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Abstract

We review the applicability of Bayesian networks (BNs) for discovering relations
between genes, environment, and disease. By translating probabilistic dependencies
among variables into graphical models and vice versa, BNs provide a
comprehensible and modular framework for representing complex systems. We first
describe the Bayesian network approach and its applicability to understanding the
genetic and environmental basis of disease. We then describe a variety of algorithms
for learning the structure of a network from observational data. Because of their
relevance to real-world applications, the topics of missing data and causal
interpretation are emphasized. The BN approach is then exemplified through
application to data from a population-based study of bladder cancer in New
Hampshire, USA. For didactical purposes, we intentionally keep this example simple.
When applied to complete data records, we find only minor differences in the
performance and results of different algorithms. Subsequent incorporation of partial
records through application of the EM algorithm gives us greater power to detect
relations. Allowing for network structures that depart from a strict causal
interpretation also enhances our ability to discover complex associations including
gene-gene (epistasis) and gene-environment interactions. While BNs are already
powerful tools for the genetic dissection of disease and generation of prognostic
models, there remain some conceptual and computational challenges. These include
the proper handling of continuous variables and unmeasured factors, the explicit
incorporation of prior knowledge, and the evaluation and communication of the
robustness of substantive conclusions to alternative assumptions and data
manifestations.
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Introduction
It is now widely understood that most diseases have a genetic component and yet do

not follow the simple Mendelian inheritance patterns of dominant or recessive traits

[1]. Presumably, these diseases result from the interacting effects of multiple genes in

combination with one or more environmental risk factors [2]. Such complex pheno-

typic traits are characterized by a high level of unpredictability, as both the number

and nature of interactions are difficult to distinguish using conventional methods.

Nevertheless, uncovering the genetic basis for disease and deciphering the relative
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contribution of environmental exposure are critical steps toward the goal of developing

an effective system of “personalized” medicine [3,4].

Machine learning methods, in particular Bayesian networks (BNs), have the potential

to help disentangle the web of relations among genes, environment, and disease [5].

BNs are a multivariate modelling method able to simultaneously account for gene-gene

(epistasis) and gene-environment interactions, as well as leverage the diagnostic poten-

tial of clinical or physiological factors [6]. BNs also lead directly to prognostic models:

a constructed network, however complex, can be used to efficiently compute the prob-

ability that an individual with a particular genotype and environmental exposure will

exhibit the phenotype of interest. BNs have been applied in a variety of settings for the

purposes of causal study and probabilistic prediction, including medical diagnosis,

crime and terrorism risk, forensic science, and ecological conservation (see [7]). In

bioinformatics, they have been used to analyze gene expression data [8,9], derive

protein signaling networks [10-12], predict protein-protein interactions [13], perform

pedigree analysis [14], conduct genetic epidemiological studies [5], and assess the

performance of microsatellite markers on cancer recurrence [15]. In this paper, we

review the potential for BNs to contribute to revealing the genetic and environmental

basis of disease.

Bayesian networks
A Bayesian network is a graphical model of the relationships among a set of random

variables. It consists of two components:

a) A network structure in the form of a directed acyclic graph (DAG). In this graph,

nodes represent the random variables and directed edges represent stochastic

dependencies among variables.

b) A set of conditional probability distributions, one for each variable, characterizing

the stochastic dependencies represented by the edges. These conditional

distributions are specified by the network parameters [16].

If there is a directed edge in a DAG from node Y to node Z, Y is said to be a parent

of Z; likewise Z is called a child of Y. An important feature of a BN is that each variable

represented by a node is understood to be conditionally independent of the set of all its

predecessors in the graph, given the values of its parents [17]. In other words, the

absence of a directly connecting arrow between any two nodes implies that these two

variables are independent given the values of any intermediate nodes. This is referred

to as the Markov condition. Based on the Markov condition, the joint probability distri-

bution for the entire set of variables represented by a BN can be decomposed into a

product of conditional probabilities using the graphical structure and the chain rule of

probability calculus:

pðx θj Þ ¼
Yn
i¼1

p xi pa xið Þ; θij Þð ð1Þ

where x = {x1,. . .xn} are the variables (nodes in the BN) and θ = {θ1,. . .,θn} are the BN’s

parameters, where each θi is the set of parameters necessary to specify the distribution
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of the variable xi given its parents pa(xi). (We adopt the notation of [18] in which lower

case symbols are used to indicate particular realizations of the corresponding uppercase

variables.) Importantly, the factorization given by eq. (1) allows complex systems to be

analyzed and modeled using a limited number of local relationships as building blocks.

Figure 1 illustrates a simple hypothetical BN relating the incidence of cancer (C) to

an environmental exposure (E), a biomarker of exposure (B) and three single nucleotide

polymorphisms (SNPs). (We assume that there are no latent or hidden variables in this

particular BN.) There is an edge shown from E to C, indicating that cancer risk is

understood to be dependent on environmental exposure. There is also an edge from S1

to C indicating a genetic influence on cancer susceptibility, either directly or through

mediation of the exposure effect. The node S2 represents an older SNP that may be

associated with S1 through evolution. These two SNPs do not necessarily need to be

on the same gene or in the same region of linkage disequilibrium [19]. Additionally, E

is shown to be dependent on S3, indicating that there is a genetic component to

exposure (a genetic predisposition to smoking, for example). Finally, E is a parent of B,

reflecting B’s role as a diagnostic biomarker of exposure. Importantly, in this graph

there is no directed edge from either node S2 or S3 to C, nor from S3 to B. This

implies that knowing the states of E and S1 renders C and B independent of S3 and S2.

