect the tumor
cells, TILs, and segment tumor nuclei. These model architectures
were built on the MRCNN with the multitasking ability for
detection, classification, and segmentation. We found that the
performance of a comprehensive model was often inferior to
that of individual single-task models. When a model was trained
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FIGURE 6 | Comparison of the coefficients of features (both Magee and imaging) in the linear regression models trained by least absolute shrinkage and selection
operator (LASSO) and Ordinary Least Squares (OLS). Five Magee features M1-5 are ER H-score, PR H-score, Nottingham score, tumor size, and HER2,
respectively. Three image features I1-3 are TIL number variance, tumor cell number in the densest tile, and tumor nuclear grade, respectively.

with one task at a time, the same DL model could achieve better
accuracy due to more focused learning of one data distribution. In
contrast, the multitask DL model’s performance may deteriorate
due to the high heterogeneity across multiple training sets.
In our study, for instance, the circle labels for the detection
model were significantly different from the mask labels for the
segmentation model. The heterogeneity between the two types of
data undermined the model’s learning ability after merging them
as one training dataset. Therefore, we trained three individual
DL models. Due to the TIL training data heterogeneity, the TIL
detection model might recognize some tumor nuclei as TILs by
mistake. As the public MonuSeg-2018 dataset did not include
cell type labels, we found that the tumor nuclei segmentation
model predicted contours of non-tumor cells. To address these
issues, we used tumor nucleus detection results to remove TILs
and tumor nuclei false positive. Based on the density maps from
the DL predictions, we observed that tissue regions of high TIL
density were close to high tumor cell density regions, as shown
in Figure 4. Such proximity of these two regions was frequently
observed at the tumor invading fronts, consistent with previous
studies (10, 64, 74–76).

As the patient cohorts for this study were not from a
prospective clinical trial, we planned to validate our findings in
completed prospective clinical trials in the following work. We
also planned to increase our testing patient cohorts. Although we
included 382 patients in the training and validation sets, a more
extensive study is needed to validate our findings.

Overall, our results suggest that the combination of the
image features derived from WSIs and Magee features presents
a stronger correlation with RS than the Magee features
alone. Although WSI image features present complementary
information for RS correlation, we do not intend to replace

TABLE 6 | Confusion matrix of the chemotherapy recommendations by RS and
predicted RS for validation sets 1 and 2.

Predicted RS No Predicted RS Yes Total

RS No 166 14 180

RS Yes 40 37 77

Total 206 51 257

Magee features with these WSI image features. Instead, we
proposed to further boost Magee feature performance on RS
correlation with these histology features from WSIs only available
after computational analysis. To the best of our knowledge, our
proposed approach is innovative in the sense that it uses the
histological image features from WSIs to enhance the correlation
between the Magee features and RS. The Magee equations can
save healthcare costs and effectively serve patients with early
breast cancer (77). The DL-based processing method presented
in this study can be executed automatically at high throughput
and further enhance the predictive power of Magee features.

CONCLUSION

In this study, we have developed a DL-based digital pathology
image processing pipeline to enhance the RS correlation
with histology features derived from WSIs of ER+/HER2-
/LN- breast cancer tissues. The proposed DL-based pipeline
accurately detected tumor cells and TILs, segmented tumor
cells, and extracted histology image features from gigapixel
WSIs with high throughput. We demonstrated that the image
features derived by DL-based analysis enhanced Magee feature
correlation with RS.
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