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Abstract

Protein evolution is most commonly studied by analyzing related protein sequences and generating ancestral sequences
through Bayesian and Maximum Likelihood methods, and/or by resurrecting ancestral proteins in the lab and performing
ligand binding studies to determine function. Structural and dynamic evolution have largely been left out of molecular
evolution studies. Here we incorporate both structure and dynamics to elucidate the molecular principles behind the
divergence in the evolutionary path of the steroid receptor proteins. We determine the likely structure of three
evolutionarily diverged ancestral steroid receptor proteins using the Zipping and Assembly Method with FRODA (ZAMF).
Our predictions are within ,2.7 Å all-atom RMSD of the respective crystal structures of the ancestral steroid receptors.
Beyond static structure prediction, a particular feature of ZAMF is that it generates protein dynamics information. We
investigate the differences in conformational dynamics of diverged proteins by obtaining the most collective motion
through essential dynamics. Strikingly, our analysis shows that evolutionarily diverged proteins of the same family do not
share the same dynamic subspace, while those sharing the same function are simultaneously clustered together and distant
from those, that have functionally diverged. Dynamic analysis also enables those mutations that most affect dynamics to be
identified. It correctly predicts all mutations (functional and permissive) necessary to evolve new function and ,60% of
permissive mutations necessary to recover ancestral function.

Citation: Glembo TJ, Farrell DW, Gerek ZN, Thorpe MF, Ozkan SB (2012) Collective Dynamics Differentiates Functional Divergence in Protein Evolution. PLoS
Comput Biol 8(3): e1002428. doi:10.1371/journal.pcbi.1002428

Editor: Ruth Nussinov, National Cancer Institute, United States of America and Tel Aviv University, Israel, United States of America

Received October 11, 2011; Accepted January 30, 2012; Published March 29, 2012

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for
any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Funding: This research was supported in part by the National Science Foundation through TeraGrid resources provided by Ranger and the Fulton High
Performance Computing Initiative at Arizona State University for computer time. SBO and ZNG acknowledge the support from 1U54GM094599. MFT and DWF
thank NSF for support through grant DMS-0714953 The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: Banu.Ozkan@asu.edu

Introduction

Proteins are effective and efficient machines that carry out a

wide range of essential biochemical functions in the cell. Beyond

being robust and efficient, the outstanding property of proteins is

that they can evolve and they show a remarkable capacity to

acquire new functions and structures. In fact, modern proteins

have emerged from only a few common ancestors over millions to

billions of years [1–3]. Moreover, the emergence of drug resistance

and enzymes with the capacity to degrade new chemicals indicates

the ongoing contemporary evolution of proteins [1–7]. Therefore,

understanding the mechanism by which mutations lead to

functional diversity is critical in many aspects from protein

engineering to drug design and personalized medicine. Indeed,

computational protein design through analysis of mutations has

attained major breakthroughs, with profound biotechnological and

biomedical implications: design of a new fold [8], design of new

biocatalysts and biosensors [9–11], design of binding affinity

[12,13], and design of proteins to bind non-biological cofactors

[14]. Moreover, there are computational bioinformatics-based

tools based on evolutionary information aspects to identify

mutations leading to functional loss or disease [15–17].

From a phylogenetics perspective, horizontal and vertical

approaches have been used to analyze the set of mutations that

lead to changes in protein function throughout evolution [18]. The

horizontal approach compares modern day proteins at the tips of

the evolutionary tree. It identifies the amino acid residue

differences within the functionally divergent members of a protein

family based on primary sequence and structural analyses and

then characterizes the functional role of these residues by

swapping them between these family members through site-

directed mutagenesis in the laboratory to check for loss of function

[19–21]. Although the horizontal method gives insight into

mutations critical to function, it often fails to identify permissive

mutations necessary to switch function between family members.

Protein function has evolved as mutations throughout history, i.e.

‘‘vertically’’, in the ancestral protein lineages. Therefore, it is

important to incorporate the historical background which contains

both neutral and key function-switching mutations when examin-

ing function-altering mutations [18]. The vertical approach

determines the likely ancestral sequences at nodes along the

evolutionary tree and compares modern day proteins to their

ancestors. Recent advances in molecular phylogenetic methods

make it possible to obtain ancestral sequences by protein sequence

alignments in a phylogenetic framework using Bayesian and

Maximum Likelihood methods [22,23]. DNA molecules are

synthesized coding for the most probable ancestral sequences

and the protein expressed, allowing for experimental character-
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ization of the ancient protein. The vertical approach has been used

to gain insight into the underlying principles of protein function

and evolution in several proteins including opsins [24,25], GFP-

like protein [26,27], and others [28–32]. More recently, a vertical

analysis of two ancestral nuclear receptors has been coupled with

X-ray structure determination in successfully elucidating the

switching of function between divergent members [33,34]. Such

studies highlight the importance of including ancient protein

structures into evolutionary studies.

