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ABSTRACT
Hypocotyl elongation is a critical sign of seed germination and seedling growth, and
it is regulated by multi-environmental factors. Light, temperature, and water potential
are the major environmental stimuli, and their regulatory mechanism on hypocotyl
growth has been extensively studied at molecular level. However, the converged point
in signaling process of light, temperature, and water potential onmodulating hypocotyl
elongation is still unclear. In the present study, we found cell wall was the co-target of
the three environmental factors in regulating hypocotyl elongation by analyzing the
extension kinetics of hypocotyl and the changes in hypocotyl cell wall of Brassica rapa
under the combined effects of light intensity, temperature, and water potential. The
three environmental factors regulated hypocotyl cell elongation both in isolation and
in combination. Cell walls thickened, maintained, or thinned depending on growth
conditions and developmental stages during hypocotyl elongation. Further analysis
revealed that the imbalance in wall deposition and hypocotyl elongation led to dynamic
changes in wall thickness. Low light repressed wall deposition by influencing the
accumulation of cellulose, hemicellulose, and pectin; high temperature and high water
potential had significant effects on pectin accumulation overall. It was concluded that
wall deposition was tightly controlled during hypocotyl elongation, and low light, high
temperature, and high water potential promoted hypocotyl elongation by repressing
wall deposition, especially the deposition of pectin.

Subjects Agricultural Science, Developmental Biology, Plant Science
Keywords Combined effect, Hypocotyl growth, Wall biosynthesis, Pectin, Chinese cabbage

INTRODUCTION
Light, temperature and water potential are the basic environmental conditions for plant
survival and have important influences on plant growth and development, including
seed germination, root initiation, hypocotyl elongation, leaf growth, flowering and so on
Hersch et al. (2014), Lorenzo et al. (2016), Patel & Franklin (2014) and Wilkinson & Davies
(2010). These environmental factors are often correlated under natural conditions, and
their combined effects on seedling growth are often analyzed using hypocotyl elongation,
which has been an exemplar model system to study cell expansion (Derbyshire et al., 2007;
Refregier et al., 2004). The synergistic regulation of two environmental factors on hypocotyl

How to cite this article Wang H, Shang Q. 2020. The combined effects of light intensity, temperature, and water potential on wall deposi-
tion in regulating hypocotyl elongation of Brassica rapa. PeerJ 8:e9106 http://doi.org/10.7717/peerj.9106

https://peerj.com
mailto:shangqingmao@caas.cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.9106
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj.9106


elongation, such as ‘‘light intensity and temperature’’ and ‘‘light quality and temperature’’,
has been analyzed (Johansson et al., 2014; Kurepin et al., 2010).

Hypocotyl is an appropriate system to study environmental control of plant growth in
the early period. The cellular basis of hypocotyl elongation has been extensively studied,
indicating that the contribution of cell elongation and division to hypocotyl growth
is species- and growth condition-dependent (Gendreau et al., 1997; Raz & Koornneef,
2001; Scheres et al., 1994). For example, hypocotyl growth exclusively occurs through
cell elongation with no contribution from cell division in Arabidopsis thaliana (Boron &
Vissenberg, 2014; Derbyshire, McCann & Roberts, 2007). Cell elongation and division are
both observed in elongating hypocotyl of Helianthus annuus (Kutschera & Niklas, 2013).
Hypocotyl extension of Cucumis sativus occurs through cell elongation without division
when grown in low light. However, cell elongation and division both contributed to
hypocotyl growth under high light (Lopez-Juez et al., 1995).

The extensibility of primary wall plays a critical role in regulating hypocotyl cell
elongation induced by environmental factors (Cosgrove, 2016; Pereyra et al., 2010; Xiao,
Somerville & Anderson, 2014). The extensibility of the cell wall often reduces as cell wall
polymers are deposited, which is necessary in elongating cells; otherwise, an increase in cell
size would be achieved by stretching the existing wall (Derbyshire et al., 2007;Refregier et al.,
2004). To protect the wall from excessive thinning and being ruptured by turgor pressure,
cell expansion and wall biosynthesis are coordinately regulated (Ivakov et al., 2017; Voxeur
& Hofte, 2016). The imbalance of cell elongation and wall biosynthesis contributes to
dynamic changes in wall thickness (Bischoff et al., 2011; Wu et al., 2005; Xiao et al., 2017).
As hypocotyl elongates, cell walls display phases of thickening, maintaining a constant
thickness, or becoming thinner, depending on the cell type and developmental stage
(Derbyshire et al., 2007; Refregier et al., 2004). The regulatory effect of single environmental
factor on the deposition of cellulose, hemicellulose, and pectin has been extensively studied
(Derbyshire et al., 2007; Le Gall et al., 2015; Sasidharan, Voesenek & Pierik, 2011). However,
whether these components are coordinately regulated by multiple environmental factors
should be further investigated.

Brassica rapa is an economically important vegetable that is popular worldwide. The
hypocotyl of B. rapa is particularly sensitive to environmental conditions and can become
over-elongated, resulting in the potential failure of transplants in the production process
(Devlin et al., 1997; Procko et al., 2014). In this paper, the characteristics of hypocotyl
growth, dynamic changes in wall thickness, and changes in wall compositions were
measured to investigate the co-target of light intensity, temperature, and water potential
in regulating hypocotyl elongation. Our hypothesis was that the cell wall was the co-target.
Low light, high temperature, and high water potential changed wall properties by adjusting
its composition and modulated hypocotyl cell growth.

MATERIALS & METHODS
Plant materials and treatments
Seeds of B. rapa (cv. CuiBai No. 3) were surface sterilized in 5% NaClO. The sterilized
seeds were sown in vermiculite irrigated with 200 mL 1/2-strength Hoagland solution after
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Table 1 Growth conditions of B. rapa seedlings. Data in the table represent the means± SE.

