A RTl C L E W) Check for updates

From calibration to parameter learning: Harnessing
the scaling effects of big data in geoscientific
modeling
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Jiangtao Liu' & Chaopeng Shen® 12>

The behaviors and skills of models in many geosciences (e.g., hydrology and ecosystem
sciences) strongly depend on spatially-varying parameters that need calibration. A well-
calibrated model can reasonably propagate information from observations to unobserved
variables via model physics, but traditional calibration is highly inefficient and results in non-
unique solutions. Here we propose a novel differentiable parameter learning (dPL) framework
that efficiently learns a global mapping between inputs (and optionally responses) and
parameters. Crucially, dPL exhibits beneficial scaling curves not previously demonstrated to
geoscientists: as training data increases, dPL achieves better performance, more physical
coherence, and better generalizability (across space and uncalibrated variables), all with
orders-of-magnitude lower computational cost. We demonstrate examples that learned from
soil moisture and streamflow, where dPL drastically outperformed existing evolutionary and
regionalization methods, or required only ~12.5% of the training data to achieve similar
performance. The generic scheme promotes the integration of deep learning and process-
based models, without mandating reimplementation.
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his work broadly addresses geoscientific models across a

wide variety of domains, including non-dynamical system

models like radiative transfer modeling!, as well as dyna-
mical system models such as land models that are used in Earth
System Models; hydrologic models that simulate soil moisture,
evapotranspiration, runoff, and groundwater recharge?; ecosys-
tem models that simulate vegetation growth and carbon and
nutrient cycling; agricultural models that simulate crop growth%;
and models of water quality” and human-flood interactions®.
Besides scientific pursuits, these models fill the operational
information needs for water supply management, pollution
control, crop and forest management, climate change impact
estimation, and many others.

A central and persistent problem concerning this wide variety
of geoscientific models is that their behaviors and skills are
strongly impacted by unobservable and underdetermined para-
meters. Fundamentally, a geoscientific model can be regarded as a
mapping function from some time- and location-specific inputs
(x) to some time- and location-specific outputs (y), modulated by
characteristics of that location (observable attributes A and
unobserved parameters 0) (see Methods for a more formal,
mathematical description). A calibration algorithm seeks to adjust
the values of the unobserved parameters (0) at each location, so
that the difference between the model’s outputs (y) and some
independent measurements (z) is minimized. But uncertainties in
these parameters, such as for those controlling the simulated land
surface feedbacks of water and CO, to the atmosphere, limit the
confidence we have in the modeled results, such as simulated
regional impacts caused by increasing CO, levels’.

For decades, parameter calibration has been the orthodox
procedure that is deeply entrenched across various geoscientific
domains. An entire research enterprise and many textbook
chapters have been dedicated to these calibration techniques and
their applications in geosciences. Myriad methods including
genetic algorithms®-10 and evolutionary algorithms (EAs) such as
the shuffled complex evolution method (SCE-UA)!! have been
introduced for calibration. For example, nearly all models for the
rainfall-runoff process!213 and for ecosystem dynamics!4 involve
unobservable parameters that require calibration. Moreover, these
parameters are often sensitive to changes in spatial and/or tem-
poral resolution!®, other model parameters, model version, and
input data, continuously triggering the need to readjust pre-
viously calibrated parameters - a repetitive and tedious process!°.
Current optimization algorithms require thousands of model runs
or more, just to calibrate a dozen parameters.

Geoscientific processes have commonalities and dissimilarities
between regions which could potentially be collectively leveraged
by a big-data learning procedure. However, because traditional
calibration procedures are generally applied to each location
individually, they cannot exploit such commonalities: in other
words, they do not take advantage of what is learned in one place
to apply it elsewhere. Because of the small amount of data at each
site, algorithms may overfit to training data and find non-physical
parameters, meaning they captured noise instead of a true signal.
This often leads to the dreaded non-uniqueness problem (i.e.,
equifinality)!7-1%, where wildly different parameter sets produce
similar evaluation metrics and thus cannot be determined by
calibration. Site-by-site calibration often produces disparate,
discontinuous parameters for neighboring, geographically-similar
areas, as shown for hydrologic models'®. In summary, the tra-
ditional parameter calibration paradigm has become a bottleneck
and a distinctive pain point to large-domain modeling in geos-
cientific research.

A class of techniques collectively referred to as parameter
regionalization attempt to apply a more stringent constraint using
all available data, which can help alleviate these issues20. A

specific type of regionalization scheme prescribes transfer func-
tions to relate known physical attributes to parameters!>2l, The
structures of the transfer functions are determined by humans
(and thus need to be specifically customized for each model and
data source), and the rigid form often limits the efficacy in pre-
dicting parameters. As we will show, known regionalization
schemes generate sub-optimal solutions that are fundamentally
not ready to leverage big data. Additionally, they cannot handle a
large number of parameters in the transfer functions, and are
restricted to simple input attributes.

Recently, deep learning (DL)?223, a category of neural networks
with multiple layers and specialized architecture to learn
patterns from spatial or temporal structures of data, has shown
great promise across scientific disciplines, including the
geosciences?4-26, although some limitations also emerged. In the
field of hydrology, previous work including ours has shown that
time series DL network models based on algorithms such as the
long short-term memory (LSTM) algorithm?’ have had success
predicting soil moisture28-3Y, streamflow?!, stream temperature32,
dissolved oxygen33, and lake water temperature34. However, such
a data-driven modeling method only allows for predicting
observable variables for which we have sufficient data. For simi-
larly important but unobserved prognostic variables such as eva-
potranspiration, groundwater recharge, or root carbon storage, we
still rely on manually-calibrated process-based models (PBM).

Modern DL networks and their highly efficient training pro-
cedures, ie., backpropagation and gradient descent, are well-
suited to exploit the information in large datasets. One could
envision leveraging DL to solve parameter calibration at large
scales, but despite repeated calls to integrate physics and DL
methods?4, to the best of our knowledge there are no frameworks
that exploit modern DL for the parameter calibration problem.
More specifically, backpropagation needs differentiable comput-
ing: we need to analytically track the derivative of outputs with
respect to the inputs for every calculation step in the model. Most
modern machine learning platforms support automatic differ-
entiation (AD) which automatically keeps track of all gradients,
but traditional programming environments do not, and reim-
plementing existing models on differentiable platforms would
incur huge costs for expert labor. Without AD, derivatives may
also in theory be approximated by finite difference, but this is less
accurate and computationally intractable for large neural net-
works. While neural networks have been used in traditional
parameter calibration, their typical, shallow role has been that of
an efficient surrogate model, which emulates a PBM to reduce
computational time during calibration®. With that paradigm,
the calibration problems are still solved independently for
each site. We propose a much deeper integration between DL
and PBM.