Although coarse-grained and all-atom models have furthered

our understanding of sequence/structure relationship in evolution,

further study of the inherent structural dynamics is crucial to give a

more complete understanding of protein evolution [35]. A small

local structural change due to a single mutation can lead to a large

difference in conformational dynamics, even at quite distant

residues due to structural allostery [36–38]. Thus the one

sequence-one structure-one function paradigm is being extended

to a new view: an ensemble of different conformations in

equilibrium that can evolve new function [1,39–41]. The

importance of structural dynamics has been demonstrated by a

recent experimental study which shows that mutations distant

from a binding site can increase enzyme efficiency by changing the

conformational dynamics [42]. The modulation of rigidity/

flexibility of residues both near and distant from the active

region(s) as related to promiscuous and specific binding has also

been noted in tRNA synthetase complexes [43,44].

Here we have developed a method to predict structural and

dynamic evolution of ancestral sequences by using a modified

version of our protein structure prediction tool, Zipping and

Assembly Method with FRODA (ZAMF) [45]. ZAMF combines

two crucial features of ZAM [46], and FRODA [47,48] : i)

FRODA is a constraint-based geometric simulation technique that

speeds up the search for native like topologies by accounting only

for geometric relationships between atoms instead of detailed

energetics, ii) Molecular dynamics identifies the low free energy

structures and further refines these structures toward the actual

native conformation. Thus, it is a two-step multi-scale computa-

tional method that performs fast and extensive conformational

sampling. As an outcome, we not only predict protein structures

but also obtain detailed conformational dynamics of the predicted

structures.

With modified ZAMF, we analyze the role of structural

dynamics in the evolution of three ancestral steroid receptors

(AncCR, AncGR1 and AncGR2), the ancestors of mineralocor-

ticoid and glucocorticoid receptors (MR and GR). MR and GR

arose by duplication of a single ancestor (AncCR) deep in the

vertebrate lineage and then diverged function. MR is activated by

aldosterone to control electrolyte homeostasis, kidney and colon

function and other processes [33]. It is also activated by cortisol,

albeit to a lesser extent [18]. On the other hand, GR regulates the

stress response and is activated only by cortisol [33]. The structural

comparison of human MR and GR (i.e. horizontal approach)

suggested the two mutations (S106P and L111Q) to be critical in

ligand specificity, however, swapping these residues between

human MR and human GR yielded receptors with no binding

activity [49]. Conversely, by resurrecting key ancestral proteins

(AncCR, AncGR1 and AncGR2) in MR and GR evolution and

determining the crystal structures, Thornton et al. were able to

shed insight into how function diverges through time by using both

functional and permissive (compensatory) mutations [33,34].

AncCR (main ancestor), ,470 million years old, is a promiscuous

steroid receptor which is activated by aldosterone, cortisol, and

deoxycortisol ligands. AncCR branched into the mineralocorticoid

steroid receptors. AncGR1 (ancestor of sharks) is ,440 million

years old with 25 mutations from AncCR and also promiscuously

binds to and functions with aldosterone, cortisol, and deoxycorti-

sol. AncGR1 later evolved into the Elasmobranch glucocorticoid

receptor protein. AncGR2 (ancestor of humans and fish) is ,420

million years old with 36 mutations from AncGR1 and

preferentially binds to cortisol alone. These two ancestral proteins,

AncGR1 and AncGR2, which diverge functionally, have highly

similar experimental structures that have ,1 Å RMSD between

them. Among 36 mutations between AncGR1 and AncGR2, two

conserved mutations {S106P, L111Q} (i.e. group X) when

introduced together are sufficient to increase cortisol specificity.

However three more functionally critical conserved mutations

{L29M, F98I, S212D} (i.e. group Y) are needed for the loss of

aldosterone binding activity when they are introduced together

with two other permissive (i.e. compensatory) mutations {N26T

and Q105L} (i.e. group Z). Thus, making the X, Y, Z mutations in

AncGR1 enables AncGR1 to function as AncGR2 (i.e. forward

evolution) [34]. To make AncGR2 function as AncGR1

(backward evolution) the X, Y, Z mutations are insufficient and

render the protein inactive. A fourth set of permissive mutations

(W) is required to reverse function in addition to the X, Y, and Z,

sets. The W mutation set is {H84Q, Y91C, A107Y, G114Q,

L197M} [33]. A mutation between AncCR and AncGR1, Y27R,

is also a necessary mutation to eventually alter function to cortisol

specificity, though it was not experimentally considered as part of

the X, Y, Z, or W mutation sets [34].