Growth
condition

Light intensity
(µmol m−2 s−1)

Temperature
(◦C)

Water potential
(MPa)

LhTlWl 250± 10 21± 1 −0.15± 0.01
LhTlWh 250± 10 21± 1 −0.05± 0.01
LhThWl 250± 10 29± 1 −0.15± 0.01
LhThWh 250± 10 29± 1 −0.05± 0.01
LlTlWl 50± 10 21± 1 −0.15± 0.01
LlTlWh 50± 10 21± 1 −0.05± 0.01
LlThWl 50± 10 29± 1 −0.15± 0.01
LlThWh 50± 10 29± 1 −0.05± 0.01

Notes.
Abbreviations: L, light intensity; T, temperature; W, water potential; h, high; l, low.

germination, and then cultured at 25 ◦C in the dark. At the onset of seedling emergence,
the seedlings were irrigated with another 200 mL 1/2-strength Hoagland solution or a
solution with 8% polyethylene glycol 6000 (PEG-6000; w/v; Sinopharm, Beijing, China),
and then cultured in controlled chambers equipped with fluorescent lights (Philips, 28 W,
Amsterdam, Netherlands). The light intensity was set to 50 and 250 µmol m−2 s−1 (16 h
light/8 h dark, Table 1), and the R:FR ratios in the different treatments were all 4:1. The
spectral outputs were shown in Fig. S1. The temperature was set to 21 ◦C and 29 ◦C, which
were kept constant day and night. The water potential of irrigation solutions without or
with PEG-6000 was measured by a Psypro water potential system (Wescor, Logan, KY,
USA).

Measurements of hypocotyl length, elongation rate, volume and cell
length
The hypocotyl length of B. rapa seedlings was measured in 1 d intervals using a millimeter
scale (accuracy ± 0.5 mm), and 30 plants were scored in three independent replicates
of each treatment. Adjacent measurements were used to calculate the elongation rate.
Hypocotyls treated for 8 d were cut into small segments at the midpoint and fixed in 37%
formaldehyde: acetic acid: ethanol: water (5:5:63:27) for 2 d at 4 ◦C. Then, the segments were
gradually dehydrated in a series of alcohol solutions, incubated in ethylbenzene/paraffin at
58 ◦C, and embedded in paraffin. The samples were sliced into 9 µm sections and stained
using Fast Green dye. The lengths of cells in the epidermis and cortex were measured
and photographed using a BX53 light microscope (Olympus, Tokyo, Japan). In total, 15
sections that included 75 cells in three independent replicates were used for cell length
determination. Cell number of epidermis and cortex was calculated from the hypocotyl
length divided by the cell length.

Measurement of cell wall thickness
After the seedlings were treated for 0, 2, 5, or 8 d, they were cut into 2 mm segments at the
midpoint and fixed in 3% glutaraldehyde buffer (v/v; pH 7.3) in the dark. The segments
were rinsed with phosphatic buffer solution (0.1 M, pH 7.2) and post-fixed in 1% OsO4,
which was followed by washes with phosphatic buffer solution. Then, the samples were

Wang and Shang (2020), PeerJ, DOI 10.7717/peerj.9106 3/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.9106#supp-1
http://dx.doi.org/10.7717/peerj.9106


gradually dehydrated in a series of alcohol solutions, incubated in acetone/resin at 35 ◦C
and embedded in resin at 40 ◦C. The samples were sliced into ultrathin transverse sections
of ∼90 nm using a glass knife on a Reichert ultramicrotome (Leica, Milton Keynes, UK).
The slices were collected on 200-mesh copper grids and stained with 2% (w/v) uranyl
acetate for 15 min and 1% (w/v) lead citrate for 10 min. Then, the slices were washed
with water and air-dried in petri dishes. Cell walls were observed using a Jeol JEM-1230
transmission electron microscope (JEOL, Tokyo, Japan) and photographed. Envisioning
the hypocotyls as cylinders, the volume = π * (radius of hypocotyl at midpoint)2 *
hypocotyl length. The wall volume was calculated from sections at the midpoint of the
hypocotyl, and the transverse wall was not included (Fig. S2A), as previously described
(Derbyshire et al., 2007). The wall volume of the outer epidermal wall (OE) was calculated
by multiplying the perimeter of the hypocotyl at the midpoint by the OE thickness and
by the hypocotyl length. The volume of the inner epidermal wall (IE) was calculated by
multiplying the perimeter of the IE by the number of epidermis, by the thickness of the
IE, and by the hypocotyl length. The wall volume of the cortical wall (CO) adjacent to
the OE was considered the CO volume and calculated by multiplying the perimeter of
the CO by its number, by the thickness of the CO, and by the hypocotyl length (Fig.
S2B). The perimeter of the IE = 2 π * radius of epidermis cell * the cell number −
the perimeter of the hypocotyl at the midpoint. The number of epidermal cell = 2 π *
(radius of hypocotyl − the radius of epidermal cell)/diameter of the epidermal cells. The
number of cortical cell = 2 π * (the radius of hypocotyl − the diameter of epidermal
cell − the radius of cortical cell adjacent to the epidermal cell)/diameter of the cortical
cells. The data used to calculate the index were from three independent replicates that
included 6 hypocotyls and 60 cells. The fold change in hypocotyl volume induced by low
light = (LlTlWl/LhTlWl + LlTlWh/LhTlWh + LlThWl/LhThWl + LlThWh/LhThWh)/4;
the fold change in hypocotyl volume induced by high temperature = (LhThWl/LhTlWl +

LhThWh/LhTlWh + LlThWl/LlTlWl + LlThWh/LlTlWh)/4; the fold change in hypocotyl
volume induced by high water potential = (LhTlWh/LhTlWl + LhThWh/LhThWl +

LlTlWh/LlTlWl + LlThWh/LlThWl)/4.