Here we propose a differentiable parameter learning (dPL)
framework based on deep neural networks, with two versions (ga
and g,) suitable for different use cases in geosciences. The overall
dPL framework contains a parameter estimation module (Fig. 1b,
¢, equations in Methods section) that maps from raw input
information (either observable attributes A alone for g4, or
forcing-response pairs x-z for g,) to PBM parameters, which are
then fed into a differentiable PBM (or, alternatively, a surrogate
model like a neural network. See Fig. 1a). On the programming
level, a PBM is differentiable if it is compatible with and directly
implemented on an AD-supported DL platform like PyTorch3°,
Tensorflow3”, or Julia®8, while modern neural networks are
already differentiable. In essence, we learn the mapping rela-
tionship g4 or g, from the inputs of A or (A, x, z), to the optimal
parameters (Fig. 1c). This method can then use model physics
to propagate information from observations to unobserved
variables.
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Fig. 1 Comparison of the dPL framework to the traditional calibration paradigm. a A deep learning model is trained to mimic the outputs of a process-
based model (PBM). This step is optional since one may also directly implement the model in a DL platform. b Workflow of the first dPL option, network ga:
parameters are inferred by a network (in our case, a separate LSTM network) based on auxiliary attributes. These parameters are then sent into the PBM,
whose outputs are compared to the observations to calculate the loss (the difference between objective function and observation). ¢ Workflow of the
second dPL option, network gz: historical observations (meteorological forcings and observed responses) are additional inputs to the parameter estimation
network. d Traditional site-by-site parameter calibration framework.
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There are four salient features with this approach. First, the loss
function is defined over the entire training dataset to train such a
mapping (a global constraint), unlike the traditional location-
specific objective function. Second, the use of differentiable
computing and gradient-based optimization supports learning a
complex mapping with a global constraint. Third, we employ an

end-to-end framework in the sense that the training targets are
observed variables like soil moisture or streamflow, rather than
intermediate variables such as parameters estimated by other
means. Our framework transforms the typically inverse para-
meter calibration problem into a big-data DL problem, leveraging
the efficiency and performance of the modern DL computing
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infrastructure. Fourth, (for gz only) we learn the mapping from
forcing and response pairs (x-z) to parameters.

In the first and main case study of this work, we apply the dPL
framework to the widely used Variable Infiltration Capacity
(VIC) land surface hydrologic model®®, producing parameters
which allow VIC to best match surface soil moisture observations
from NASA’s Soil Moisture Active Passive (SMAP) satellite
mission?, We compare parameters from dPL to those from the
standard evolutionary algorithm SCE-UA, and also to the
operational parameters from the widely used North American
Land Data Assimilation System phase-1I dataset (NLDAS-2)41.
The comparisons are done at multiple training sampling densities
with different lengths of training data. We evaluate the quality of
the estimated parameters for locations outside of the training set,
and also for an uncalibrated variable (evapotranspiration, ET). In
the second case study, we train the framework on the CAMELS
dataset®? which consists of 531 basins in the US, with daily
streamflow as the target and VIC as the PBM. We compare our
results to the Multiscale Parameter Regionalization (MPR)
approach?!. In the third case study, we train on a global
streamflow dataset for spatial extrapolation, or prediction in
ungauged basins (PUB), in comparison to another state-of-the-art
regionalization scheme recently published by Beck et al.43. In the
first two cases we train a separate neural network as a differ-
entiable surrogate for VIC, and in the third case we directly
implement the simple conceptual hydrologic model Hydrologiska
Byrans Vattenbalansavdelning (HBV) in a DL platform.

Results
Optimization performance and efficiency. For the SMAP cali-
bration case study, our results (Fig. 2) show that dPL can deliver
equivalent or slightly better ending performance metrics than the
evolutionary algorithm SCE-UA over the entire contiguous
United States (CONUS). At the moderate training sampling
density of 1/4%, where 1/4? represents sampling one gridcell from
each 4x4 patch (also abbreviated as s4, see Fig. S1 in Supple-
mentary Information for illustration), dPL had nearly identical
ending error metrics (root-mean-square error, RMSE, between
the simulated and observed surface soil moisture) as SCE-UA
(Fig. 2a, b). dPL’s marginal outperformance (or virtual equiva-
lence) at 1/4? was a surprise to us, as one would expect an EA like
SCE-UA to best capture the global minimum. This result attests
to the uncompromising optimization capability of gradient des-
cent. It also suggests there are commonalities to be leveraged in
hydrologic processes across different sites. We observe that dPL’s
performance is related to the amount of training data: it had the
lowest performance (highest ending RMSE) when there was only
1 year’s worth of training data with the lowest sampling density
(1/16%), and the highest performance when there was 2 years’
worth of training data with the highest sampling density (1/42).
Notably, as training data amount increased, dPL descended
into the range of acceptable performance orders of magnitude
faster than SCE-UA in terms of both the number of forward runs
(Fig. 2a, b) and computational time (Fig. 2c, d) per gridcell. For
the model trained for 2 years, dPL required 810, 370, and 45 full
forward runs per gridcell (or 2.2, 0.74, and 0.31 seconds of
computing time per gridcell, not proportional to forward runs
due to increasing hidden sizes) to drop below the threshold for a
functional model (RMSE=0.05) at 1/162, 1/82, and 1/42
sampling densities, respectively. In contrast, SCE-UA needed
950 runs per gridcell (or 90 seconds, here we did not implement
parallelism for SCE-UA) to reach the same RMSE with the same
surrogate model running on GPU, which was similar between
sampling densities 1/162, 1/82, and 1/42. Two factors are at play
for dPL’s efficiency: the first factor is the reduction of runs at

higher sampling densities (with an order of magnitude spread
between 1/16% and 1/4% in terms of either runs or time). This
super scaling effect resulted from the use of a domain-wide loss
function and mini-batch training, allowing dPL to learn across
locations rapidly (more interpretation in Discussion). The second
factor is the inherent gridcell-level (minibatch) parallelism and
efficient GPU computing, which are crucial to the success of D122
and were made relevant to parameter estimation via dPL. While
SCE-UA can also be parallelized, it may be difficult to achieve the
high level of parallel efficiency and scale enjoyed by dPL.

While using a surrogate is not novel, the LSTM surrogate
model enabled the differentiable computing workflow and further
saved an order of magnitude of computational time as compared
to the VIC model running on CPU. Strikingly, using the same
criterion (RMSE =0.05), it takes dPL roughly 25min at 1/4?
sampling density on a single GPU (NVIDIA 1080Ti with 11GB
memory) while it would take 33 days for a single CPU, or
475 min for a 100-core CPU cluster assuming perfect parallelism.
Training the surrogate model (see Methods section) also required
multiple iterations of CONUS-scale forward simulations. All
things considered, the new dPL framework brings a difference of
2-3 orders of magnitude in time, not to mention the savings in
energy. This is despite the fact that dPL trains large neural
networks with thousands of weights. While there are more
efficient variants of SCE-UA, we compared dPL to the standard
algorithm because it is well understood and benchmarked, and its
variants do not differ in efficiency by orders of magnitude.

Spatial extrapolation and uncalibrated variables. Compared to
SCE-UA, dPL generalized better in space and gave parameter sets
that were spatially coherent and better constrained, especially as
the amount of data increased. Our spatial generalization test
showed dPL’s metrics had almost no degradation from the
training set to the out-of-training neighboring gridcells (Fig. 3d).
In contrast, SCE-UA’s ubRMSE increased for the neighboring
gridcells, with a statistically significant difference (p = 0 based on
Wilcoxon signed-rank test). A similar pattern is observed in
another year (Supplementary Fig. S5). More apparently, dPL had
a much smaller spread of bias compared to SCE-UA (Fig. 3d left
panel). g7 was slightly better than g4, and both were better than
SCE-UA in the spatial generalization test.