We ask here whether an analysis of the predicted 3-D structures

and corresponding equilibrated dynamics can distinguish the

functional divergence and function swapping mutations between

AncCR, AncGR1, and AncGR2. By applying ZAMF, we obtain

the 3-D structures within ,2.7 Å all-atom RMSD of the

experimental structures. More importantly, when we analyze their

structure-encoded dynamics, we observe that changes in the

dynamics indicate functional divergence: that the most collective

fluctuation profiles of AncCR and AncGR1 (i.e. the slowest mode)

are much closer and distinctively separated from the functionally

divergent AncGR2. Moreover, AncCR and AncGR1 have a more

flexible binding pocket, suggesting the role of flexibility in their

Author Summary

Proteins are remarkable machines of the living systems
that show diverse biochemical functions. Biochemical
diversity has grown over time via molecular evolution. In
order to understand how diversity arose, it is fundamental
to understand how the earliest proteins evolved and
served as templates for the present diverse proteome. The
one sequence - one structure - one function paradigm is
being extended to a new view: an ensemble of different
conformations in equilibrium can evolve new function and
the analysis of inherent structural dynamics is crucial to
give a more complete understanding of protein evolution.
Therefore, we aim to bring structural dynamics into
protein evolution through our zipping and assembly
method with FRODA. (ZAMF). We apply ZAMF to
simultaneously obtain structures and structural dynamics
of three ancestral sequences of steroid receptor proteins.
By comparative dynamics analysis among the three
ancestral steroid hormone receptors: (i) we show that
changes in the structural dynamics indicates functional
divergence and (ii) we identify all functionally critical and
most of the permissive mutations necessary to evolve new
function. Overall, all these findings suggest that confor-
mational dynamics may play an important role where new
functions evolve through novel molecular interactions.

Evolution Optimizes Protein Dynamics
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promiscuous binding specificity. On the other hand, the mutations

of AncGR2 lead to a rigid binding pocket, which suggests that as

the binding becomes cortisol specific, evolution acts to shape the

binding pocket toward a specific ligand. Finally, using their mean

square fluctuation profiles and cross correlation maps to analyze

the change in dynamics at each residue position enables us to

distinguish critical mutations needed for swapping the function.

Overall, all these findings suggest that conformational epistasis

may play an important role where new functions evolve through

novel molecular interactions and an analysis of detailed dynamics

might provide insight into the mechanisms behind these novel

interactions.

Results/Discussion

Structure Prediction and Identification of Function
Altering Mutations through Structural Analysis

Many of the modern day homologs to ancestral proteins in the

steroid receptor class of the nuclear receptor superfamily have high

sequence similarity (,40–50%), and, as prediction accuracy scales

with sequence similarity [50–52] our secondary structures for the

ancestral sequences are sufficiently accurate to provide native-like

structures [45]. Indeed, predicted secondary structures are all

correct within one residue to the experimentally determined

ancestral cortisol receptor protein [34]. Using these secondary

structures as input to the assembly and refinement stages of

ZAMF, we determine the 3D structure of the AncCR from its

experimentally determined structure to 2.5 Å all atom RMSD

(2.2 Å backbone), AncGR1 from its experimentally determined

structure to 2.9 Å all atom RMSD (2.6 Å backbone) AncGR2

from its experimentally determined structure to 2.9 Å all atom

RMSD (2.4 Å backbone) (Fig. 1 and Table S1). To test the

accuracy of these predictions, we first compare the structural

differences between the experimental structures. The experimental

structures are very similar, with an RMSD of 1.49 Å between

AncCR and AncGR1, 1.68 Å between AncCR and AndGR2, and

1.70 Å between AncGR1 and AncGR2. However alignment

excludes the atoms of the mutational residues. We also ran a 4 ns

REMD simulation of the experimentally determined AncCR and

AncGR2 under the same conditions. The ensembles for AncCR

and AncGR2 converges at ,2.5 Å backbone RMSD from their

respective experimentally determined structures (Fig. S1). The

2.5 Å RMSD indicates that our predicted structures are as

accurate as our force field permits. Closer analysis reveals that

helix h9 in the predicted structure of AncGR2 is slightly less stable

than in the experimental structure REMD simulations. However,

both simulations show a high degree of flexibility in the loop

region between helices h9 and h10 and ends of helices h9 and h10

at this loop region.

As these three proteins diverged in function and have .10%

sequence mutation between each successive protein, we expect to

see some differences in structure. Therefore, we first look at a

mean square displacement (MSD) between the static structures of

AncCR, AncGR1 and AncGR2. The MSD versus residue profile

gives an indication of which residues are mutating, as mutated

residues pack into stereochemically unique conformations (Fig.