Determination of hypocotyl cell wall mass and content in
components
The cell wall mass of hypocotyls was determined according to the previous method (Zhong
& Lauchli, 1993). Approximately 40 hypocotyl segments treated for 8 d were harvested,
weighed, and frozen in liquid nitrogen. The frozen samples were homogenized to powder
and washed into centrifuge tubes using 1 mL ice-cold 75% ethanol. The tubes were kept
in ice for 20 min without disturbing, followed by centrifugation for 10 min at 10,000 × g.
The pellets were sequentially washed using ice-cold acetone, a mixture of methanol and
chloroform (1:1, v/v), and methanol. The pellets were considered as cell wall preparations
and weighed after lyophilization.

The cell wall preparations were fractionated into four fractions, including pectin,
hemicellulose 1 (HC1), hemicellulose 2 (HC2), and cellulose (Iraki et al., 1989; Labavitch
& Ray, 1974). The freeze-dried pellets were suspended in 2 mL 0.5% ammonium oxalate
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buffer containing 0.1% NaBH4 (pH 4.0) in a boiling water bath for pectin extraction.
Then, the pellets were subjected to another extraction with 5 mL 4% KOH containing
0.1% NaBH4 at room temperature, and the extraction solutions were HC1 fractions.
The protocol for the HC2 extraction was similar to that for HC1 extraction, but 24%
KOH was used. Before determination, HC1 and HC2 solutions were neutralized with
glacial acetic acid. The residuals in the centrifuge tubes were regarded as cellulose and
freeze-dried before weighing. The pectin content was determined by carbazole colorimetry
as previously described (Stark, 1950). Hemicellulose content was determined by anthrone
assay (Updegraff, 1969). The decrease in wall component content induced by low light =
(1 − average (LlTlWl/LhTlWl + LlTlWh/LhTlWh + LlThWl/LhThWl + LlThWh/LhThWh))
* 100%; the decrease in wall component content induced by high temperature = (1 −
average (LhThWl/LhTlWl + LhThWh/LhTlWh + LlThWl/LlTlWl + LlThWh/LlTlWh)) *
100%; the decrease in wall component content induced by high water potential = (1 −
average (LhTlWh/LhTlWl + LhThWh/LhThWl + LlTlWh/LlTlWl + LlThWh/LlThWl)) *
100%.

Gene expression analysis by quantitative RT-PCR
Total RNA was extracted from hypocotyls using TRIzol reagent (Invitrogen, Gaithersburg,
MD, USA) according to the manufacturer’s instruction. The first-strand cDNA was
synthesized using a reverse transcription system (Promega, Madison, WI, USA), and
real-time PCR was carried out with a SYBR Green Supermix (Transgene, Beijing, China)
on a LightCycler R© 96 real-time PCR system (Roche, Basel, Switzerland). The reactions
were performed with three replicates using GAPDH (Bra016729) as the reference gene
(Procko et al., 2014; Qi et al., 2010), and the relative expression levels of the target genes
were calculated using the 2−11Ct method (Schmittgen & Livak, 2008). The primers used to
quantify the gene expression levels were listed in Table S1.

Statistical analysis
The values presented in pictures and tables represent themean (three replicates)± standard
error (SE). Significance was analyzed using SAS 9.2.0 software withDuncan’smultiple range
test (P < 0.05).

RESULTS
Hypocotyl elongation kinetics
Hypocotyl elongation kinetics of B. rapa seedlings were established in eight treatments
that were used to detect the combined effects of light intensity, temperature, and water
potential on hypocotyl growth. Hypocotyl length was measured over a period of 8 d,
and the final length showed a high degree of variability in the eight treatments: high
light × low temperature × low water potential (LhTlWl), high light × low temperature
× high water potential (LhTlWh), high light × high temperature × low water potential
(LhThWl), high light × high temperature × high water potential (LhThWh), low light ×
low temperature× low water potential (LlTlWl), low light× low temperature× high water
potential (LlTlWh), low light × high temperature × low water potential (LlThWl), and
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Figure 1 Hypocotyl elongation dynamics in B. rapa responding to light intensity, temperature and
water potential. (A–H) Photographs of B. rapa seedling under different growth conditions at 8 d. Scale
bars= 1 cm. (I) Dynamic curve of hypocotyl elongation. Values in the pictures are means± SE (n= 30).
Arrows indicate times (0, 2, 5, and 8 d) at which hypocotyls are used to analyze wall thickness in further.
Abbreviations: L represents light intensity; T represents temperature; W represents water potential; h rep-
resents high; l represents low.

Full-size DOI: 10.7717/peerj.9106/fig-1

low light × high temperature × high water potential (LlThWh) (Figs. 1A–1H). According
to binary comparisons (LlTlWl vs LhTlWl, LlTlWh vs LhTlWh, LlThWl vs LhThWl, and
LlThWh vs LhThWh), the increase in hypocotyl length induced by low light was 1.17, 1.10,
1.33, and 1.99 cm, respectively. The effect of light intensity on hypocotyl growth was
affected by temperature and water potential. The increase in hypocotyl length induced
by high temperature (LhThWl vs LhTlWl, LhThWh vs LhTlWh, LlThWl vs LlTlWl, and
LlThWh vs LlTlWh) were 0.35, 0.30, 0.51, and 1.19 cm, respectively. The promotion
of high temperature on hypocotyl growth was highly dependent on light intensity and
water potential. The hypocotyl length increased by 0.26, 0.21, 0.19, and 0.86 cm when
grown under the high water potential conditions (LhTlWh vs LhTlWl, LhThWh vs LhThWl,
LlTlWh vs LlTlWl, and LlThWh vs LlThWl). The influence of high water potential was
tightly dependent on light intensity and temperature. The results above indicated that light
intensity, temperature, and water potential regulated hypocotyl elongation independently
and in coordination.
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The hypocotyls of B. rapa seedlings grown under the eight conditions above were
analyzed in further at equivalent developmental stages, including stage I at the onset of
seedling emergence, stage II at 50% of the maximal increase in hypocotyl length, stage III at
90% of the maximal increase in hypocotyl length, and stage IV at the final hypocotyl length,
which were estimated from the elongation curves and indicated by the arrows in Fig. 1B.
These stages were set at 0, 2, 5, and 8 d after treatments, and the general morphology of
the seedlings at the four stages above were shown in Figs. 1A–1H and Fig. S3.