The joint distribution of all five variables can thus be factored according to equation

[1] as:

P S1; S2; S3; E;B;Cð Þ ¼ P B Ej Þ⋅P C E; S1j Þ⋅P E S3j Þ⋅P S1 S2j Þ⋅P S3ð Þ⋅P S2ð Þðððð ð2Þ

If each of the five variables in Figure 1 is assumed to be binary, this factorization

reduces the number of parameters (conditional probabilities) required to specify the full

joint distribution from 64 to 12. This allows large networks to be parameterized from

relatively small data sets while still capturing the kinds of interactions that are typical

of complex traits.
S3

S1E

C

S2

B

Figure 1 A simple BN representing the relationship between cancer incidence (C), environmental
exposure (E), a biomarker (B) and three single nucleotide polymorphisms (S1, S2, S3). See text for
further description.
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Genetic dissection of disease
A number of recent reviews [20-22] emphasize the complex nature of the gene-

environment-disease relationship and call for new statistical methods to address such

complexities. The parametric linear modeling framework (e.g. logistic regression)

traditionally used in association studies, while familiar and easy to implement and

interpret, is limited in its ability to detect interactions [23]. Studies employing this

approach also typically start by considering only one SNP at a time and then include

interaction effects only for those SNPs that exhibit independent marginal effects [22].

This procedure ignores the broader environmental context and multigenic nature of

complex disease. It also runs the risk of identifying too many associated SNPs as a

result of linkage disequilibrium or evolutionarily induced dependencies.

These concerns are exemplified by the relationships shown in Figure 1. A simple

one-at-a-time search procedure might identify associations between C, E, and S1, as

long as the environmental exposure and SNP both have direct effects on cancer. But if S1

serves primarily to mediate the effects of E on C, its role would be missed if interactions

are not properly considered. Further, because of its association with S1, it is possible that

S2 would be identified as being associated with C. This would introduce a redundancy if

S2 and S1 are in linkage disequilibrium, or a false association if S2 and S1 are not on the

same gene or region of linkage disequilibrium [19]. Finally, traditional approaches focused

exclusively on direct relations would likely overlook the roles of S3 and B, although their

identification could have utility for disease prediction, identification, and prevention.

Improved procedures for implementing linear models can partially address these

shortcomings by putting more emphasis on interactions [24] or efficient paramete-

rizations [25]. Yet, the high numbers of higher-order interactions that are now believed

to underlie most human disease are not compatible with the strengths of traditional

statistical methods [26]. Multifactor dimensionality reduction (MDR) is one example of

a novel computational strategy for detecting and characterizing multiple non-linear

interactions in the absence of detectable marginal effects [27,28]. MDR works by

pooling genotypes from multiple loci to create new variables before subsequent associa-

tive analysis. A user-friendly open source software package for implementing MDR is

freely available from www.epistasis.org.

Even after pre-processing by MDR, linear logistic regression-type methods require

large sample sizes to achieve significant power. They also require focus on a single

well-defined phenotype. In contrast, through efficient factorization, BNs can break

down the discovery process of a complex system into separate investigations of smaller

components [29]. This means disease phenotypes can be defined by multiple factors,

including clinical or physiological diagnostic variables. Further, as opposed to creating

problems of multicollinearity, the associations between candidate predictor variables

are naturally accounted for when defining a BN’s conditional probability distributions

[19]. In the next section, we describe the means by which BNs can be used in genetic

association studies.
Structural learning
Learning a BN can refer to data-based inference of either: (i) the conditional probability

parameters for a given structure or (ii) the underlying graphical structure itself. We

http://www.epistasis.org
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focus here on the process of structural learning, as the discovery of novel relations

between genes, the environment, and disease is typically considered a harder problem

of greater interest than the estimation of effect strength for a known factor. Often,

parameter values are estimated concurrently as part of structural learning.
Methodological approaches

Many techniques have been developed to learn the structure of BNs from data. Generally,

the available algorithms can be classified into two types of approaches, constraint-based

and score-based:

� Constraint-based methods focus on identifying conditional independence

relationships (i.e., Markov conditions) between variables using observed data. These

conditional independencies can then be used to constrain the underlying network

structure. This approach was pioneered by Glymour et al. [30], Spirtes et al. [31],

and Verma and Pearl [32]. Typically, hypothesis testing procedures, such as the χ2

test, are first used to remove edges from a fully connected undirected graph based

on findings of unconditional independence. Next, directions are added to edges

between nodes according to the d-separation criterion (short for directed

separation). If X, Y, Z are three disjoint sets of nodes in a BN, then Y is said to

d-separate X from Z if and only if Y blocks every path from a node in X to a node

in Z [18]. In Figure 1, node E d-separates both B and C from S3, and S1 d-separates

C from S2 (all serial paths). As part of a divergent path, E also d-separates nodes B

and C from each other. Importantly, however, node C does not d-separate E from

S1 because convergent paths are not blocked when conditioning upon the node at

the convergence point or its descendants.
All d-separation relations between nodes in a graph imply conditional

independence relations between the corresponding variables. The difference

between the probabilistic dependencies implied by serial, divergent, and convergent

paths, therefore, is essential to inferring edge direction from statistical analysis of

data. Therefore, if the graph in Figure 1 represents the true underlying dependence

structure, we would expect to find the corresponding conditional independencies in

the data. However, it is not always the case that a particular set of conditional

independencies specify a unique directed graph. Alternatively, the power of a

particular data set to identify conditional independencies may be limited by sample

size or survey design. In such cases, most constraint-based structural learning

algorithms either return the set of all directed graphs that are consistent with the

input data, or simply return a single, partially directed graph that only assigns

directions to the edges whose d-separation implications are empirically supported.

This latter type of output is a concise way of revealing all the structures that are

observationally equivalent. When the directions of some edges remain ambiguous,

the graph can be used to identify what additional data collection efforts are

required to better reveal the underlying structure.

� Score-based methods consider a number of possible BN structures and assign a

score to each that measures how well it explains the observed set of data. The

algorithms then typically return the single structure that maximizes the score. As
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the number of potential structures is super-exponential in the number of nodes,

even systems with few variables have too many possible network structures to allow

for an exhaustive search. Therefore, since the initial work of Chickering et al. [33]

and Spirtes and Meek [34], most score-based algorithms have employed heuristic

search techniques, such as hill-climbing or simulated annealing.