These comparisons suggest that dPL learned a more robust
parameter mapping pattern than SCE-UA, a strength we attribute
to using the global constraint. The difference in metrics between
SCE-UA and dPL was statistically significant and random seeds
can be rejected as a cause (Table S1 in Supplementary Informa-
tion). However, the difference may not appear large, which is to
be expected as the difference was bounded by soil moisture
physics, similar atmospheric inputs, and spatial proximity to
training sites. A larger difference is noted in the streamflow
examples below.

Most geoscientific models output multiple unobserved vari-
ables of interest that can be used as diagnostics or to support
narratives of the simulations. It can be argued that if our
parameter set leads to improved behavior for both calibrated (soil
moisture) and uncalibrated (evapotranspiration, ET) variables, it
better describes the underlying physical processes, and the model
gives good results for the right reason. Here we compared model-
simulated temporal-mean ET to MOD16A2, an ET product from
the completely independent Moderate Resolution Imaging
Spectroradiometer (MODIS) satellite mission (see Methods
section for discussion of limitations).

The parameters from dPL produced ET that was closer to
MOD16A2 in spatial pattern than did either the parameters from
NLDAS-2 or those calibrated by SCE-UA (Fig. 4). At 1/82
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Fig. 2 Objective function (root-mean-square error, RMSE) and computational time for the testing period vs. number of forward runs per gridcell. Here,
a forward run for dPL means running through the same number of days as the specified training period, e.g., 30 random instances of 240-day-long
simulations in a minibatch would be counted as ~20 runs for a 2-year training period. Dashed lines are for SCE-UA and solid lines are for dPL. s16, s8, and
s4 denote models trained with sampling densities of 1/162, 1/82, and 1/42, respectively, where 1/162 represents sampling one gridcell from each 16 x 16
patch. The dotted horizontal line represents the RMSE threshold of 0.05, below which a model is considered functional. a RMSE for the models trained with
1 year's worth of data. b Same as a but for models trained with 2 years’ worth of data. € RMSE vs computational time per gridcell. Both methods use the
same surrogate model running on one GPU, and 1 year's worth of training data. d Same as ¢ but for models trained with 2 years’ worth of data.

sampling density, the CONUS-median (ensemble mean) values
for correlation between observed and simulated ET were 0.75 and
0.69 for gz and SCE-UA respectively, and the differences were
multiple standard deviations (due to random seeds) apart
(Table S1 in Supplementary Information). Due to the much
smaller bias, the Nash-Sutcliffe model efficiency coefficient (NSE)
for dPL (g) was 0.55, as opposed to 0.38 for SCE-UA and 0.44 for
NLDAS-2. SCE-UA calibration using soil moisture did not
improve the spatial pattern of ET compared to the current
parameter sets in NLDAS-2, but dPL led both by a substantial
margin. Similar to soil moisture, ET variation is strongly driven
by rainfall and energy inputs, so we should not expect the model
to give wildly worse results even if parameter sets are not ideal.

While MOD16A2 should not be considered truth, it utilizes
completely separate sources of observations including leaf area
index and photosynthetically active radiation (see Methods
section). Thus, the better agreement of dPL with MOD16A2, in
terms of both correlation and bias, suggest that dPL had more
physically-relevant parameter sets. When SCE-UA calibrated a
certain gridcell, it did not put this gridcell in the context of
regional patterns, so it could distort model physics in its pursuit
of lowest RMSE in soil moisture for that location. For dPL,
because the inputs to the parameter estimation module, ie.,
forcings, responses, and attributes, are themselves spatially
coherent (autocorrelated), and only one uniform model is
trained, the inferred parameters are also spatially coherent.

The inferred parameter fields reveal the reason behind the
advantage of dPL over SCE-UA. One of the parameters estimated
by dPL, INFILT (see Methods section), showed a spatial pattern
that generally follows the aridity and topographic patterns of the
CONUS (Fig. 5a), which agrees with our general understanding of

physical hydrology and the VIC model’s behavior. Precipitation
declines from east to west until reaching the Rocky Mountains,
and then increases again at the west coast. The large southeast
and northwest coasts are the wettest parts of the country due to
moisture from the oceans. dPL kept the steepness of the
infiltration capacity curve of surface runoff smooth in wet areas
to produce more runoff, which is consistent with earlier
literature!®44, INFILT varied continuously in the southeast
coastal plains where soil is thick and permeable and most rainfall
infiltrates*>. dPL also captured patterns of poorly drained soils at
the northeastern edge of the map, which are also visible from soil
surveys. The spatial autocorrelation was high from the beginning
to the end of the optimization (Fig. 6a), showing the global
constraint allows the model to learn across sites from the
beginning. We observed such continuity with other parameters as
well (Supplementary Fig. S3).

In contrast, SCE-UA (Fig. 5b) presented discontinuous
parameters apparently plagued by stochasticity and parameter
non-uniqueness, which explains why SCE-UA had worse
performance in the spatial generalization and uncalibrated
variable tests. Soil moisture observations impose constraints only
on a part of the system, and VIC, like any PBM, also contains
structural deficiencies; therefore, it is unreasonable to expect dPL
(or SCE-UA, or any other scheme) to fully remove parametric
uncertainties or find the most realistic parameters. Nevertheless,
the parameters found by dPL seem more coherent with known
physical relationships than those from SCE-UA.

Streamflow cases in comparison with regionalization schemes.
The streamflow temporal generalization scenario showed even
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Fig. 3 Performance of SMAP soil moisture simulations. a Map of correlations between observed (Soil Moisture Active Passive satellite, SMAP) and
simulated (dPL g2) soil moisture during test period at 1/42 sampling density. Green symbols (triangle, star, and circle) indicate three randomly selected sites.
b Same as a except using simulated soil moisture from evolutionary algorithm SCE-UA. ¢ Example time series at three randomly selected sites. d Boxplots
summarizing gridcell metrics for temporal generalization (evaluated on the training locations over the test period, blue dashed box) and spatial
generalization (orange dashed box) tests at 1/82 sampling density (one gridcell from an 8x8 patch, see illustration in Supplementary Fig. S1) for VIC
(NLDAS-2 default parameters), SCE-UA, and dPL options g7 and ga. In the spatial generalization test, we sampled at 1/82 density for training and evaluated
the parameters' performance on a neighbor 3 rows to the north and 3 columns to the east from each of the training gridcells, over the test period. Results
from another year are similar (Supplementary Fig. S5). We tested on other neighboring gridcells as well, with similar results (data not shown). The boxplots’
lower whisker, lower box edge, middle line, upper box edge, and upper whisker represent 10th, 25th 50th, 75th and 90th percentiles, respectively.

more pronounced advantages of dPL over existing state-of-the-art
method multiscale parameter regionalization (MPR). In the case
with the CAMELS hydrologic dataset (Supplementary Fig. S4a),
we applied dPL to estimate parameters for the VIC hydrologic
model and tested the parameters in a different period of time
(temporal generalization) on basins in the training set. g
achieved a median NSE of ~0.44, compared to the median value
of 0.32 reported for MPR?! (Fig. 6a). This result challenges the
previous argument that a low value of 0.32 in this experimental
setup was close to the performance ceiling of VIC due to its
structural deficiencies, and showed that the regionalization
scheme was also not near optimal. The dPL results seemed to be
worse than MPR where NSE was <0.2, which we think is due to
the lower quality of the surrogate model on those difficult-to-
simulate basins. However, in this NSE range, the models are
already known to be unreliable.