Cell elongation primarily contributed to hypocotyl extension
Next, the changes in cell length and the number of cell files in the longitudinal direction
accompanying hypocotyl elongation were examined. The structure of the B. rapa hypocotyl
was relatively simple, mainly consisting of epidermis, cortex, endodermis, and pericycle
(Fig. S4). Epidermis is the outermost cell that determines the elongation rates of organs
(Kutschera & Niklas, 2007). Cortical cells are relatively abundant in the B. rapa hypocotyl.
Therefore, the epidermis and cortex were selected for further analysis. The length of
epidermal and cortical cells was measured using paraffin sections at the midpoint of the
hypocotyl (Fig. 2), and cell numbers in the longitudinal direction were calculated according
to cell and hypocotyl length (Table 2). The midpoint was selected to measure the cell length
because hypocotyl elongation after seedling germination was mainly caused by the middle
and apical segments, and the cell length at the midpoint was similar to the average length
of hypocotyl cells (Gendreau et al., 1997; Procko et al., 2014; Paque et al., 2014). In addition,
light intensity, temperature, and water potential regulated hypocotyl elongation mainly
through affecting the growth of middle and apical segments (Fig. S5). Under the combined
effects of light intensity, temperature, and water potential, the difference in cell lengths
of epidermal and cortical cells reached a significant level among the eight treatments
(P < 0.05; Duncan’s multiple range test). According to binary comparisons (all the binary
comparison below were done in the same order as the corresponding comparisons in the
part of Hypocotyl elongation kinetics), the lengths of epidermal cells increased by 31.91,
76.30, 21.58, and 27.31 µm under low light, and the corresponding increases in cortical
cell length were 64.65, 79.73, 49.51, 55.91 µm. High temperature promoted epidermal
cell elongating by 10.27, 12.60, 20.60, and 61.59 µm, and cortical cell elongating by 14.75,
15.83, 29.89, and 39.64 µm. Under the influence of high water potential, epidermal cells
elongated by 6.57, 8.90, 12.30, and 53.27 µm, and cortical cells elongated by 15.24, 16.31,
21.63, and 31.40 µm. Further analysis indicated that the influences of light intensity,
temperature, and water potential on hypocotyl growth were all significant (P < 0.05;
Duncan’s multiple range test). In addition, the number of the epidermal and cortical cells
on the longitudinal axis was calculated. About 50, 20, and 20 layers were added in epidermis
responding to low light, high temperature, and high water potential. The corresponding
variation in the number of cortical cell layers was approximately 20, 20, and 10. The
influence of light intensity on epidermal cell layers reached a significant level, but not on
the number of cortical cells (P < 0.05; Duncan’s multiple range test). Temperature and
water potential had no significant effects on the number of epidermal and cortical cell. To
elucidate the contribution of cell division to hypocotyl elongation induced by low light,
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Figure 2 Pictures of paraffin section in hypocotyl of B. rapa treated for 8 d. (A–H) Paraffin sections of
B. rapa seedling grown under LhTlWl, LhTlWh, LhThWl, LhThWh, LlTlWl, LlTlWh, LlThWl, LlThWh. Scale
bars= 100 µm. Abbreviations: L represents light intensity; T represents temperature; W represents water
potential; h represents high; l represents low; EP represents epidermis; CT represents cortex.

Full-size DOI: 10.7717/peerj.9106/fig-2

Table 2 The combined effects of light intensity, temperature, and water potential on cell length and
cell number in B. rapa hypocotyl. Values in the table are means± SE (n= 15). Different letters (a, b, c, d,
e, and f) are used to indicate significance among treatments (P < 0.05; Duncan’s multiple range test).

Treatment Epidermis Cortex

Cell length (µm) Cell number Cell length (µm) Cell number

LhTlWl 86.94± 2.32 f 127.88± 1.32 d 79.48± 8.67 f 139.88± 1.23 de
LhTlWh 93.51± 3.48 e 139.84± 4.37 e 94.72± 5.15 e 138.58± 6.90 e
LhThWl 97.20± 5.53 e 151.25± 8.15 c 94.23± 4.54 e 156.04± 7.08 bc
LhThWh 106.10± 4.16 d 158.97± 5.18 c 110.55± 8.41 d 153.93± 10.69 cd
LlTlWl 108.51± 7.39 d 195.49± 2.45 b 129.00± 3.88 c 164.38± 3.27 bc
LlTlWh 120.81± 4.72 c 194.79± 3.69 b 150.63± 10.20 b 156.07± 8.66 bc
LlThWl 129.12± 3.17 b 209.16± 3.63 a 158.88± 6.02 b 169.95± 4.58 ab
LlThWh 182.40± 11.47 a 189.14± 2.95 b 190.28± 6.22 a 181.48± 4.22 a

Notes.
Abbreviations: L, light intensity; T, temperature; W, water potential; h, high; l, low.

high temperature, and high water potential in further, the relative expression level of the
marker genes:CDCA3;2,CDCB1;1 andCDKA;1, was investigated (Dewitte & Murray, 2003;
Joubès et al., 2000). And only light intensity have significant influences on the express level
of genes involved in cell division (P < 0.05; Duncan’s multiple range test) (Fig. S6). The
results above implied that cell elongation primarily contributed to hypocotyl elongation in
B. rapa induced by high temperature and high water potential. Cell division and elongation
both contributed to hypocotyl elongation under the influence of low light.