There are a number of possible criteria to use for scoring BN structures. Ideally, as

both the structure and parameters of the BN are typically unknown, the full

marginal likelihood should be computed [35]. However, the computation of the full

likelihood over both the parameter space and structure space is impractical for all

but the smallest networks, requiring approximations such as the Bayesian

Information Criterion (BIC) to be used. The BIC score (also known as the Schwarz

Information Criterion and equivalent to the Minimum Description Length), can be

written as:

BIC ¼ log p D θ̂;G
��� �� �

� np
2

log Nð Þ
�

ð3Þ

where p D θ̂;G
��� ��

is the likelihood of the data D according to estimated parameters θ̂

and structure G, N is the sample size of the dataset, and np is the number of parame-

ters. The second term serves to penalize networks with many edges, thus the BIC will

lead to a preference for simpler graphs. For large N, the highest scoring model often

has parameters that are close to the maximum likelihood values.

When a greater tolerance for complex networks is desired (e.g., in the exploratory

phase of analysis), the Akaike information criterion (AIC) provides an alternative

scoring function:

AIC ¼ log p D θ̂;G
��� �� �

� np
�

ð4Þ

The AIC penalizes less harshly for the inclusion of additional edges (and their associ-
ated parameters). It is important to note that the maximum likelihood itself cannot be

used as a score function, as without the inclusion of a penalty term it would always lead

to selection of a completely connected network.

Cooper and Herkovits [36] propose the K2 score, which corresponds to the Bayesian

posterior for the special case of a uniform prior on both the structure and parameters.

The contribution of each variable to the logarithm of the K2 score can be written as:

log K2 Xið Þð Þ ¼
Xqi
j¼1

ln
ri � 1ð Þ!

Nij þ ri � 1
� �

!

 !
þ
Xri
k¼1

In Nijk !
� � !

where Nijk represents the number of cases in the database in which the variable Xi took

its kth value (k = 1, 2,. . ., ri), and its set of parents was instantiated as its jth unique

combination of values (j = 1, 2,. . ., qi), and Nij ¼
Xri
k¼1

Nijk . The logarithm of the total K2

score is then the sum of the individual contributions. The K2 score is typically inter-

mediate to the AIC and BIC in its penalization of network complexity.

Constraint-based methods can be more efficient than score-based approaches, espe-

cially when the number of samples is large. However, the detection of conditional
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independencies is sensitive to failures in hypothesis tests. Also, due to their reliance on

the d-separation criterion to determine the direction of edges, they may not assign a

direction to every edge. Thus, the score-based approach is generally preferred, particu-

larly when dealing with small sample size and noisy data [37]. Hybrid algorithms have

also been developed that combine the two conventional methods to maximize their

advantages. Typically, they start with a constraint-based algorithm to find the skeleton

of the network and then employ a score-based method to identify the best set of edge

orientations.
Common algorithmic implementations

There are, of course, multiple algorithms for implementing each of the approaches to

structural learning described above. In this section, we review some of the more

fundamental and popular algorithms. Many variants of each of these have also been

developed in an attempt to improve efficiency and effectiveness. We do not attempt to

provide a comprehensive review of these variants, nor do we attempt to provide a

historical context for the algorithms described below. For these purposes, the reader is

referred to the review by Daly et al. [38].

� Grow-Shrink (GS) is a constraint-based algorithm first proposed by Margaritis and

Thrun [39] and based on the concept of the Markov blanket. The Markov blanket

of a node in a BN consists of its parents, children, and its children’s other parents.

These represent all the variables that can give information about the variable

represented by node. The GS algorithm starts with a variable X and an empty set S.

The growing phase then adds variables to S as long as they are dependent on X,

conditional on the variables currently in S. In the subsequent shrinking phase,

variables that are rendered independent of X, based on the current members of S,

are then removed from S. Of course, the efficiency and effectiveness of this step is

influenced by the order in which variables are considered. Heuristically, one could

order the variables according to ascending mutual information or probability of

dependence with X as computed using the χ2 statistic during the growing phase, for

example [39]. The variables remaining in S after both phases then represent an

estimate of the Markov blanket of X. Together with X itself, this can be represented

as a fully connected, undirected network. The possible removal and direction of

edges are then addressed by examining triples of variables using the d-separation

criterion. Namely, spousal links between two nodes Y and Z are removed by

looking for a d-separating set around Y and Z. Directions are then given to edges

whenever it is found that conditioning on a middle node creates a dependency.

This entire process is then repeated for every variable and the results compiled into

a single network. Finally, a heuristic is used to remove any cycles that may have

been introduced by previous steps [39].

� Incremental Association Markov Blanket (IAMB) is another constraint-based

algorithm [40] that has similar search mechanics as GS. It also attempts to recover

an estimate of the Markov blanket of each variable X through two phases of

addition and removal. However, IAMB uses a dynamic heuristic function to

determine the ordering of candidate variables, as opposed to the static
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determination of GS. This function is calculated as the mutual information between

X and Y, conditional on the current members of the candidate Markov blanket set,

S. This minimizes the size of S after the addition phase, thus reducing the number

of false positives that need to be removed in the removal phase.

� Hill-Climbing (HC) is an example of a score-based algorithm [41]. The search over

structures starts from either an empty, full, or possibly random graph. Alternatively,

the initial graph can be chosen according to existing knowledge. The main loop

then consists of attempting every possible single-edge addition, removal, or reversal

relative to the current candidate network. The change that increases the score the

most then becomes the next candidate. The process iterates until a change in a

single-edge no longer increases the score.