S2). Fig. S2 reveals conformational shifts in helices h7 and h10 and

in the b-sheet region, b1. We attempt to determine which of the 36

mutated residues between AncGR1 and AncGR2 are critical for

cortisol binding specificity through distinguishing residues having

an MSD cutoff of .6 Å2 between the AncGR1 and AncGR2

predicted structures. The residues identified from X, Y, Z and W

sets are Y91C, Q105L, and S212D, with no false positives. The

S212D and Q105L mutations are permissive mutations to shift

function to cortisol specificity whereas Y91C is a permissive

mutation necessary for ‘‘reverse evolution’’ i.e. to return binding

promiscuity to AncGR2. Experimental work indicates that S212D
removes a hydrogen bond and imparts greater mobility to the loop

before the activation function (AF) helix, allowing it to hydrogen

bond with helix h3, while Q105L indirectly restores a hydrogen

Figure 1. 3D structures of AncCR, AncGR1 and AncGR2. AncCR was within 2.5 Å all-atom RMSD from the experimentally determined AncCR.
AncGR1 was within 2.9 Å all-atom RMSD from the experimentally determined crystal structure. AncGR2 was within 2.8 Å all-atom RMSD from the
experimentally determined AncGR2. Included for reference is a cartoon figure with helices labeled for reference and the ligand is bound, represented
in blue spheres.
doi:10.1371/journal.pcbi.1002428.g001

Evolution Optimizes Protein Dynamics

PLoS Computational Biology | www.ploscompbiol.org 3 March 2012 | Volume 8 | Issue 3 | e1002428



bond with the activation helix by allowing for tighter packing of

helices h3 and h7 [34]. An analysis of hydrogen bonding patterns

[53] shows the loss of the S212 hydrogen bond with V217 (in the

loop before the AF helix) in the AncGR2 structure as compared to

the AncCR/AncGR1 structures, agreeing with experimental

results. Y91C is one of the W mutations required for reverse

evolution of AncGR1 from AncGR2 and we find it forms a

hydrogen bond with N86 in AncGR2 but does not in AncCR or

AncGR1. Interestingly, none of these mutations occur in the

binding pocket itself. Therefore, an MSD analysis is not sensitive

enough to find functionally critical mutations in the binding

pocket, and only finds a few of the necessary mutations to diverge

function.

The Relationship with Functional Divergence and
Structural Dynamics

We investigate the role of structural dynamics in functional

divergence observed among the three ancestral steroid proteins.

The extensive conformational sampling of our method enables us

to capture the dynamics along with the most native-like structure

(Fig. S4). We obtain the most collective modes of these three

ancestral structures (i.e. slowest fluctuation profiles) through

principal component analysis of our restraint-free trajectories

(See Method). We then form an Mx3N matrix where the M

columns are the eigenvectors weighted by their eigenvalues, with

each M column being a 3 column super-element composed from

the slowest modes of AncCR, AncGR1 and AncGR2 and N being

the number of C-a atoms. We chose to analyze the top 10 slowest

modes and therefore there are 30 columns. By performing a

singular value decomposition on this matrix, we measure how the

most collective motions of these three ancestral proteins are

distributed in dynamic space. Interestingly, as shown in Fig. 2A,

AncCR and AncGR1 are much closer and distinctively separated

in dynamic space from the functionally divergent ancestor of the

human glucocorticoid receptor, AncGR2. Clustering in dynamics

space is significant because it shows that these structurally similar

but functionally unique proteins differ in functionally governing

dynamics, as observed in previous studies [42,54–56]. Moreover,

previous studies indicate that functionally critical mutations alter

modes that characterize biologically functional motion, while

random sequence variations typically have non-statistically

significant impact on those modes [57]. These findings indeed

suggest that the governing functional dynamics is encoded within

the structure and that only critical mutations lead to a shift in

collective motion and therefore in binding selectivity as well

[55,58].

Fig. 2B presents the color coded ribbon diagrams of these three

ancestral proteins with respect to their functionally related

collective fluctuation (obtained by PCA) profiles within a spectrum

of red to blue, where rigid regions are denoted by blue/green and

flexible regions are denoted with red/orange. Experimentally

determined function altering mutations are highlighted in the

sphere representation. Strikingly, residues in and near the

functional site (i.e. binding site) are much more flexible for the

two promiscuous enzymes (AncGR1 and AncCR) whereas the

human ancestor AncGR2, which has affinity only to cortisol, has

very rigid functional site residues. The new view of proteins states

that, rather than a single structure with induced binding, proteins

interconvert between bound and unbound conformations in the

native ensemble. Thus, promiscuous binding proteins utilize

greater flexibility to interconvert between a greater number of

conformations in the native ensemble as compared to specific

binding proteins. Therefore, our dynamic analysis agrees with the

new view that while the promiscuous ancestors are more flexible

around the functional site, the functional site rigidifies as Nature

biases towards binding only a single ligand with greater affinity [1].

Identification of Function Altering Mutations through
Structural Dynamics

Upon confirmation that dynamics can indeed distinguish

functional divergence, the next question is whether dynamics

can indicate which residues in the protein are critical to diverging

function. We investigate whether we can distinguish the mutations,

including function altering and permissive (i.e. compensatory), that

cause AncCR/GR1 to shift function to specifically bind cortisol as

AncGR2 does, and also those that reverse the function of AncGR2

to promiscuously bind in the same way as AncCR/AncGR1.