Despite the improved parameter learning scheme, the best
results achievable with VIC (median NSE =0.44) are much

weaker than a pure LSTM model. LSTM can obtain a median
NSE of 0.74 (with the use of an ensemble)3!, which may be
interpreted as being close to the best possible model given forcing
and attribute errors. The gap from 0.44 to 0.74 can be partially
explained by the imperfectness of the surrogate model, but it is
unlikely to be the major culprit based on its agreement with VIC
(Supplementary Fig. S2). Given dPL’s strong optimizing cap-
ability, the remaining gap can be mostly attributed to the limited
understanding of hydrology as encoded in the structures of VIC
or HBV. There is potential in the future to extend our framework
to further learn better model structure to narrow the gap, and, by
doing so, improve our understanding of the physical system.

A large advantage of dPL was also noticed in the global PUB
case (spatial extrapolation), where we applied dPL with two sets
of input features on a global hydrologic dataset (Supplementary
Fig. S4b) and tested on basins not included in the training set. An
existing state-of-the-art regionalization scheme from Beck et al.43
(hereafter referred to as Beck20) reported a median Kling-Gupta
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Fig. 4 Uncalibrated variable (evapotranspiration, ET) metrics from models trained at 1/82 sampling density. Scatter plots of temporal-mean ET (mm/
year) comparing the MOD16A2 satellite product with ET produced by a NLDAS-2, b SCE-UA, and dPL options € ga, and d gz. Each point on the scatter plot
is the temporal mean ET of a 1/8-latitude-longitude-degree gridcell defined on the NLDAS-2 model grid. Yellow color indicates higher density of points. The
ensemble metrics are from training the model with different random seeds, while the 1-vs-1 plots came from one particular random realization. Panel a is
for the NLDAS-2's default VIC model simulation and does not have an ensemble.
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Fig. 5 Comparison of parameters generated by dPL and SCE-UA. The continuous, spatially representative patterns of a dPL-inferred parameters are
noteworthy, especially in comparison to the discontinuous, random appearance of b SCE-UA-inferred parameters from site-by-site calibration. Both were

trained with a 1/82 sampling density.
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Fig. 6 Comparison of dPL and regionalization schemes for streamflow calibration. a Calibrating the VIC hydrologic model via a differentiable surrogate
model on the CAMELS dataset over the conterminous United States, in comparison to Multiscale Parameter Regionalization (MPR). b Calibrating the HBV
hydrologic model (not a surrogate) on the Beck20 global dataset, in comparison to the Beck20 regionalization scheme. We used NSE for the CAMELS case
and KGE for the global case because these metrics were used by the respective papers, and the main purpose of the case studies was to compare with the
existing literature. For both panels, curves on the right represent better models.

efficiency coefficient (KGE, similar in magnitude to NSE, see feature dPL setup generalized better in space than did the
Methods section) of 0.48 for the temperate catchment group*3, 8-feature dPL setup (median KGE = 0.59), suggesting that using
while dPL gave values of 0.56 for the comparable 8-feature setup more attributes as inputs did not cause dPL to overfit. It would
(Fig. 6b). We witnessed a noticeable separation of the cumulative take considerably more effort for the traditional schemes to run
distribution function (CDF) curves between dPL and Beck20 the 27-feature setup as it entails including more transfer functions
throughout the different ranges of KGE. In addition, the 27- and more parameters to train.
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These differences of around 0.1 in median NSE or KGE in both
of temporal and spatial experiments are quite significant, as NSE
= 1 indicates a perfect model while NSE = 0 corresponds to using
the mean value as the prediction. Increases in NSE from 0.32 to
0.55 in the VIC case, or from 0.48 to 0.56 in the HBV case
represent consequential changes in model reliability for water
management planning applications. Again, for all cases, the dPL
metrics are still considerably lower than what would be obtained
by purely data-driven LSTMs. Rather than being caused by the
dPL algorithm, this difference is more likely due to the limitations
of the PBM structures and the ways the reference problems were
set up in the literature, e.g., choices of inputs, assuming
homogeneity at the basin level, no routing in the global PUB
case, etc. We inherited these setups because the main purpose
here is to compare with previous schemes. While traditional
regionalization schemes like MPR are an important and
constructive avenue (e.g., they can also generate spatially-
smooth parameter fields looking like Fig. 5a), our comparisons
suggest that they are far from optimal and thus cannot fully
leverage information provided by big data. The sub-optimality is
because (i) the transfer functions were human expert-derived and
cannot extract as much useful information contained in inputs as
a deep network; and (ii) their optimization schemes have
limitations in handling of large datasets and many parameters
as problem complexity grows.

dPL offers the flexibility to leverage all forms of available
information. It is not possible for regionalization schemes like
MPR to map from time series responses (z) to parameters as gz
does. For soil moisture, our tests showed that enabling learning
from x-z pairs with g; improved the simulations with statistical
significance compared to using the attributes alone with g4 for
soil moisture, evapotranspiration, and neighboring gridcell soil
moisture (Table S1 in Supplementary Information). The
information contained in z seems to have improved the physical
significance of the parameters.

Scaling behavior with respect to the amount of training data
(scaling curves). Summarizing the results in another way, as the
amount of training data increases, we clearly witness beneficial
scaling behaviors (Fig. 7a), which to our knowledge have never
been discussed in the context of geoscientific modeling. As
training data increases, the performance (based on the ending
RMSE for soil moisture), physical coherence (based on the
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uncalibrated variable ET), and generalization (based on spatial
extrapolation) all improve, while the average cost per site
decreases dramatically (based on number of forward runs). The
reduction in cost can be interpreted as dPL demonstrating
economies of scale (EoS), where a mildly rising global training
cost is shared by all sites. But beyond EoS, the improvements in
parameter performance and physical coherence indicate that each
site now benefits from a better “service” resulting from the par-
ticipation of other sites. Each additional data point allows the
data-driven scheme to better capture details of the underlying
parameter-response function, and more data imposes a stronger
large-scale physiographical constraint that must be simulta-
neously satisfied, suppressing overfitting and improving robust-
ness. This scaling effect is an important reason why dPL can
surpass SCE-UA: at the low data-density end (s16 and s8 in
Fig. 2), dPL’s ending RMSE in fact was not as strong as that of
SCE-UA.