� Max-Min Hill-Climbing (MMHC) is a hybrid algorithm [42] that first learns the

undirected skeleton of a graph using a constraint-based algorithm called Max-Min

Parents and Children (MMPC). This is followed by the application of a score-based

search to orient the edges. Like the other constraint-based algorithms described

above, MMPC consists of two phases when working with each variable. In the first

phase, variables are sequentially connected to X by an edge according to the

maximum value of their minimum association with X, where the minimum is

calculated relative to all subsets of the variables currently connected to X. In the

second phase, any false positives selected in the first phase are removed according

to a conditional independence test. The result is an estimate of the parents and

children of each node (as opposed to the full Markov blanket). These local

skeletons are then directed using a greedy hill-climbing algorithm. The difference

between MMHC and a standard search is that here the search is constrained to

only consider adding an edge if it remained after the constraint-based phase. This

gives the algorithm the advantage of reliably scaling up to thousands of variables in

reasonable computational time.
Handling missing values
When the data are complete, the modularity of BNs provided by the Markov condition

(eq. 1) also facilitates the process of structural learning. This is because the likelihood

function used as the basis for most scoring metrics can be decomposed into a product

of terms, each of which depends only on a variable’s parents and the conditional

probability parameters. This means that candidate networks generated by small changes

(adding or reversing an edge) can be evaluated locally, without regard to changes made

elsewhere in the network. This allows for efficient learning algorithms.

Unfortunately, when data are incomplete – as inevitably occurs with large SNP arrays

and hence gene-environment-disease data – decomposition of the likelihood function

is no longer possible. This makes structural learning in the presence of missing values a

computational challenge. Most state-of-the-art algorithms, including the ones reviewed

in the previous section, are not able to learn BNs from incomplete data. One solution

might be to simply discard observations with missing values or replace them with the

mean of the observations. However, in either case, statistical power is lost and the joint

distribution may be distorted. Therefore, in this section we review the use of the

popular expectation-maximization (EM) algorithm [43] for handling missing values in
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BN learning. We start with the situation of parameter learning for a known BN struc-

ture, followed by the more difficult problem of structural learning.

Known structure

The EM algorithm is an iterative method for finding maximum likelihood estimates of

parameters in the presence of missing values or latent variables. The algorithm

alternates between creating a function for the expectation of the log-likelihood using

the current parameter estimates – the E-step – and computing the parameters that

maximize the expected log-likelihood – the M-step. The process repeats until para-

meter values individually converge.

Suppose, for example, we have the hypothetical binary data given in Table 1 on the

variables C, E, and S1 from Figure 1. Some observations of exposure E are missing. We

first use the complete data to calculate the following initial parameter estimates (simply

using relative frequencies, corresponding to the maximum likelihood estimates) for the

given network structure:

P E ¼ 1ð Þ ¼ 0:583
P S1 ¼ 1ð Þ ¼ 0:350
PðC ¼ 1 E ¼ 0; S1 ¼ 0j Þ ¼ 0:033
PðC ¼ 1 E ¼ 1; S1 ¼ 0j Þ ¼ 0:026
PðC ¼ 1 E ¼ 0; S1 ¼ 1j Þ ¼ 0:014
P C ¼ 1 E ¼ 1; S1 ¼ 1j Þ ¼ 0:024ð

These parameters are then used to probabilistically complete the original data set, as

in Table 2. We then re-estimate the parameter values using expected frequencies and

repeat the process until parameter convergence. Scores for competing network struc-

tures can then be calculated that include observations with some missing values.

Unknown structure

As mentioned above, structural learning in the presence of incomplete data is a signifi-

cantly harder problem than parameter learning. This is because the E-step of the

standard EM algorithm would need to compute expected frequencies for exponentially

many candidate structures before the M-step could choose the structure that

maximizes the expected score. Probably the best known solution has been to embed

the structural search inside the EM procedure [44]. Originally referred to as model

selection EM (MS-EM) and later as structural EM (SEM), this algorithm alternates

between searching over network structures and computing the expected frequencies

for each candidate structure, on demand. Hill-climbing or other standard procedures
Table 1 First five observations of dataset with some missing values represented by NA

Obs. E S1 C

1 1 1 0

2 NA 1 1

3 1 0 0

4 NA 1 0

5 0 0 1

⋮ ⋮ ⋮ ⋮



Table 2 First five observations of probabilistically completed dataset

Obs. E P(E) S1 C

1 1 1 1 0

2 0 0.359 1 1

1 0.641

3 1 1 0 0

4 0 0.417 1 0

1 0.583

5 0 1 0 1

⋮ ⋮ ⋮ ⋮ ⋮
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can be used in the structural search because this step is performed as if there were

complete data. A computational improvement to the standard MS-EM algorithm is to

alternate between iterations that optimize the parameters for the current candidate

structure and iterations that search for a new structure (AMS-EM [44]). Various gene-

ralizations of the basic SEM algorithm have since been proposed [45,46].

A fundamental problem with deterministic approaches, such as EM-based algorithms,

is that they are prone to find only local maxima. While multiple random restarts may

help this problem, stochastic search methods represent another solution. Myers et al.

[47] present an evolutionary algorithm that evolves both the set of network structures

and the values of the missing data. Myers et al. [48] describe a similar strategy using a

Markov chain Monte Carlo technique.

Relatively little work has been done in developing constraint-based approaches to

structural learning in the presence of missing data. Two proposed algorithms include

Dash and Druzdzel’s [49] pseudo-Bayesian independence testing approach and Tian

et al.’s [50] interval-based algorithm, which employs interval estimates of the joint

probability of the variables obtained from possible completions of the incomplete data.

These are then used to derive a point estimate for approximating the mutual infor-

mation used in performing conditional independence tests. Guo et al. [51] describe a

hybrid evolutionary algorithm that combines constraint-based and score-based methods

for structural learning with incomplete data. To our knowledge, these constraint-based

and hybrid techniques have not yet been further developed or widely applied.
Causality
Thus far, we have implicitly assumed that the BNs being discussed obey causal seman-

tics; that is, every directed edge represents an association between parent and child that

can be assumed to be causal, as in Figure 1. This requires that the Markov condition of

Eq. 1 is assumed to extend to the notion of causality; given the effects on a variable of

its immediate causes, that variable is independent of all earlier causes. Of course, in the

case of genetic data, this assumption may be indirect, as we do not necessarily suppose

that SNPs themselves are causal to the disease but rather that a SNP that is in linkage

disequilibrium with the measured SNP causes a functional alteration [21].