To identify the critical residues for swapping function, we

analyze how the fluctuation profile changes over these three

successive ancestral proteins. Thus, using their most collective

fluctuation profile (i.e the slowest mode obtained by PCA), we

compute the net change in fluctuation from AncCR to AncGR1

and AncGR1 to AncGR2 and show them in a 2-D plot to

distinguish the mutations that have a higher impact on the change

in dynamics between AncGR2 and AncGR1 compared to those

mutations affecting the change in dynamics between AncGR1 and

AncCR (Fig. 3). The upper left region of the graph in Fig. 3

indicates mutations that most alter dynamics when comparing the

function-altering mutation from AncGR1 (binding promiscuity) to

AncGR2 (binding specificity to cortisol) whereas the lower right

region of the plot indicates mutations that most alter dynamics

when comparing AncCR and AncGR1, which do not diverge

functionally. The central region of the graph (between the parallel

cutoff lines) contains those mutations that do not alter the

Figure 2. Plot and ribbon diagram of the dynamics of the three
ancestral proteins characterized by slowest collective mode. (A)
The first two principal components of AncCR, AncGR1 and AncGR2
plotted against each other. The principal components were found via a
Singular Value Decomposition of the G matrix (See Methods). Higher
order modes are mostly orthogonal or mixed and therefore not
represented here. (B) 3D structures of AncCR, AncGR1 and AncGR2
colored by residue fluctuation. The critical mutations in AncCR and
AncGR1 have greater flexibility and thus, higher binding promiscuity.
AncGR2 has much lower flexibility in general amongst these residues
and therefore more selective binding. The S212D mutation also
rigidifies the lower loop at the bottom end of h10 by shortening the
loop and removing degrees of freedom. This also alters the packing of
h10 (the frontmost helix) and decreases flexibility.
doi:10.1371/journal.pcbi.1002428.g002

Evolution Optimizes Protein Dynamics

PLoS Computational Biology | www.ploscompbiol.org 4 March 2012 | Volume 8 | Issue 3 | e1002428



dynamics in a significantly different manner between successive

homologs. Interestingly, most of the function altering mutation

sites such as 106, 212 (shown as 211 and 213 due to deletion) and

most of the W mutations (mutations necessary for backward

evolution, e.g. altering AncGR2 to become promiscuous) are in the

upper left region. Permissive mutations 27, 29, 105, and the

mutations in the activation function helix are in the lower right

region of the plot. 111, a critical mutation for changing the

specificity to cortisol only, is also in the lower right region.

However, experimental analysis showed that the 111 mutation

alone does not alter function in any appreciable manner. Thus, we

propose it is only after permissive mutations alter the dynamics at

site 111 can the necessary critical mutation at site 111 have a

function altering effect. Additionally, certain mutations such as

214 and 173 both show large dynamic transitions. Mutation 214 is

associated with the loop region that contains the critical mutation

S212D, and it is in at the edge of a loop region. It undergoes

transitions between being at the end of the h10 helix to being in

the loop. The change in dynamics can be associated with the

S212D mutation to identify the loop as a critical region. The 173

mutation is in a region that was not able to be crystallized in the

experimental AncCR structure. Though the REMD simulations

were determined to have converged, there is a possibility of some

influence near site 173 due to the loop having to be built into the

structure prior to REMD simulation. However, we expect that the

shift in dynamics at mutation 173 may be correlated with

movement of helix h10, and is therefore potentially significant.

We also obtain the net absolute change in the successive Dr2

fluctuation profiles along the slowest mode using the formulation

IDfluctuationAncCR-AncGR1|–|DfluctuationAncGR1-AncGR2I for

mutated residues based the alignment of AncCR and AncGR2

(Fig. 4A) and predict those residues with a net |DDfluctua-

tion|.0.002 Å2 to be critical. The forward mutations required to

shift function to cortisol specificity are N26T, L29M, F98I,

Q105L, S106P, L111Q, and S212D, and all of these are captured

as critical as they are above the cutoff. The reverse mutations

required to shift function from cortisol specific to promiscuous

binding are H84Q, Y91C, A107Y, G114Q, and L197M. With the

chosen cutoff, the identified permissive mutations are H84Q,

A107Y, and G114Q, with Y91C only slightly below the cutoff.

Interestingly, A107Y is the only W mutation that by itself partially

recovered the promiscuous binding function [33] and it shows a

high |DDfluctuation| in our plot. We also find eight other mutated

residues above the cutoff. Three of those are false positives I65L,

Q117K and M158I. Each of these mutations occurred between

AncCR and AncGR1, prior to a shift in function. Among

mutations identified is Y27R, which is not explicitly in the X, Y, or

Z set, yet it is highly conserved in the GR family and is an

experimentally determined permissive mutation critical for GR

function [34]. The three mutations at the activation function helix

are also identified as critical. The other mutation above the cutoff

is 211, which is correlated with S212D. Overall, our dynamic

method identifies all mutations that are necessary for the evolution

of GR function. We also distinguish three of the five mutations

necessary for reversal of evolution (e.g. permissive mutations to

AncGR2 which are necessary to recover the promiscuous binding

of AncCR/AncGR1). Interestingly, many of the identified critical

mutations such as N26T, H84Q, Y91C, F98I, Q105L, and

S212D, are not interacting with the ligand, but rather are distant

from the binding pocket (i.e. .5 Å from any atom in the ligand).