Dynamic changes in cell wall thickness
TEMwas used to observe the cell wall of the epidermis and cortex at the four developmental
stages indicated in Fig. 1. Typical micrographs of the OE, IE, CO in the hypocotyl at the
final length (stage IV) were shown in Fig. 3.

At the onset of seedling emergence (stage I), theOE, IE, andCOwere approximately 1.19,
0.50, and 0.36 µm, respectively (Fig. 4), and the thickness of the OE, IE, and CO thickened
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Figure 3 Transmission electron photographs of hypocotyl at the mid-point in B. rapa hypocotyl
grown for 8 d. (A–H) The micrographs of OE at the mid-point in B. rapa hypocotyl. (I–P) The
micrographs of the cell corner at the mid-point in B. rapa hypocotyl. Arrows in the picture indicate
the walls used for thickness measurement. Abbreviations: L, light intensity; T, temperature; W, water
potential; h, high; l, low; OE, outer epidermal wall; IE, inner epidermal wall; CO, cortical wall. Scale bar=
2 µm.

Full-size DOI: 10.7717/peerj.9106/fig-3

by 24%, 14% and 5% on average, following seedling emergence (stage II). However, the
OE thickened by 13%, and the IE and CO thinned by 5% and 25% at stage III, respectively.
At stage IV, the OE and IE thickened by 43% and 16% on average, respectively. But the
CO thinned by 4%, compared with the thickness at stage I.

According to binary comparisons, light intensity had significant effects on wall thickness
at all three stages (Fig. 4, Figs. S7–S9 and Table S2) (P < 0.05; Duncan’s multiple range
test). The OE thinned by 21%, 38%, and 19% on average under the effect of low light
at stage II, stage III, and stage IV, respectively. Similar responses of the IE and CO were
observed: the IE thinned by 26%, 32%, and 35%, and the CO thinned by 25%, 29%, and
35% at the three stages. Compared with the hypocotyls grown at low temperature, those
grown at high temperature acquired thinner cell walls. The thickness of the OE decreased
by 12%, 21%, and 16% at stage II, stage III, and stage IV, respectively. And IE thinned by
18%, 18%, and 9% at stage II, stage III, and stage IV, respectively; the CO thinned by 15%,
22%, and 14% at stage II, stage III, and stage IV, respectively. Water potential also had a
significant effect on the dynamic changes in wall thickness (Table S2; P < 0.05; Duncan’s
multiple range test), and the OE thinned by 11%, 11%, and 14% at stage II, stage III, and
stage IV under the influence of high water potential, respectively. The thinning of inner
walls was more dramatic, with a 17%, 20%, and 18% decrease in IE and a 14%, 17%, and
18% decrease in CO.
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Figure 4 Cell wall thickness of hypocotyls under the combined effects of light intensity, temperature,
and water potential at different developmental stages. (A) Dynamic change in thickness of outer epider-
mal wall. (B) Dynamic change in thickness of inner epidermal wall. (C) Thickness of cortical wall. Values
in the figure are means± SE (n= 15). Different letters (a, b, c, d, e, and f) are used to indicate significance
among treatments (P < 0.05; Duncan’s multiple range test).

Full-size DOI: 10.7717/peerj.9106/fig-4

As the hypocotyl elongated, the thickness of theOE changedwith the trend of thickening-
maintaining-thickening under the conditions of LhTlWl, LhTlWh, LhThWl, and LhThWh,
and it changed with the trend of thickening-thinning-thickening under the conditions
of LlTlWl, LlTlWh, LlThWl, and LlThWh. The thickness of the IE and CO changed by
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thickening-thinning-thickening under LhTlWl, LhTlWh, LhThWl, LhThWh, and LlTlWl and
changed by thinning-thinning-thickening under LlTlWh, LlThWl, and LlThWh. Low light
repressed OE, IE, and CO thickening at stage II, stage III, and stage IV. High temperature
and high water potential had similar effects on wall thickness, but their effects were weaker
than those of light intensity.

Cell wall was the co-target of the three environmental factors in
regulating hypocotyl elongation
The amount of wall deposition had important impacts on wall thickness, which was
negatively related to wall extension (Derbyshire et al., 2007). We measured the wall mass
and component contents in hypocotyls under the coordinated regulation of light intensity,
temperature, and water potential (Table 3). The variation in wall mass was consistent with
that of wall volume, which was calculated based on the wall thickness in Fig. 4, indicating
that TEM could be used to measure wall thickness.

To further analyze the effects of light intensity, temperature, and water potential on
wall deposition, the content of wall components was measured. The analysis of variance
(ANOVA) about cellulose, hemicellulose, and pectin indicated that pectin was the co-
target of environmental factors in regulating hypocotyl cell elongation (Table S3; P < 0.05;
Duncan’s multiple range test). Low light repressed cellulose, hemi-cellulose, and pectin
deposition significantly (Table S3; P < 0.05; Duncan’s multiple range test), and their
contents decreased by 43%, 41%, and 43% on average, respectively. High temperature
had effects on deposition of cellulose, hemicellulose, and pectin, inducing their contents
decreased by 13%, 9%, and 15%, respectively. Further analysis indicated that the effect
on the deposition of pectin reached significant level on the whole (Table S3; P < 0.05;
Duncan’s multiple range test). And the effect on hemicellulose reached significant level
only under specific environmental factors (LlTlWl vs LlThWl, LlTlWh vs LlThWh; Table
3; P < 0.05; Duncan’s multiple range test). High water potential inhibited wall deposition
with decreases of 11%, 13%, and 15% in cellulose, hemicellulose, and pectin on average.
Its effect on the deposition of cellulose reached significant level under specific conditions
(LlTlWl vs LlTlWh, LlThWl vs LlThWh) (Table 3; P < 0.05; Duncan’s multiple range test).
Although its effect on pectin accumulation was significant on the overall level, it did not
reach a significant level under specific conditions, such as LlTlWl vs LlTlWh (Table 3;
P < 0.05; Duncan’s multiple range test).