There are two more assumptions that are required in order for a BN to be

interpreted as representing causality: (i) if any two variables are correlated, then it must

be assumed that one is the causal parent of the other or there is a third variable causing
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both, and (ii) there must be no variables missing from the network that are causal

parents of two or more of the variables contained in the network [18]. Therefore when

any important variables of a system are left unobserved – as is often the case – it is not

clear that a BN learned from data (i.e., found to be consistent with the distributions of

observed values) will have a directed structure that can interpreted causally. In fact, for

any single directed graph selected as “best” according to a score-based algorithm, there

will generally be many other graphs that are consistent with same conditional indepen-

dencies implied by the selected graph. As with the partially directed graphs emerging

from constraint-based algorithms, these graphs are termed observationally equivalent

and the set of graphs in the same equivalence class can be readily identified using

existing algorithms [52].

Claiming that a BN represents causality is tempting because not only does a causal

BN provide mechanistic insight into a system but it allows the effect of interventions

(e.g., reductions in exposure, drug treatments) to be correctly predicted. Unfortunately,

as stated above, the possibility of unobserved variables (often referred to as hidden or

latent variables) and the existence of a typically large equivalence class usually preclude

causal interpretation. On the other hand, interpreting BNs in terms of causality is not

necessary for extracting meaningful information from learned structures. Schlosberg

et al. [53] learn a fully directed BN involving a target phenotype and 533 SNPs using a

hill climbing algorithm. Perhaps counter-intuitively, they interpret all descendants of

the phenotype to be the causes, and compare the results to what would have been

obtained had they interpreted the causes to be: (i) all members of the phenotype’s

Markov blanket or (ii) only the children of the phenotype.

Sebastiani and Perls [19] provide the rationalization for the approach of Schlosberg

et al. [53]: being a complex trait, one would expect the presence of disease to be

modulated by a large number of SNPs. These SNPs may have modifying effects on

disease status, meaning that the association between one SNP and the disease will

affect the strength of association of another SNP. The consequence is that only a

limited number of SNPs can be practically detected as parents of the disease in causal

models that are statistically learned from data. Sebastiani and Perls suggest that this

limitation is removed by the use of diagnostic models, in which we allow SNPs and

environmental exposures to be children, rather than exclusively parents, of the disease.

In this way, the ability to detect the association of each SNP with the disease is not

influenced by the association of other SNPs. This type of structure also more accurately

represents the data-generating mechanism of a case–control study in which subjects

are chosen based on their disease status, rather than at random. In practice, because

the other parents of a child of the disease also contain information on disease status,

Sebastiani and Perls consider the entire Markov blanket of the disease node as potential

causes. This is also the approach taken by Han et al. [54] using a constraint-based

approach to structure learning. We will refer to such network representations as

non-causal.

The probability of disease given a particular environmental exposure and genetic

profile is not directly encoded in a non-causal BN, but it can be readily computed using

Bayes’ theorem. This technique is used in the analyses of Sebastiani et al. [6] and

Ramoni et al. [55]. Because of the counter-intuitive nature of such diagnostic models,

Sebastiani and Perls [18] suggest presenting results as an undirected graph representing
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mutual associations, rather than causal dependencies. The undirected counterpart of a

directed graph, referred to as a Markov network, is formed by connecting nodes with a

common child and then removing the direction of all edges. This is equivalent to

connecting each node to its Markov blanket [56].
Example application
To exemplify the various BN structural learning algorithms and causal interpretations,

we attempt to learn the relationships between a limited number of gene-environment-

disease variables collected as part of a population-based case–control study of bladder

cancer in New Hampshire. In addition to the presence/absence of bladder cancer, the full

dataset includes over 1477 SNPs in cancer-related genes, detailed smoking assessment,

gender, age, possible environmental risk factors including arsenic exposure, and selected

biomarkers [57,58]. Informed consent was obtained from each participant and all proce-

dures and study materials were approved by the Committee for the Protection of Human

Subjects at Dartmouth College. In the present context, we use the BN learning method to

further assess reported interactions between DNA repair genes and arsenic exposure in

increasing bladder cancer risk [59]. Specifically, in assessing polymorphisms in the XRCC3

and ERCC2/XPD genes using logistic regression, evidence of an increased risk of bladder

cancer among those in the top arsenic exposure decile was observed for those with a

variant allele of the double-strand break repair gene XRCC3. Therefore, we focus our

analysis on 11 variables that allow us to explore the role of SNPs in the gene XRCC3 at

positions 03, 04, and 241 and ERCC2/XPD at positions 03, 09, and 312. Arsenic exposure

is represented by toenail arsenic level as an internal biomarker, which, following Andrew

et al. (2009), is dichotomized at the 90th percentile. We also include the known risk

factors: gender, age (≤60 or >60), and smoking status (dichotomized as never and former/

current). While this set of 11 variables is certainly very small for a gene association study,

we believe this allows us to more clearly demonstrate the BN method.

For analysis, we use the open-source software package bnlearn [60] in the statistical and

graphical environment R [61] (http://www.r-project.org). The bnlearn package implements

all of the algorithms described in Subsection Common algorithmic implementations in

addition to a number of their variants. It also supports parameter estimation for given net-

works, conditional probability queries, model comparison and manipulation, random data

generation, and plotting.
Complete data

We begin by comparing the Grow-Shrink(GS), Incremental Association Markov

Blanket (IAMB), Hill-Climbing (HC), and Max-Min Hill-Climbing (MMHC) algorithms

to a subsample of our dataset consisting of 424 controls and 226 cases without any

missing values over the variables of interest.