Additionally, the high |DDfluctuation| at the C-terminus is

associated with the activation-function (AF) helix, which does not

contain critical mutations but its dynamics is critical to function.

We also investigate the pairwise cross correlations of AncGR1

and AncGR2 (Fig. 4B). Interestingly, comparing the cross

correlations reveals differences along the regions containing

critical mutations. The cross-correlations between helix h5

(containing the critical mutation H84Q) and helix h7 (containing

the critical mutations: Q105L, S106P, A107Y, L111Q, G114Q)

become highly positively correlated in AncGR2 whereas there is

no correlation in AncGR1. Analysis of hydrogen bonds [53] in

predicted structures showed that additional hydrogen bonds are

found between the b-sheet b1 and helices h5 and h7, indicating

the observed increased correlation in AncGR2 is likely due to the

repacking of helices h5 and h7 after mutation which incorporates/

creates these new hydrogen bonds. Moreover, we also observe

increased positive correlations between the AF-helix and helices h3

and h10 in AncGR2. These regions contain multiple permissive

mutations (N26T, L29M, L197M, S212D) and thus, the change in

correlations relate to the change in the stability of the AF helix

caused by these permissive mutations necessary to alter function

[34]. Furthermore, in Fig. 4C we compare the cross correlations of

the most critical mutation for swapping the function to GR (X

mutations) and the permissive mutations necessary to reverse the

function to MR (W mutations) between AncGR1 and AncGR2. In

AncGR2 these mutations are significantly more correlated than in

AncGR1. This indeed suggests that W mutations play a critical

role for GR function from the dynamics-perspective and therefore,

they also need to be reversed along with the X, Y, Z mutation to

recover the MR function.

To test the robustness of our method in other proteins we

repeated our method for benign and disease associated mutations

[59–61] in the human ferritin protein [62] (Fig. S5). We observe

that, indeed, benign and disease associated mutations are

individually clustered together while separated from each other

in dynamics space.

In summary, by comparative dynamics analysis among the

three ancestral steroid hormone receptors we identify all

functionally critical and permissive mutations necessary to evolve

Figure 3. The change in fluctuation along the most collective
mode between AncCR, AncGR1 and AncGR2. The X, Y, Z, and
Y27R mutation groups necessary to alter function toward cortisol
binding specificity are noted in red, and those permissive W mutations
necessary to reverse function and recover promiscuous binding are
noted in purple. A cutoff of 60.002 Å2 is applied to differentiate
mutations critical to altering dynamics as also used in Fig. 4. The upper
left region of the graph indicates mutations that most alter dynamics
when comparing the function-altering mutation from AncGR1 (binding
promiscuity) to AncGR2 (binding specificity to cortisol) whereas the
lower right region of the plot indicates mutations that most alter
dynamics when comparing AncCR and AncGR1, which do not diverge
functionally.
doi:10.1371/journal.pcbi.1002428.g003
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new function from the ancestral MR promiscuous binding proteins

to the ancestral GR cortisol-specific binding proteins. We also

identify 60% of the permissive mutations necessary to revert to

ancestral function along with an additional functionally critical

mutation. We observe significant loss of flexibility in key residues

both near and distant from the binding pocket in the transition

from promiscuous to specific binding. A loss in flexibilty agrees

well with the new view of proteins being conformationally

dynamic in which bound and unbound conformations are sampled

within the native ensemble. Thus, proteins evolve not just through

those mutations that alter function in the immediate sense, but also

due to those mutations that are permissive and alter the dynamic

space in which the protein exists, thereby giving the protein the

potential to evolve new function.

Methods

Ancestral Protein Structure Prediction Based on Modern
Homologs

We previously used the Zipping and Assembly Method with

FRODA [ZAMF] [45–48,63] on a set of test proteins to predict

the 3D structure from their 1D amino acid sequence. Here, we

slightly modify ZAMF for the prediction of ancestral protein

structures, particularly the three ancestral steroid receptor

proteins, the corticoid receptor [AncCR], the glucocorticoid/

corticoid receptor [AncGR1], and the glucocorticoid receptor

[AncGR2] [33,34]. Since structure is more conserved than

sequence [64–66], we incorporate structural data acquired from

modern day homologues into our prediction method. The

modified version of ZAMF as outlined in Fig. 5 includes several

steps: (i) obtaining secondary structural motifs and common

contacts based on modern homologs, (ii) generation of an unfolded

ensemble, (iii) generation of compact-native like conformations

using FRODA, and (iv) refinement by ZAMF. Overall, all these

steps lead to an extensive search in conformational space, which

comes with several advantages. First, we increased our prediction

accuracy for native structures compared to the previous version of

ZAMF. Second, we obtain converged dynamics trajectories

through the refinement stage of ZAMF, which is used for dynamic

evolution analysis of the ancient proteins. We summarize each step

in our approach below.