Hypocotyl cell elongation induced by low light, high temperature, and high water
potential was mainly affected by wall extensibility, which was under the control of
wall deposition and wall-modifying proteins, such as expansins (EXPA) and xyloglucan
endotransglucosylase/hydrolase (XET/XTH). To investigate the change in wall extensibility
as hypocotyl cells elongated, the expression levels of genes involved in cell wall biosynthesis
and modification were investigated (Figs. S10–S11). Light intensity had a significant
influence on the biosynthesis of wall components, and some genes involved in cellulose,
hemicellulose, and pectin biosynthesis were upregulated by low light, such asCesA6,CSLC4,
and XXT5 (Table S4; P < 0.05; Duncan’s multiple range test). Comparing with LhTlWh,
LhThWl, and LhThWh, the expression level of gene involved in pectin biosynthesis,GAUT7,
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Table 3 Cell wall mass and component contents under the influence of light intensity, temperature and water potential.Data in the table represent the means± SE.
The letters (a, b, c, d, e, and f) indicate significance among treatments (P < 0.05; Duncan’s multiple range test).

Content
(mg g FW−1)

LhTlWl LhTlWh LhThWl LhThWh LlTlWl LlTlWh LlThWl LlThWh

Wall mass 47.54± 2.03 a 43.82± 1.10 b 43.23± 1.20 b 36.78± 1.45 c 27.09± 0.90 d 23.08± 0.47 e 22.42± 1.02 e 19.69± 0.75 f
Cellulose 11.12± 0.26 ab 11.93± 0.83 a 10.65± 0.93 b 10.56± 0.79 b 8.29± 0.60 c 5.69± 0.34 e 6.23± 0.40 d 4.94± 0.42 f
Hemicellulose 1.34± 0.27 a 1.26± 0.35 b 1.33± 0.11 a 1.21± 0.15 b 0.89± 0.22 c 0.75± 0.17 d 0.77± 0.17 d 0.62± 0.08 e
Pectin 4.10± 0.45 a 4.03± 0.26 a 3.81± 0.34 b 3.01± 0.17 c 2.52± 0.23 d 2.07± 0.34 e 2.22± 0.35 e 1.77± 0.38 f

Notes.
Abbreviations: L, light intensity; T, temperature; W, water potential; h, high; l, low.
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was higher in the condition of LlTlWh, LlThWl, and LlThWh. Temperature had a significant
effect on the expression level of genes involved in the biosynthesis of hemicellulose and
pectin (Table S4; P < 0.05; Duncan’s multiple range test). Under the influence of high
temperature, the expression level of XXT1, XXT5, MUR3, GAUT7, and RGX2 improved
overall, and the expression level of CSLC6 reduced. In addition, the expression level of
the pectin biosynthesis gene, GAUT1, improved significantly under LhTlWl and LhTlWh

compared with that under LhThWl, and LhThWh. Water potential had an effect on pectin
synthesis, and the expression levels of GAUT7 and RGXT2 were upregulated by high water
potential. The expression level of GAUT7 and RGXT2 was higher under LhTlWh, LhThWh,
LlTlWh, and LlThWh than that under LhTlWl, LhThWl, LlTlWl, and LlThWl, respectively.
In summary, the biosynthesis of pectin was co-regulated by light intensity, temperature,
and water potential. According to Paque et al. (2014), five XTHs and one EXPA genes were
selected to investigate their expression level under the combined effects of light intensity,
temperature, and water potential (Fig. S11). Light intensity had a significant effect on the six
genes (Table S4), and the expression of XTH17, XTH22, XTH31, XTH33, and EXPA20 was
induced by low light. High temperature had a significant effect on the expression ofXTH17,
XTH18, XTH22, and EXPA20 (Table S4). While, only the expression level of EXPA20 was
significantly improved by high temperature. Water potential also had a significant effect on
the target genes, and only the expression of XTH17, XTH18, and XTH33 was significantly
induced by high water potential in different treatments (LhTlWh vs LhTlWl, LhThWh

vs LhThWl, LlTlWh vs LlTlWl, LlThWh vs LlThWl). The results indicated that the three
environmental factors regulated hypocotyl elongation by changing the expression level of
different genes involved in affecting wall extensity.

Wall volume and hypocotyl volume are coordinately regulated
During hypocotyl elongation, the increases in the volume of the cell wall and hypocotyl were
not always coordinated, which contributed to dynamic changes in wall thickness. Based on
hypocotyl length and wall thickness, hypocotyl and wall volume were calculated (Table 4).
The volume of the hypocotyl incrementally increased as it elongated, but the wall volume
did not. At the final hypocotyl length, the hypocotyl volume increased by 1.92-, 1.29-, and
1.60-fold in response to low light, high temperature, and high water potential, respectively.
The increases in the volume of the OE were 1.53-, 1.08-, and 1.18-fold, correspondingly;
the increases in the volume of the IE were 1.68-, 1.05-, and 1.39-fold, correspondingly; and
the increases in the volume of the CO were 1.34-, 1.06-, and 1.19-fold, correspondingly.
The imbalance in the increases in the hypocotyl and cell wall volumes contributed to the
dynamic changes in wall thickness under the combined effects of the three environmental
factors. The analysis of wall volume further revealed that approximately 45% of the total
wall volume was primarily present in the OE and approximately 30% in the IE. The other
25% presented in the CO. The results above were consistent with the epidermis-controlled
organ elongation in a previous study (Kutschera & Niklas, 2007).
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Table 4 Relationship analysis about the increase of cell wall volume and hypocotyl elongation.Data in
the table represent the means± SE. Lowercase letters represent significance among treatments (P < 0.05;
Duncan’s multiple range test).