For the constraint-based GS and IAMB algorithms and the hybrid MMHC algorithm,

we used the Pearson’s χ2 test as the basis for the conditional independence tests with

an alpha value (nominal type I error rate) of 0.05. Other available options in bnlearn

include a chi-square test on the mutual information, a shrinkage estimator for the mutual

information, and an experimental AIC-based independence test (see [60] for details).

http://www.r-project.org
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For the score-based HC algorithm and the hybrid MMHC algorithm, we chose log

(K2) as the scoring metric, as it is intermediate to the AIC and BIC in its penalization

of complexity. Other frequentist scoring options for discrete variables in bnlearn

include the multinomial log-likelihood, AIC, and BIC. To avoid convergence on a local

maximum, we implemented 100 random restarts, each with 5 edge perturbations.

To first limit our results to fully prognostic models, we used the available ‘blacklist’

option in bnlearn to disallow any unreasonable casual relationships (e.g. SMOKING as

a parent of AGE, non-genetic variables as parents of SNPs, CANCER as a parent of

GENDER or SMOKER, SNPs as parents of AGE, TOENAIL_AS as a parent of AGE,

GENDER, or SMOKER).

Results obtained from the four algorithms are broadly similar. In fact, the two strictly

constraint-based algorithms and the two algorithms including a scoring component

each returned identical structures (Figure 2). In all networks, SMOKER and GENDER

are identified as parents of CANCER, and GENDER is additionally a parent of

SMOKER. All networks show AGE to be a parent of TOENAIL_AS. While none of the

networks show AGE as a parent of CANCER, as might be expected, this is not surpri-

sing in the present context given that controls were selected in a manner that

minimized differences in age relative to cases [57].

None of the structures learned from the complete data cases shows any relation

between the selected SNPs and other variables. The linkage disequilibrium groups

found are the same across algorithms, with the exception of an edge between

XRCC3_03 and XPD_312 in the network produced by the HC and MMHC algorithms.

The directions of edges differ slightly between the strictly constraint-based algorithms

and those with a scoring component, but as these are understood to only represent

associations rather than genuine causal relationships this is not a serious concern.
GS and IAMB

ERCC2_09

XPD_312

ERCC2_03XRCC3_04

XRCC3_03

XRCC3_241

TOENAIL_AS CANCER

SMOKER

AGE

GENDER

ERCC2_09

XPD_312

ERCC2_03XRCC3_04

XRCC3_03

XRCC3_241

TOENAIL_AS CANCER

SMOKER

AGE

GENDER

HC and MMHC

Figure 2 Comparison of the BNs learned by four different algorithms. Edges that differ between the
two networks are indicated in grey in the bottom graph.



Table 3 Comparison of different algorithms

GS IAMB HC MMHC

Tests 259 366 750 921

Directed arcs 10 8

Log-likelihood −4045.78 −4043.24

AIC −4073.78 −4072.24

log(K2) −4125.07 −4124.27

BIC −4136.46 −4137.16

The highest value of each score is in bold.
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When the networks learned by the algorithms are scored post-hoc using the various

criteria (Table 3), it can be seen that those returned by HC and MMHC yield higher

scores on all metrics except the BIC. Computationally, the constraint-based algorithms

performed fewer tests than the ones with a score component, demonstrating their

computational efficiency. As the computational complexity is polynomial in the number

of tests, this could be a significant consideration for datasets with many more variables.

We next consider a non-causal network (i.e., one in which edges do not necessarily

follow causal direction) by removing from the ‘blacklist’ those edges for which

CANCER is a parent and re-running the score-based HC algorithm. We choose the

HC algorithm because of the results of Table 3 and because, having dropped the

assumption of causality, we are interested in high scoring networks, rather than those

that accurately represent causal direction. The result (Figure 3) shows three variables:

GENDER, SMOKER and XRCC3_241 to have direct relations with CANCER, the first

as a parent and the second two as children. Additionally, as a parent of XRCC3_241,

XRCC3_04 is in the Markov blanket of CANCER. Therefore, all four of these variables

should be considered further as candidate contributory causes of bladder cancer.
Missing data

Andrew et al. [59] found evidence of gene-environment interaction between XRCC3

241 and high toenail arsenic levels on bladder cancer risk. Thus far, our BN analysis

using only the 424 controls and 226 cases with complete data has not been able to

confirm this association. To investigate the possible influence of missing values, we

next employed the EM algorithm to enable us to use the full dataset of 665 controls

and 448 cases. (Most of the missing values occur in the variables representing SNPs.)

To simplify the search process, we only consider the hypothesis that TOENAIL_AS
ERCC2_09

XPD_312

ERCC2_03XRCC3_04

XRCC3_03

XRCC3_241

TOENAIL_AS CANCER

SMOKER

AGE

GENDER

Figure 3 A non-causal network. Edges that differ relative to the causal networks are indicated in grey.
Shaded nodes indicate the Markov blanket of CANCER.



XRCC3_04XRCC3_241

TOENAIL_AS CANCER

SMOKER GENDER

Figure 4 Candidate structures (represented by dotted edges) in which TOENAIL_AS would be
included in the Markov blanket of CANCER.
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should be included in the Markov blanket of CANCER. This could occur if this variable

is either a parent of CANCER, a child of CANCER, or another parent of a child of

CANCER (Figure 4). Thus, including the network representing the null hypothesis, we

consider five possible structures. After application of the EM algorithm to each

structure, the expected values of the log-likelihood, AIC, log(K2), and BIC scores were

calculated as the basis for model comparison.

Results indicate that the network including TOENAIL_AS as a parent of XRCC3_241

provides the best fit to the data according to the first three scoring criteria (Table 4). Only

the BIC score favors the null hypothesis of no association. The inclusion of TOENAIL_AS

in the Markov blanket of CANCER is a result that is qualitatively consistent with the

findings of Andrew et al. [59]. Additionally, the fact that TOENAIL_AS is a common

parent of XRCC3_241, together with CANCER and XRCC3_04, indicates the presence of

gene-environment interactions in determining cancer risk (Figure 5).