For the global PUB experiments, we witnessed a two-phase
scaling curve and strong data efficiency with dPL when training
data was systematically reduced (Fig. 7b). In the first phase
(2-25% of basins used in training), there was a rapid rise where
the median KGE improved from 0.38 to 0.54. In the second
phase, the improvement became much slower but did not saturate
at 100% of the dataset. There is an upper bound to the PBM
performance due to model structural deficiencies, so the
slowdown is to be expected, but the initial scaling curve is
surprisingly steep. We suspect the first rapid-rise phase is due to
dPL’s ability to learn across sites (at 25% basin density, the model
mostly learned the main characteristics of the problem), while the
second, more asymptotic phase is due to reduced geographic
distance between training and test basins (the model does fine
tuning).

Overall, if we assume the Beck20 scheme to also improve
monotonously with more basins on the PUB experiment (this is
likely as more training basins mean smaller distances from test
basins, akin to the second phase described above), dPL would
achieve the same performance as Beck20 (median ~KGE = 0.48)
using just ~12.5% of the training data. It would be interesting to
compare the dPL scaling curve to that of Beck20 but,
unfortunately due to prohibitive computational and time costs,
we could not run the same experiments for Beck20. Nevertheless,
it should be fair to say dPL has a higher upper bound in
performance and better data efficiency.
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Fig. 7 Scaling curves of dPL. a Training data sampling density increases from s16 to s4. Dashed and solid red curves share the same red y axis (dashed line
is for SCE-UA, to enable comparison). b Scaling curve for the spatial extrapolation (PUB) test with the Beck20 global headwater catchment dataset.
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Discussion

There are several major implications of the results. First, the novel
scaling curves, which we expect to hold true for other geoscientific
domains, showed that dPL’s advantages largely arise from leveraging
big data and the process commonalities and differences found
therein. Without big data, such advantage may not exist or can
shrink substantially. The simultaneous benefits of data scaling with
respect to performance, efficiency, and (unique to parameter learn-
ing) physical coherence had not yet been demonstrated in geos-
ciences and some other domains. These results give geoscientists
strong motivation to rise above case-specific datasets (which is cur-
rently a common practice even among machine learning studies,
based on our review?®), compile large datasets, and collectively reap
the benefits of such scaling curves. The curves also suggest that any
interpretation of DL model results must be grounded in the context
of training data amount; e.g., comparisons involving DL in a small-
data setting may have limited significance.

Second, dPL demonstrates the considerable advantage of binding
DL training infrastructure with existing process-based geoscientific
models via differentiable computing. This integration is especially
helpful where a full simulation history involving unobserved variables
is needed to provide interpretable narratives or diagnostics, e.g., cli-
mate change impact assessments. On the other hand, our approach
can immediately and greatly boost the accuracy of large-scale, socio-
economically important geoscientific models such as the National
Water Model#¢, which is responsible for predicting floods on a
national scale. A core enabling technique we proposed here is dif-
ferentiable computing via either the use of a differentiable surrogate
model (as for VIC) or reimplementation on DL platforms (as for
HBV). Both options are supported by most modern DL platforms,
and a choice can be made depending on the effort level. For simpler
models like HBV, it is likely easiest and most accurate to directly
implement it on a DL platform, but for more complex or expensive
models like VIC, a surrogate model may be the bridge between them
and big data machine learning. Surrogate models add one more layer
of complexity, however, so a direct implementation is preferred
if possible. Following this integration, there should be many pathways
towards leveraging machine learning to improve our physical
understanding such as learning about better structures in the model.
It should be more and more evident that the differentiable computing
paradigm sports enormous advantages over the traditional ones
when it comes to learning knowledge.

Third, DL-supported dPL offers a generic, adaptive, and highly
efficient solution to a large variety of models in geosciences and
beyond. For our three examples, each with some different config-
urations, we used the same g4 and g, network components with little
customization. We expect such genericity to carry over to other
domains. This is because we do not explicitly specify any transfer
functions: these are determined by the DL algorithm, which can
adapt to new problems automatically. In contrast, for regionalization
schemes, new transfer functions need to be conceived for every new
model, new calibrated parameters, or even new experiments, as
shown in this work with 8-attribute vs 27-attribute model versions.
dPL is more flexible than traditional methods to stand up to the
challenges of widely different datasets and problem formulations (e.g.,
traditional regionalization methods cannot use meteorological time
series data as raw inputs for parameter inference). With our end-to-
end framework, the ability to avoid “ground truth” parameters also
leads to performance gains because these parameters are ambiguous
(ground-truth parameters do not exist), and adds significant
workload.

Fourth, no work in geosciences, to the best of our knowledge, has
proposed a structure like g, which is an attempt to learn the map-
ping from historical forcing and response pairs to model parameters.
ga: A > 0 and gz (A’x,z) — 0 each has their use cases. If we have

good-quality and problem-relevant inputs as A and A’, then gz is not
expected to have noticeable advantages over g4 for an in-training site,
because the information of z is already implicitly used during
training. Indeed, gz showed only a mild advantage for the soil
moisture spatial neighbor test. However, in cases where the attributes
are limited, i.e., there is not a well-defined mapping from A’ to 0 but
we have z (in an extreme case, we may not have useful A’ at all), then
gz may be more valuable. An example may be ecosystem modeling,
where we have ample observations of top-canopy variables such as
leaf area index, but forest species, successional stages, and understory
communities lack detailed data except at a small number of sites. We
caution, however, that it is still too early to conclude on the general
usefulness of g for other problems and more tests are needed to
verify the existence, robustness (with respect to data noise), and value
of this mapping,

gz also possesses some unique advantages in terms of data privacy.
There are many places in the world, e.g, China, India, and even
privately-owned land in the US like agricultural farms, where, for
various reasons, stakeholders do not support data sharing. As g uses
local private data as an input, it permits the use of data that do not
have the option to participate in training, and can avoid expensive re-
training for small incremental datasets. An added benefit is that once
trained, the network can be saved and applied at negligible compu-
tational cost to new instances, which is not possible for traditional
paradigms; inferring parameters for the entire CONUS at high
resolution using dPL takes mere seconds.

dPL’s advantages are conditional. For cases where one has a
limited dataset from only one or a few sites, dPL may not have
advantages over traditional approaches, but differentiable computing
should still be useful. Another situation where the effectiveness of g4
may not manifest itself is when the inputs do not capture significant
variations in the underlying processes (called latent processes). This
would require g, to learn an ambiguous or ill-defined mapping
between inadequate inputs and the PBM parameters. In the case of
streamflow modeling where geology is a poorly-described latent
process, we have not noticed a significant impact. However, one
needs to be aware of such potential pitfalls.

dPL can be interpreted as imposing the PBM as a physical con-
straint for the parameter estimation network component in order to
produce parameters that are sensible for the PBM, and that by doing
so, physical meaning is attached to multiple outputs of the network.
Depending on the setup, imposing physical constraints has been
shown to improve generalization®**” and certainly builds an
important bridge between process knowledge and data science.
Overall, the DL-based dPL approach showed immense advantages in
efficiency, performance, and robustness over traditional methods.