I. Obtain secondary structural motifs and potential

contact map of ancestral sequences. Usually, the first stage

of ZAMF is to predict the secondary structural elements for

Figure 4. The change in net fluctuations and correlations of the mutated residues for successive evolution of MR to GR proteins. (A)
The change in net fluctuation between successive ancestral proteins, AncCR, AncGR1 and AncGR2 for mutated residues. Those residues identified as
critical to alter-function are noted in red. The activation-function (AF) helix contains mutations 224 and 229. A cutoff (solid line) results in all critical
mutations identified except for Y91C and L197M. Y27R is noted as critical to function but sites 65, 117, and 158 are false positives. (B) The cross
correlation map with AncGR2 on the upper left and AncGR1 on the lower right. Circled in black are changes in the cross correlation associated with
critical residues near the binding pocket. Squared in black are the changes in cross correlation due to critical mutation N26T forming a hydrogen
bond with the AF-helix. Circles in white are additional changes in cross correlation not associated with critical mutations. (C) The cross correlations
between the X and W mutations. The correlation between X and W mutations is higher for AncGR2, whereas AncGR1 X functional mutations are
uncorrelated, increasing the flexibility in the binding pocket and allowing for promiscuous binding.
doi:10.1371/journal.pcbi.1002428.g004
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shortened sequences, i.e., 8mers, 12mers, 16mers etc of the protein

using an ab initio approach. However, here we use the SSPRED

online server [67] to confirm likely secondary structural elements

by examining the secondary structure of modern day homologs

such as mouse, human, and rat steroid receptor proteins [68–71]

and aligning with the ancestral sequences. We choose the

predicted secondary structural motifs such that they agree with

the secondary structural motifs of modern day homologs at the

regions with high sequence similarity. Furthermore, the

information gleaned from the sequence alignment of the modern

day homologs is also coupled with analysis of the 3D structure of

the modern day homologs in order to generate a contact map for

the target ancestral protein in question. For example, if segment of

modern-day homolog 10–15 and 20–26 have identical residues

with those of ancient sequence and there is a contact between 10

and 20, we use the contact 10, 20. In order to translate these

contact maps between each other, we take into account insertions,

deletions and differences in numbering from the sequence

alignment. Finally, the consensus contacts across all maps (i.e.

contacts overlap in all modern day homologs) are taken as the

contact map for the ancestral proteins. The contact map includes

both residue-residue distance contacts and also dihedral angle

variations. This contact map is later used to couple with FRODA

[47,72] during simulations that collapse the assembled secondary

structural motifs into folded units.

II. Generation of unfolded assembled secondary struc-

tural motifs. The individual secondary structure elements are

connected by building loops in extended conformation between

secondary structures adjacent in sequence. We use a Monte Carlo

technique in ZAMF [63] to build these loops and generate

hundreds of unique conformations each with maximized radii of

gyration, as shown in Fig. 4. Using many initial structures has the

advantage of unbiasing the results from any individual initial

structure.

III. Generation of collapsed folded conformations using

geometric constraint-based FRODA. Each of these unique,

‘‘open’’ structures is then run in a FRODA simulation that

enforces hydrophobic collapse through attractive perturbations

between specific hydrophobic residue pairs in the previously

mentioned contact map. No hydrophobic residues within loops are

chosen and contacts within the same secondary structural motif

are not considered a contact pair. During the simulation each of

the residue-residue contacts are perturbed together if their

separation distance in .7.0 Å. The run is prematurely ended if

all the contacts from the contact list are found to be within a 7.0 Å

cutoff distance at any time during the simulation. An additional

hydrophobic collapse of all hydrophobic residues is done via a

Monte Carlo accept/reject method with Boltzmann weighting

between subsequent snapshots based on the difference of radius of

gyration of hydrophobic residues. Other parameters of the

FRODA simulation, such as momentum run-on between

subsequent steps, remain the same as outlined in previous work

[45].

The final collapsed structures from the FRODA simulations are

then clustered into representative structures using a k-means

clustering algorithm based on a 1.0 Å RMSD between atomic

positions. These representative structures are scored and sorted

based on both the radius of gyration of hydrophobic residues and

also the number of hydrophobic contacts (,7.0 Å) (Fig. S6).

IV. Refinement and selection of the most native-like

folded structure using ZAMF. We then move on to the

refinement stage of ZAMF. The refinement stage involves a

reservoir REMD (r-REMD) [73] step to both determine the most

native conformation and also to further refine all conformations.