To quantitatively explore these interactions, the risk of an individual having bladder

cancer given gender, smoking status, toenail arsenic level, and XRCC3 04 and XRCC3

241 variation can be computed using Bayes’ theorem as applied to the final network in

Figure 5. We used the cpquery function in bnlearn to perform the inference required to

calculate the conditional probabilities of cancer. We then computed odds ratios relative

to a female, non-smoker, with low toenail arsenic levels and the wildtype allele at both

the 04 and 241 positions on the XRCC3 gene. The relative odds ratios of some of the

32 possible combinations (Table 5) show that, when the known risk factors gender and

smoking are each present alone, they are associated with comparable increases in

bladder cancer risk (see cases 6 and 7). For females without other observed risk factors,

the variant allele at position 04 is associated with higher bladder cancer risk than the

double wildtype form of this gene, while a double-variant form is associated with lower
Table 4 Expected scores for the five candidate structures shown in Figure 4 after
applying the EM algorithm

Added edge Log-Likelihood AIC log(K2) BIC

none −3824.1 −3837.1 −3861.7 −3869.7

TOENAIL_AS → CANCER −3824.6 −3839.6 −3865.7 −3877.2

CANCER → TOENAIL_AS −3824.6 −3838.6 −3865.3 −3873.7

TOENAIL_AS → SMOKER −3820.9 −3837.9 −3864.6 −3880.5

TOENAIL_AS → XRCC3_241 −3815.8 −3832.8 −3859.6 −3875.4

The highest scoring network according to each score is in bold.



XRCC3_04XRCC3_241

TOENAIL_AS CANCER

SMOKER GENDER

XRCC3_04XRCC3_241

TOENAIL_AS CANCER

SMOKER GENDER

Figure 5 Final structure with directed edges in which no causal interpretation is implied (left) and
equivalent undirected Markov network (right). Grey edges are new relative to earlier structures.
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risk (compare cases 1, 2, 3, and 4). The association between cancer risk and arsenic

exposure depends on genotype. For any combination of gender and smoking status, the

risk of bladder cancer is elevated when toenail arsenic levels are high for those with a

variant at position 241 and wildtype at position 04 (compare cases 3, 5, 9 and 11 and

cases 10 and 13). However, for those with a wildtype at position 241 and variant at

position 04, the cancer risk does not increase with arsenic level (compare cases 12 and

13). A double variant genotype is associated with lower risk of bladder cancer than

single variant genotypes (compare cases 1, 3 and 4, and cases 8, 12, and 14). Such

results show the potential for BNs to capture the complex role of multiple SNPs, as

well as their interplay with exposure and background variables in determining disease

susceptibility. Traditional logistic regression results corresponding to the relations

discovered in the final BN confirm the statistical significance of the single factors,

as well as the interaction between XRCC3_241 and XRCC3_04 (Table 6). The com-

bination of high arsenic exposure and XRCC3_241 variation reveals an elevated

odds ratio but an insignificant p-value of 0.14, suggesting that further study is ne-

cessary to confirm this association.
Table 5 Prognostic bladder cancer risk for some of the 32 possible combinations of risk
factors

Case Gender Smoker Toenail As XRCC3_241 XRCC3_04 Odds ratio # of subjects

1 female no low variant variant 0.68 13

2 female no low wildtype wildtype 1.0 (ref) 22

3 female no low variant wildtype 1.10 16

4 female no low wildtype variant 1.45 39

5 female no high variant wildtype 2.02 2

6 female yes low wildtype wildtype 2.22 27

7 male no low wildtype wildtype 2.23 20

8 male yes high variant variant 2.25 5

9 female yes low variant wildtype 2.45 24

10 male yes low variant wildtype 4.36 181

11 female yes high variant wildtype 4.48 9

12 male yes high wildtype variant 5.17 14

13 male yes low wildtype variant 5.75 95

14 male yes high variant wildtype 7.99 14



Table 6 Logistic regression results for associations discovered in final BN model

Coefficient Std. error P-value Odds ratio 95% CI

Intercept −1.382 0.170 <0.00001 1 -

S 0.640 0.154 0.00003 1.90 (1.40, 2.56)

G 0.633 0.143 <0.00001 1.88 (1.42, 2.49)

X4 0.403 0.179 0.024 1.50 (1.05, 2.12)

A:X241 0.435 0.295 0.140 1.55 (0.87, 2.76)

X241:X4 −0.731 0.240 0.002 0.48 (0.30, 0.77)
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Discussion
While our example application is quite small in comparison to genome-wide association

studies, it exemplifies some important points regarding BN structural learning. First, while

the claim that a BN can represent causal relations is tempting, strictly enforcing a causal

interpretation by disallowing nonsensical causal directions can limit the identification of

important associations. For example, while the influence of gender and smoking on

bladder cancer was clearly identified by our causal model (Figure 2), the association of

cancer with the XRCC3_241 SNP was missed. This may not be surprising, given that

cancer is effectively the independent variable in the process of selecting subjects for a

case–control study. In the non-causal model (Figure 3), the XRCC3_241 SNP is identified

as a child of CANCER (as is SMOKER), while GENDER continues to be a parent of both

CANCER and SMOKER. This is consistent with the role of GENDER as a consideration

in the process of selecting controls.

Interestingly, in the non-causal model, the XRCC3_04 SNP is revealed as being

associated with CANCER by virtue of its membership in the Markov blanket. The

V-structure that is formed at the XRCC3_241 node is a distinctive feature of BN

modeling; such a structure implies that the two parents are marginally (i.e., uncondi-

tionally) independent, but become dependent when conditioned on the value of the

child. A chi-squared test applied to the data confirms the fact that XRCC3_04 and

CANCER are marginally independent (χ2 = 0.85, p = 0.36, n = 1113), but become signifi-

cantly positively associated (χ2 = 7.75, p = 0.005, n = 558) conditional on XRCC3_241

being wildtype. A one-at-a-time search strategy (e.g. Andrew 2009) will typically miss

such an association. This is an example of Simpson’s paradox, and appropriately captur-

ing such situations in a BN allows for the accurate representation of complex relations.