Methods

General description of a geoscientific model and parameter calibration. A
model for both non-dynamical and dynamical systems can be generically written
for site i as

Dher =F({(5}er- .6 M

) T
where output physical predictions (y, = [)’ll.n}"z.u - } , with the first subscript

denoting variable type) vary with time (¢) and location (i), and are functions of

. . . T
time- and location-specific inputs (x; = [x'w Xy ] )> location-specific obser-
vable attributes (¢’ = [¢f,¢},] T), and location-specific unobserved parameters that
need to be separately determined (6 = [03,0;,] T). 0 may be unobservable, or it

may be too expensive or difficult to observe at the needed accuracy, resolution,
or coverage. This formulation also applies to dynamical systems if x; includes
previous system states y/_, (i.e. y'_;x/), and the rest of the inputs are independent
(e.g. meteorological) forcing data. In a non-dynamical system, x! is independent
of y;_;-
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Given some observations
z=h(y) +& @
]T is the

. i P T -
error between the observations (z; =2,z ] ) and the model predictions

where h(-) relates model outputs to observations and & = [e‘i.t, &,

(y), we adjust the model parameters so that the predictions best match the
observations. This is traditionally done individually for each location (here
generically referring to a gridcell, basin, site, river reach, agricultural plot, etc.,
depending on the model):

. . i . i i i i
6 = argming [EZT ||£t||2 = arg ming ZGZT (LI A N B A 3)

where i € Tand where I = {1,2, ... N, }. Note that the superscript i suggests that
this optimization is done for each site independently.

The process-based hydrologic model and its surrogate. The Variable Infiltration
Capacity (VIC) hydrologic model has been widely used for simulating the water and
energy exchanges between the land surface and atmosphere, along with related appli-
cations in climate, water resources (e.g., flood, drought, hydropower), agriculture, and
others. The model simulates evapotranspiration, runoff, soil moisture, and baseflow
based on conceptualized bucket formulations. Inputs to the model include daily
meteorological forcings, non-meteorological data, and the parameters to be determined.
Meteorological forcing data include time series of precipitation, air temperature, wind
speed, atmospheric pressure, vapor pressure, and longwave and shortwave radiation.
More details about VIC can be found in Liang et al.%.

LSTM was trained to reproduce the behavior of VIC as closely as possible while also
allowing for gradient tracking. In theory, if a hydrologic model can be written into
a machine learning platform (as in our HBV case), this step is not needed, but training a
surrogate model is more convenient when the model is complex. To ensure the
surrogate model had high fidelity in the parameter space where the search algorithms
want to explore, we iterated the training procedure multiple times. We first trained an
LSTM surrogate for VIC using the forcings, attributes, and parameters from NLDAS-2
as inputs, and the VIC-simulated surface soil moisture (variable name: SOILM_lev1)
and evapotranspiration (ET, variable name: EVP) as the targets of emulation. Then, as
the search algorithms (SCE-UA or dPL) went near an optimum, we took the calibrated
parameter sets, made perturbations of them by adding random noise to these
parameters, and retrained the network with added data. The perturbation was done to
better represent the parameter space close to optimal solutions. We repeated this
procedure four times so that the NSEs of the parameters, obtained from the CPU-based
VIC model, converged. At 1/82 sampling density (sampling one gridcell from each 8 x 8
patch), this results in fewer overall forward runs than a 1/8-degree NLDAS-2
simulation. Also note that this effort is needed similarly for both dPL and SCE-UA. If
we did not use the surrogate model, SCE-UA would also have needed to employ the
0O(10%) more expensive CPU-based VIC model. We evaluated the accuracy of
the surrogate model, and the median correlations between VIC and the
surrogate simulation were 0.91 and 0.92 for soil moisture and ET, respectively
(Supplementary Fig. S2). When we connected the trained surrogate model to the
parameter estimation network, the weights of the surrogate model were frozen
and prevented from updating by backpropagation, but the gradient information could
pass through. This was implemented in the PyTorch deep learning framework3®.

The long short-term memory network. The long short-term memory network
(LSTM) was originally developed in the artificial intelligence field for learning sequential
data, but has recently become a popular choice for hydrologic time series data6. As
compared to a vanilla recurrent neural network with only one state, LSTM has two
states (cell state, hidden state) and three gates (input gate, forget gate, and output gate).
The cell state enables long-term memory, and the gates are trained to determine which
information to carry across time steps and which information to forget. These units
were collectively designed to address the notorious DL issue of the vanishing gradient,
where the accumulated gradients would decrease exponentially along time steps and
eventually be too small to allow effective learning?$. Given inputs I, our LSTM can be
written as the following:

Input transformation : x' = ReLU(W,I' + b;) 4)
Input node : g' = tanh(Z(Wx') + Z(Wyh' ") + by) 5)
Input gate : ' = o(Z(W,x") + D(Wh'™") + b)) (6)
Forget gate : ' = o(P(Wyx') + Z(W;,h'"") + by) (7)
Output gate : o' = o(Z(W,,x") + Z(W ,h'™") + b,) (8)
Cellstate: s'=g' Qi +s'of )

Hidden state : 4" = tanh(s') © o' (10)

Output: y' = Whyht +b, (11)

where W and b are the network weights and bias parameters, respectively, and & is the
dropout operator, which randomly sets some of the connections to zero. The LSTM
network and our whole workflow?! were implemented in PyTorch3, an open source
machine learning framework.

Here we do not use LSTM to predict the target variable. Rather, LSTM is used to
(optionally) map from time series information to the parameters in our g, network
as described below.

The parameter estimation network. We present two versions of the dPL fra-
mework. The first version allows us to train a parameter estimation network over
selected training locations Ii,i, where some ancillary information A (potentially
including but not limited to attributes in ¢ used in the model) is available, for
training period Tiin (illustrated in Fig. 1b):

9= ga(A)forallie ] (122)

train

g0 =argming () > h(fx}, 9 g4(A)) ~ 21 (12b)

#€lrain
Essentially, we train a network (g4) mapping from raw data (A) to parameters ()
such that the PBM output (f) using 0 best matches the observed target (z). We are
not training to predict the observations — rather, we train g4 on how to best help
the PBM to achieve its goal. The difference between Eq. 12 and Eq. 3 highlights that
the loss function combines the sum of squared differences for all sites at once.

The second version is applicable where some observations {z’,} ter are also
available as inputs at the test locations:
0=g, ({xi}th,A/‘i, {zi}td)for all i € Iy, (13a)

g =argming () T Ih(fx, ¢ & (%) ers A (E ) — A

€Tirain 1€ vain

(13b)

Essentially, we train a network (g,) that maps from attributes (A’), historical
forcings (x), and historical observations ({zi} reT) to a suitable parameter set (6)
with which the PBM output best matches the observed target (z) across all sites in
the domain. Ancillary attributes A’ may be the same as or different from A used in
ga» and in the extreme case may be empty. Succinctly, they can be written as two
mappings, ga: A > 0 and g (A’x,2) > 0. g7 can accept time series data as inputs
and here we choose LSTM as the network structure for this unit. There is no
circular logic or information leak because the historical observations ({zi} rer) are
for a different period (T) than the main training period (Tiin). In practice, this
distinction may not be so crucial as the PBM acts as an information barrier such
that only values suitable as parameters (8) can produce a reasonable loss. As LSTM
can output a time series, the parameters were extracted only at the last time step.
For g4, only static attributes were employed, and so the network structure amounts
to a multilayer perceptron network. After some investigation of training and test
metrics, we set the hidden size of g to be the same as for the surrogate model.
The whole network is trained using gradient descent, which is a first-order

optimization scheme. Some second-order schemes like Levenberg-Marquardt often
have large computational demand and are thus rarely used in modern DL¥. To allow
gradient accumulation and efficient gradient-based optimization and to further reduce
the computational cost, we can either implement the PBM directly into a differentiable
form, as described in the global PUB case below, or first train a DL-based surrogate
model f'(e) ~ f(e) and use it in the loss function instead of f{-),

g0 =argming, > k(09" g0 ~ 41’