Condition Volume (mm3) Cell number

HY OE IE CO TCW EP CO

LhTlWl 4.799 f 0.060 g 0.030 h 0.038 c 0.128 g 225.41 b 227.49 a
LhTlWh 6.237 e 0.060 g 0.039 f 0.035 d 0.134 f 198.98 c 166.78 c
LhThWl 6.540 e 0.064 f 0.035 g 0.039 c 0.138 f 200.62 c 197.53 b
LhThWh 8.608 d 0.075 e 0.040 e 0.037 cd 0.152 e 176.32 d 160.26 c
LlTlWl 8.520 d 0.090 c 0.052 c 0.047 b 0.188 c 262.45 a 130.95 d
LlTlWh 14.135 b 0.107 b 0.068 b 0.048 b 0.224 b 198.66 c 126.60 d
LlThWl 9.111 c 0.085 d 0.044 d 0.036 d 0.165 d 139.87 f 79.98 f
LlThWh 19.202 a 0.114 a 0.079 a 0.067 a 0.259 a 157.62 e 94.99 e

Notes.
Abbreviations: HY, hypocotyl; OE, outer epidermal wall; IE, inner epidermal wall; CO, cortical wall; TCW, total cell wall;
EP, epidermis; L, light intensity; T, temperature; W, water potential; h, high; l, low.

DISCUSSION
Hypocotyl elongation responding to the combined effects of multiple
factors
Light, temperature andwater potential are often correlated under natural growth conditions
and regulate growth and development throughout the life of plants. Previous studies showed
that the regulation of light, temperature, and water potential on hypocotyl elongation was
interdependent. For example, the classical light response was temperature dependent:
the reverse in the response from the inhibition to the promotion of hypocotyl growth
by light was induced by a shift in temperature (Johansson et al., 2014). In addition, the
promotion on hypocotyl elongation by high temperature was light quality dependent
and became stronger as F/FR decreased (Kurepin et al., 2010). In the present study, we
investigated the coordinated regulation of light intensity, temperature, and water potential
on hypocotyl elongation (Fig. 1). Low light, high temperature, and high water potential
promoted hypocotyl elongation both in isolation and in coordination, which was similar to
the previous studies (Johansson et al., 2014; Kurepin et al., 2010;Wu et al., 2005). Under the
combined effects of light intensity, temperature, and water potential, the elongation rate
incrementally decreased. The rate was relatively quick at 2 d, when the hypocotyl reached
approximately 50% of its final length (Fig. 1). The elongation rate decreased by 80% when
the 90% final hypocotyl length was reached at 5 d. At 8 d, the final hypocotyl length was
reached, and elongation rate decreased. The gradual decrease in the rate contributed to the
elongation kinetics of the hypocotyl.

Contributions of cell elongation and division to hypocotyl growth
Hypocotyl elongation resulted from cell elongation, cell division, or both, depending
on species and growth conditions (Boron & Vissenberg, 2014; Kutschera & Niklas, 2013).
Previous studies revealed that hypocotyl elongation inA. thaliana occurred primarily by cell
elongation with almost no contribution from division (Gendreau et al., 1997). Cell division
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played a critical role in the hypocotyl elongation of lettuce, radish, and soybean at 0-2 d
after germination, and cell elongation played a major role afterwards (Galli, 1988). Cell
elongation and division were both observed during the hypocotyl elongation of H. annuus
(Kutschera & Niklas, 2013). A previous study showed that cucumber hypocotyl elongated
in the absence of cell division when grown in dim light, and cell division appeared under
high light (Lopez-Juez et al., 1995). In the present study, the contribution of cell elongation
and division to hypocotyl growth in B. rapa was highly dependent on cell types and growth
conditions, and cell division was observed only in the epidermis under low light.

Further study indicated that cell division was only active at the stage of embryogenesis,
and cell division was confined to the meristem of the root and stem and the stomatal
development region after seed germination in the epidermis of A. thaliana and B. napus
(Barroco et al., 2005; Raz & Koornneef, 2001). As the receptor of multiple environmental
factors, phytochrome B (phyB) played a critical role both in regulating cell elongation in
hypocotyl growth and cell division during stomatal development that accounted for the
increase in cell layers in the epidermis of B. rapa hypocotyl (Fig. 2) (Casson et al., 2009;
Wang & Shang, 2019). Moreover, low light, high temperature, and high water potential
significantly promoted cell elongation in hypocotyl by increasing auxin content, which
is primarily biosynthesized by YUCCA8/9 in dicotyledonous plants (Sun et al., 2012;
Zhao, 2010). The expression of YUCCA8/9 was induced by phytochrome interacting
factor 4 (PIF4), which can be degraded after phosphorylation when interacting with
phyB in an activated state (Delker et al., 2014; Franklin et al., 2011). As the emerging hub
of environmental signaling pathways in regulating hypocotyl elongation, the protein
abundance and activity state of phyB are regulated by light intensity, temperature, and
water potential. Casal & Questa (2018), Legris et al. (2017) and Wang & Shang (2019). In
addition, phyB also regulated hypocotyl elongation by regulating the signaling of hormones,
such as IAA and BR. PhyB could interact with auxin/indoleacetic acid (Aux/IAA) proteins
to inhibit the signal transduction of IAA (Xu et al., 2017). PhyB also attenuated the
positive influence of brassinolide (BR) on regulating hypocotyl elongation by repressing
the accumulation of PIF4, which interacted with downstream responsive factors of BR,
such as BZR1 and BES1 (Bai et al., 2012).