In most real-world datasets, much information is lost when only complete obser-

vations are considered in statistical analysis. The EM algorithm provides a practical

means for estimating model parameters without disregarding observations with missing

values. In our example, this greatly increased our sample size and allowed for the

discovery of toenail arsenic levels as a significant predictor of bladder cancer.

TOENAIL_AS was not determined to be a parent of CANCER, but rather was found

to be a parent of XRCC3_241, together with CANCER and XRCC3_04. This indicates

the presence of gene-environment interactions, as reflected in the pattern of odds ratios

calculated from this structure.

By focusing our attention on the role of TOENAIL_AS and its potential membership

in the Markov blanket of CANCER, we were able to perform a comprehensive

comparison of candidate structures after implementing the EM algorithm on each.

Normally, one would be interested in comparing too many different structures to apply
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EM and scoring algorithms to them all. In such cases, the SEM algorithm or one of its

variations would be necessary. Structural learning in the presence of missing data

continues to be an active area of research.

We employed a score-based method when learning our non-causal structure and when

considering TOENAIL_AS as a member of CANCER’s Markov blanket. While constraint-

based methods can be more efficient, they can also be sensitive to failures in hypothesis

tests. Further, if one has already given up causal claims, then a high-scoring structure is

more important than a network that accurately represents causal direction. Of course, the

choice of scoring metric is influential in determining which network is “best.” Because we

view the process of BN structural learning as primarily an exploratory phase of data ana-

lysis that should be followed by rigorous replication studies [62], we do not see a need to

rely on scoring criteria, such as the BIC, that penalize harshly for the number of edges.

Our example contained all discrete or easily discretized variables. While we believe

this is generally representative of problems concerning the genetic dissection of disease,

it may be that results are sensitive to the particular discretization of continuous

variables. For example, based on the analysis of Andrew et al. [59], we divided toenail

arsenic levels into “low” and “high” based on the 90th percentile of the observed values.

There may be reasons why other thresholds would be more predictive or biologically

relevant. When there is no clear basis for choosing the thresholds, other investigators

have used the quartile boundaries [19]. Continuous variables could also be kept as such,

in which case the conditional probability distributions in eq. (1) are represented by

conditional density functions [35]. This does not necessarily present a problem for learn-

ing BN parameters for a given structure, as statistical methods – including the handling

of missing data – are readily available. However, structural learning becomes significantly

more difficult when variables are continuous, as the number and type of possible depen-

dence relations and interactions becomes infinite. However, under some assumptions,

such as linear relations and conditionally normal distributions, effective algorithms have

been worked out [63]. Using kernel density estimators to model the conditional distribu-

tion, Hofmann and Tresp [64] were able to eliminate the reliance on normality. Further

research is being conducted on this practically relevant topic [38].

We constrained ourselves here to discussing networks containing only variables for

which there are some recorded data. Of course, in most cases, not all relevant aspects

of a problem have been observed. Such hidden variables can present a problem for net-

work structural learning, as omission of nodes effectively amounts to marginalization

of the underlying joint distribution, potentially leading to complex dependencies among

the remaining, observed variables. For example, in the gene-environment-disease con-

text, data may be available on several environmental biomarkers and health outcomes,

as well as a number of predisposing genetic or sociocultural factors. The relation

between these is presumably mediated by the level of exposure to an environmental

stressor, rendering many of the effects and predisposing factors conditionally independ-

ent. However, if the actual exposure level is not being measured, then all the observed

variables will appear to be related to each other, likely in complex ways. By explicitly

including a node representing a hidden variable in a network – even if there are no

recorded data on that variable – the learned models are likely to be simpler and less

prone to overfitting [65]. Fortunately, the structural EM algorithm can handle hidden

variables analogously to how it handles missing values of otherwise observed quantities
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[65]. However, how to choose the number and placement of hidden variables in a BN

remains an active area of research.

Despite being applied to Bayesian networks, the process of structural learning as we have

described it this far has not been truly Bayesian in spirit. That is, we have not incorporated

prior knowledge regarding possible structures or attempted to calculate posterior probabil-

ities of model structures or features (e.g. the presence of a particular edge or the value of a

particular parameter). As mentioned in Section Methodological approaches, the BIC score

represents an approximation of the full marginal likelihood, which is comparable to the

Bayesian posterior with a vague prior. The K2 score also represents a special case of the

Bayesian posterior resulting from a uniform Dirichlet prior. A further generalization, still

assuming a Dirichlet distribution but with prior knowledge able to be incorporated as an

equivalent sample size was developed by Heckerman et al. [66] and is referred to as the

Bayesian Dirichlet equivalent (BDe) score. Friedman [65] describes a version of the struc-

tural EM algorithm that directly addresses Bayesian model selection.

Even when the model selection process is Bayesian, in that it incorporates prior know-

ledge, typically only the single structure with the greatest posterior probability is

maintained for further prediction and inference. However, when the amount of data

(i.e. number of observations) is small relative to the size of the network (i.e. number of

nodes or edges), there are likely to be many structures that conform with the data nearly

equally well [67]. In such a situation – which is the norm when working with gene-

environment-disease data with many SNPs relative to the sample size – the choice of a

single “best” structure is largely arbitrary. Another data manifestation from the same

population could have led to a very different final model. Zhang [68] has developed a

fully Bayesian graphical method for large-scale association mapping, called BEAM3,

which yields posterior probabilities of association. Yet, in most situations there are expo-

nentially many structures that provide a “reasonable” representation of the observed

data, making comprehensive investigation or communication of all “good” structures (i.

e. those with a non-negligible posterior probability) impossible. For this reason, Fried-

man and Koller [67] propose a method for computing the Bayesian posterior of a par-

ticular structural feature, defined as the total posterior probability of all structures that

contain the feature. Such features might include the presence of a particular edge be-

tween two nodes, the choice of a node’s parents, or the Markov blanket of a node.

In some cases, robust assessment of such features may be more relevant to

biological discovery than full articulation of (potentially fragile) network structures.
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