€ Liin 1€ i

(14)

where g(e) generically refers to either g4 or g, with their corresponding inputs. g, can
be applied wherever we can have the ancillary inputs A, while g, can be applied over
areas where forcings and observed responses (x, z) are also available, without additional
training:

9= 2 (XD e 9’ 21, p) or o= g4(¢") forany iand any reasonable T (15)

We tested both g4 and g, which work with and without forcing-observation (x-z) pairs
among the inputs, respectively. Since SMAP observations have an irregular revisit
schedule of 2-3 days and neural networks cannot accept NaN inputs, we have to fill in
the gaps, but simple interpolations do not consider the effects of rainfall. Here we used
the near-real-time forecast method that we developed earlier(. Essentially, this forecast
method uses forcings and integrates recently available observations to forecast the
observed variable for the future time steps, achieving very high forecast accuracy
(ubRMSE < 0.02). When recent observations are missing, their places are taken by the
network’s own predictions, thus introducing no new information. Using this method,
we generated continuous SMAP observations as z for network g.

As with most DL work, the hyperparameters of dPL needed to be adjusted. We
manually tuned hidden sizes and batch size using one year of data (2015-04-01 to
2016-03-31) using mostly the 1/16? sampling density (sampling one gridcell from
each 16 x 16 patch). Higher sampling densities led to larger training data, which
could be better handled by larger hidden sizes. For sampling densities of 1/162, 1/
82, and 1/42 we used hidden sizes of 64, 256, and 1280, respectively. We used a
batch size of 300 instances and the length of the training instances was 240 days.
Given 1 or 2 years’ worth of training data, the code randomly selected gridcells and
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time periods with a length of 240 days within the training dataset to form a
minibatch for training (In contrast, SCE-UA uses all available years of training data
at once, as this is the standard approach). The network’s weights were updated after
computing the combined loss of each minibatch. We employed the AdaDelta
network optimization algorithm®Y, for which the coefficient used to scale delta
before applying it to the parameters was 0.5, the coefficient used for computing a
running average of squared gradients was 0.95, and the weight decay was 0.00001.
The dropout rate for the g, or g4 component of the network (Fig. 1) was 0.5. We
normalized inputs and outputs by their CONUS-wide standard deviation.

Based on Troy et al.#4, the calibrated parameters include the variable infiltration
curve parameter (INFILT), maximum base flow velocity (Dsmax), fraction of
maximum base flow velocity where nonlinear base flow begins (Ds), fraction of
maximum soil moisture content above which nonlinear baseflow occurs (Ws), and
variation of saturated hydraulic conductivity with soil moisture (EXPT). INFILT
decides the shape of the Variable Infiltration Capacity (VIC) curve and denotes the
amount of available infiltration capacity. The formula regarding INFILT in VIC is:

i = i, [1 = (1 - a)™m] (16)

where i is infiltration capacity, i,, is maximum infiltration capacity, and ay is the
fraction of saturated area. With other parameters and as being the same, larger
INFILT leads to a reduced infiltration rate and thus higher runoff.

For all models, we collected atmospheric forcing data from the North American
Land Data Assimilation System phase-1I dataset (NLDAS-2)>!. A number of static
physiographic attribute inputs were added to provide additional context for the
module to better understand the input-response relationships and correctly
estimate the parameters. These attributes included bulk density, soil water holding
capacity, and sand, silt, and clay percentages from the International Soil Reference
and Information Centre - World Inventory of Soil Emission Potentials (ISRIC-
WISE) database®2. Other inputs were SMAP product flags indicating mountainous
terrain, land cover classes, urban areas, and fraction of land surface with water
(time averaged).

SMAP data. We used the SMAP enhanced level-3 9-km resolution surface soil
moisture product (see acknowledgements for access). SMAP level-3 data has an
irregular revisit time of 2-3 days, which means there are irregular and densely-
distributed gaps in the data. As discussed earlier, we employed the LSTM-based 1-
day-ahead forecast scheme to fill the gaps®®. This scheme utilizes meteorological
data and the most-recently-available SMAP observations to provide a near-real-
time soil moisture forecast. Essentially, this scheme is a deep-learning version of
data assimilation, and has achieved a very low CONUS-scale unbiased RMSE of
0.027, which revised our understanding of the random component of the SMAP
data. Using this scheme, we were able to fill the gaps between SMAP observations,
and provide seamless data.

To resolve the intrinsic difference between VIC-simulated soil moisture and
SMAP, we followed the data assimilation literature>3 and used dPL to estimate,
along with other parameters, a linear function with a scaling term (a) and a bias
term (b) between the two:

Ysmap = A% Yy + b (17)

It is widely known that bias correction needs to be applied before observations can
be assimilated through data assimilation®. a and b are estimated along with the
rest of the parameters by dPL and SCE-UA.

Satellite-based estimates of ET. MOD16A2%° is an 8-day composite ET product
at 500-meter resolution, which is based on the Penman-Monteith equation. With
this algorithm, MODIS 8-day fraction of photosynthetically active radiation is used
as the fraction of vegetation cover to allocate surface net radiation between soil and
vegetation; MODIS 8-day albedo and daily meteorological reanalysis data are used
to calculate surface net radiation and soil heat flux; and MODIS 8-day leaf area
index (LAI) and daily meteorological reanalysis data are used to estimate surface
stomatal conductance, aerodynamic resistance, wet canopy, soil heat flux, and other
environmental variables. MODIS land cover is used to specify the biome type for
each pixel to retrieve biome-dependent constant parameters.

We did not use MOD16A2 as a learning target; the purpose here was to validate
which calibration strategy led to better descriptions of overall model dynamics.
MODI16A2 is not perfect, but since these are completely independent observations
from those by SMAP, better agreement should still indicate better modeling of
physics overall.

Shuffled Complex Evolution for comparison. For comparing the parameter
estimation module in dPL, the SCE-UA method!! introduced three decades ago
but still relevant today®®, was also implemented as a reference method. We chose
SCE-UA for comparison because it is well established and widely applied. The
algorithm ranks a population based on the objective function, and partitions a
population of parameter sets into multiple subpopulations called complexes. In one
iteration of SCE-UA, the complexes are evolved individually for a number of
competitive evolution steps, where reflection, contraction, and random trials are
attempted, before they are shuffled and redivided into new complexes for the next
iteration.

SCE-UA jobs use the data from the whole training period (1 or 2 years). One
SCE-UA iteration contains many VIC forward runs. Because SCE-UA uses discrete
iterations involving an uneven number of forward runs, it was not as meaningful to
compute the best objective function at the end of a fixed number of runs. Instead,
across different gridcells, we collected the lowest objective function RMSE achieved
from the beginning to the end of each iteration, and took the average of the ending
run as the number of runs to report. We tuned the number of complexes of SCE-
UA and set it to seven.