Cell wall: the co-target of light, temperature, and water potential in
regulating hypocotyl elongation
Plant cells are surrounded by extensible walls, which allows for the turgor-mediated
expansion in cell volume. Newly synthesized polymers should be incorporated into
the expanding walls; otherwise, the wall would become thinner until it was broken by
turgor pressure (Derbyshire et al., 2007; Refregier et al., 2004). A previous study showed
that changes in wall thickness were relatively complex and highly dependent on cell
types, growth conditions, and developmental stages. Different phases of wall thickening,
maintenance, and thinning were observed (Derbyshire et al., 2007; Refregier et al., 2004;
Wolf & Greiner, 2012). In the present study, the thickness of the OE increased incrementally
during hypocotyl elongation. However, the IE and CO displayed phases of becoming
thicker, maintaining the thickness, or getting thinner, implying an imbalance of wall
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deposition and hypocotyl elongation. The results above were consistent with previous
reports (Derbyshire et al., 2007; Fujino & Itoh, 1998; Refregier et al., 2004). Cell wall analysis
has been performed in different species, including maize coleoptiles, peas internodes, and
A. thaliana hypocotyls (Derbyshire et al., 2007; Fujino & Itoh, 1998). However, this is the
first report on the dynamic changes of wall thickness in different cell types as the hypocotyl
elongated in B. rapa.

The biosynthesis and deposition of the cell wall are regulated by multiple factors.
For example, light intensity plays a key role in regulating plant growth by adjusting
the deposition of cellulose, hemicellulose, and lignin (Le Gall et al., 2015). Constant or
transitory high temperatures can induce a series of physiological and biochemical changes
in plant growth by inducing an increase in hemicellulose deposition and a decrease in pectin
accumulation (Lima et al., 2013; Suwa et al., 2010). Under water-deficit and salt stresses,
cellulose and hemicellulose contents remained unchanged, but pectin content markedly
increased (An et al., 2014; Muszyńska, Jarocka & Kurczynska, 2014). In the present study,
the contribution of thewall components to the dynamic changes inwall thickness was highly
dependent on the light intensity, temperature, and water potential. Light intensity had
significant effects on cellulose, hemicellulose, and pectin deposition, and high temperature
and high water potential had significant effects on pectin content. Pectin is the most
abundant component of the primary wall in eudicot plants and regulates hypocotyl growth
in response to low light, high temperature, and high water potential by influencing wall
extensity (Wolf & Greiner, 2012; Xiao, Somerville & Anderson, 2014; Xiao et al., 2017). The
gradients in pectin contributed to the gradient elongation rate of the hypocotyl, with
higher rates in the apex and lower rates in cells near the base (Goldberg, Morvan & Roland,
1986; Phyo et al., 2017). The results above indicated that the cell wall may be the target
of multiple factors in regulating hypocotyl elongation. Light intensity, temperature, and
water potential regulated hypocotyl elongation by affecting wall deposition, especially the
deposition of pectin.

Imbalance of wall deposition and hypocotyl elongation contributed
to dynamic changes in wall thickness
As the hypocotyl elongated, the volume of the hypocotyl and the cell wall both increased.
However, the increase in the volume of the cell wall did not keep pace with that of
hypocotyl, so the increase in cell size was achieved by stretching the existing wall, and then
wall thickness decreased (Table 4). At the final length, the hypocotyl was 1.93-fold longer
under low light than under high light, but the thickness of the OE, IE, and CO was reduced
by 0.19-, 0.35-, and 0.35-fold, respectively. The increase in hypocotyl length induced by
high temperature was 1.29-fold, while the decrease in the thickness of the OE, IE, and CO
was 0.16-, 0.09-, and 0.14-fold, respectively. In addition, high water potential promoted
hypocotyl elongation by 1.18-fold, and the OE, IE, and CO decreased by 0.14-, 0.18-,
and 0.14-fold, respectively. The results above indicated that the imbalance of hypocotyl
elongation and wall deposition contributed to the changes in wall thickness. The changes
in wall thickness could subsequently influenced hypocotyl elongation, and the elongation
rates declined as wall thickness increased.
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In the present study, we analyzed the combined effects of light intensity, temperature,
and water potential on plant growth using hypocotyl as a model system. The interaction of
these factors was particularly evident at the early stage of seedling growth, which indicated
that more attention should be paid to temperature and water control in the early stage of
seedling growth to prevent them from being leggy in the process of vegetable production
and planting. In addition, this description of the dynamic changes in wall thickness
provided a sound baseline for the identification of key stages of hypocotyl elongation and
wall biosynthesis.

CONCLUSIONS
Light intensity, temperature and water potential regulated the hypocotyl growth of B.
rapa both in isolation and combination. Low light, high temperature, and high water
potential promoted hypocotyl growth by regulating cell elongation in a process that
was tightly controlled by the cell wall. The thickness of OE, IE, and CO changed
variously, namely, thickening-thinning-thickening, thickening-thinning-maintaining,
and thickening-maintaining-thinning, respectively. Further analysis revealed that the
imbalance in wall deposition and hypocotyl elongation contributed to dynamic changes
in wall thickness. Light intensity, temperature and water potential modulated cell wall
deposition by regulating pectin biosynthesis. In conclusion, light intensity, temperature, and
water potential regulated hypocotyl elongation of B. rapa by influencing wall deposition,
especially the deposition of pectin.
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