CAMELS streamflow test. In earlier work, Mizukami et al.2! calibrated the VIC
model using the multiscale parameter regionalization scheme using data from 531
basins in the Catchment Attributes and Meteorology for Large-Sample Studies
(CAMELS) dataset over the contiguous US (see basin locations in Supplementary
Fig. S4a). They limited their scope to basins <2000 km? and trained and tested on
the same basins, making the experiment a test on the model’s ability to generalize
temporally. The calibration period of MPR was from 1 October 1999 to 30 Sep-
tember 2008, and the validation period was from 1 October 1989 to 30 September
1999. They calibrated transfer functions for 8 default VIC parameters and added
two additional parameters (shape and timescale) for routing, which accounts for
the time it takes for water to travel from the catchment to the outlet in a mass-
conservative manner:

. — a—1 -t
y(t.a,r)—r(a)_rat e (18)

where ¢ is time [T], a is a shape parameter [-] (a > 0), I'() is the gamma function,
and 7 is a timescale parameter [T]%7.

Convolution of the gamma distribution with the runoff depth series is used to
compute the fraction of runoff at the current time, which is discharged to its
corresponding river segment at each future time as follows:

qt) = /0th Y(s : a,T) % R(t — s)ds (19)

where ¢(t) is delayed runoff or discharge [L3T-1] at time step ¢ [T], R is the model-
simulated runoff from the basin [L3T-1], and fmax is the maximum time length for the
gamma distribution [T]. To compare with Mizukami et al.2!, we used the same dataset,
basins, and training and test periods. They reported a median NSE of 0.30 for VIC.

Global PUB test. Beck20 presented a global-scale hydrologic dataset containing for-
cings, static attributes, and daily streamflow data from 4229 headwater basins across the
world. They used a state-of-the-art regionalization scheme for prediction in ungauged
basins (PUB), in which no data from test basins were used in the training dataset, thus
testing the scheme’s capability to generalize spatially. Eight attributes were used for the
transfer functions in Beck20, including humidity, mean annual precipitation, mean
annual potential evaporation, mean normalized difference vegetation index, fraction of
open water, slope, and percentages of sand and clay. They trained linear parameter
transfer functions from raw predictors to 12 free parameters of a simple hydrologic
model, HBV. In all, 4229 basins were divided into three climate groups: (i) tropical, (ii)
arid and temperate, and (iii) cold and polar. Transfer functions were trained for each of
these groups. They ran cross validation within each group, e.g., for the arid and tem-
perate group, they further divided the data into 10 random folds, trained the transfer
functions in 9 of the 10 folds, and tested the transfer functions on the 10th holdout fold;
then they rotated to other folds as the holdout data and reported the average metrics
from these holdout basins. Because the holdout basins were randomly selected, there
will always be neighboring basins that were included in the training set. However, the
sparser the training data are, the further away the holdout basins will be, on average,
from the training basins. Hence, we can reduce the number of training basins to
examine the impacts of less training data on the model’s ability to generalize in space.
Since the primary purpose of this part of the work was to compare dPL to
Beck20’s regionalization scheme, we kept the setup as similar as possible and
focused on the comparison with their temperate catchment group (see their
locations in Supplementary Fig. S$4b), for which they reported a median Kling
Gupta model efficiency (KGE, see below) coefficient of 0.48. We similarly ran 10-
fold cross validation by training g4 (here A includes atmospheric forcings) on 9
randomly chosen groups of basins and testing it on the 10th, then rotating the
holdout group. The training and testing periods were both 2000-2016, the same as
used by Beck20. We compared using 8 raw attributes (to be comparable to Beck20)
as well as using all 27 available attributes to demonstrate the extensibility of the
dPL scheme. To show how the test results scaled with data, we ran additional
experiments where the training basin density was systematically reduced with
testing basins unchanged. We could afford to do this with dPL using a highly
generic procedure. Unfortunately, it was not practical to do this for Beck20’s
regionalization scheme for comparison, because it was too computationally
expensive and labor intensive. Beck20 calibrated the model on the regular gridcells
while dPL is applied at the basin scale. The chosen basins are small in area, hence
this difference should have marginal impacts. In fact, comparison to past research
[Beck 2016] suggests this discretization gives better metrics than the basin-based
approach, meaning that this difference, if anything, is biased against dPL.
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Evaluation metrics. Four statistical metrics are commonly used to measure the
performance of model simulation: bias, correlation (Corr), unbiased root-mean-
square error (ubRMSE), and Nash-Sutcliffe model efficiency coefficient (NSE). Bias
is the mean difference between modeled and observed results. ubRMSE is the
RMSE calculated after the bias (systematic model error) is removed during the
calculation, and measures the random component of the error. Corr assesses if a
model captures the seasonality of the observation, but did not care about the
correlation. NSE also considers bias and is 1 for a perfect model but can be negative
for poor models.  is the average modeled (predicted) value of all pixels, and y* is
the average observed value of all pixels.

Bias = M 0)
n
n _ R 2
ubRMSE = \/Zi:l[(yi _}’)n_ b =yl 1)
Corr = P [(J’x’ _}7) (;Vj —);*)} - o
VELL0: =) IVEL 07 7))

" * 2
NSE=1— Z:L—{)Z .

Zi:l(yi —}’*)

All metrics were reported for the test period. When we evaluated g on the training
locations, historical observations during the training period ({z} } +e) Were inclu-
ded in the inputs. Then we used the parameters calibrated from the training period
to run the model in the test period to get the reported metrics.

For the spatial generalization tests, we sampled one gridcell out of each 8x8
patch (sampling density of 1/82 or s8), and we ran the trained dPL model on
another gridcell in the patch (three rows to the north and three columns to the east
of the training gridcell). For SCE-UA, we took the parameter sets from the nearest
trained neighbor. For g4, we sent in static attributes from the test neighbor to infer
the parameters, which were evaluated over the test period. For g, we sent in static
attributes as well as forcings and observed soil moisture from the test neighbor, but
from the training period. All models were evaluated over the test period.

To be comparable to Beck20, we also calculated the Kling-Gupta model
efficiency coefficient (KGE), which is similar in magnitude to NSE:

KGE=17\/(771)2+(/371)2+(y71)2 (24)

o,
=t andy = o/ b
Ho To/Ho
where r is the correlation coefficient between simulations and observations, § and y
are respectively the bias and variability ratio, ¢ and o are the mean and standard
deviation of runoff, and indices s and o represent simulations and observations.

(25)

Data availability

SMAP L3 data®® can be downloaded at https://doi.org/10.5067/T9OW6VRLCBHI. NLDAS-2
forcing data® can be downloaded at https://doi.org/10.5067/6]5SLHHOHZHN4. CAMELS
data® can be downloaded at https://doi.org/10.5065/D6MW2F4D.

Code availability
The code for dPL with example datasets is available from the permanent web archival
service Zenodo at https://doi.org/10.5281/zenodo.5227738.
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