The replicas and reservoir are filled with structures that are sorted

according to the hydrophobic scoring function mentioned above.

We then run multiple simulations where we narrow the

conformational search space to avoid entrapment in local

minima through residue-residue contact restraints based on the

contact map of the ancestral protein. The local contacts are

applied before the nonlocal ones to allow local refinement to occur

before global refinement (tertiary structure). This approach is

motivated by a hierarchical folding mechanism (search mechanism

of ZAM). The restrained simulation is ran for 5 ns with replicas

from 270K to 450K in the AMBER96 force field with generalized

born implicit solvent model [74]. The residue-residue constraint is

approximated to be at the center of mass of the residue and the

Figure 5. The secondary structure is predicted through
multiple sequence alignment with modern day homologs.
These secondary structural elements are then connected with loops in
extended conformation to generate hundreds of conformations with
high flexibility. Only a few are shown here. These structures all undergo
a FRODA simulation which collapses them by adding attractive
perturbations between all hydrophobic contact pairs (represented by
arrows) into tightly packed structures with hydrophobic cores. A subset
of hydrophobic residues are shown as spheres. After scoring, the
collapsed structures they are ran in a restrained r-REMD simulation for
5 ns and then an unrestrained REMD simulation for 5 ns or until
converged. The 3 ancestral structures are prediction to within 2.7 Å all
atom RMSD of a similar experimentally determined structure. The final
ensemble of restraint free generated structures are analyzed for
dynamics using PCA.
doi:10.1371/journal.pcbi.1002428.g005
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force constant is 0.5 kcal/(mol Å2). After the restrained run, an

unrestrained simulation with identical parameters is then run for

at least 5 ns. After 5 ns, a convergence analysis is done, and if the

protein is converged no further simulation is completed. If it is not,

an additional 2 ns of simulation is run and convergence is checked.

Continued 2 ns simulations are repeated until the protein has

converged. The most dominant structure at the lowest replica is

chosen as our prediction at the end of convergence. Our

refinement protocol works well for ancestral sequences since

their structure is close to modern day homologs whose structures

are known. In other extreme cases where the starting initial model

has lower resolution (i.e. 6–7 Å RMSD) from the original

structure, our refinement protocol may fail and need additional

alterations in order to reach to higher resolution structures.

Since we also generate an extensive amount of trajectory data,

we use the unrestrained converged trajectories to analyze the

dynamics of the ancestral structure as explained in detail below.

Principal Component Analysis for Identifying
Functionally Important Dynamics

Convergence is critical and, as such, a sample window of 1 ns is

slid along the trajectory at 0.5 ns intervals and Principal

Component Analysis is done. The PCA is done by first aligning

and centering each snapshot of the trajectory to remove the

translations and rotations, generating a matrix Xn for each

sampling window

Xn~xn{SxnT ð1Þ

where xn are 3N dimensional position vectors and the , . denote

a time average for a specific sampling window. Then, the

covariance matrix of that sampling window, Cn,n, is calculated by

Cn,n~SSXnTSXnTTT ð2Þ

From the covariance matrix, the matrix of eigenvectors (Vn) and

the matrix of eigenvalues (Ln) are

V{1
n Cn,nVn~Ln ð3Þ

The eigenvectors and eigenvalues are sorted in order of decreasing

eigenvalue and only the top 30 are kept as, once converged, any

higher order (faster fluctuation/smaller positional deviations) are

not relevant in determining biologically relevant large scale motion

of the protein [75]. The reduced set of principal components is then

Mn~VT
n XT

n ð4Þ

The fluctuation profile along each mode is simply the Dr of each

residue in that mode. By plotting these against each other, we

confirm convergence when the Pearson correlation coefficient, Pij,

of the trajectory for sampling window i (Xi) and sampling window j

(Xj) is .0.8

Pi,j~
Ci,j

sisj

ð5Þ

si and sj are the standard deviations of their trajectories. If the run

has not converged it is continued until convergence is confirmed

over a 3 ns window (Fig. S3). Using the Saguaro high performance

computer at Arizona State University, a 250 residue protein with 40

temperature replicas (1 logical core per replica) finishes just under

300 ps/day. The most native like structures are assumed to be those

that dominate the lowest temperature replica, while those in higher

temperature replicas are dismissed.

After confirming convergence, in order to obtain the dynamics

difference between the most collective motions (i.e. slowest

frequency fluctuation profiles) of these three ancestral structures

we apply the Singular Value Decomposition (SVD) technique to

the matrix of dynamics profiles, G (i.e. the dynamics profile of

each protein will be the column in the matrix, and each super-

element, ik corresponds the X, Y, and Z fluctuations of the kth

residue in the sequence of protein i).

Gn~
Vn, Pr oteini

Ln, Pr oteini

,
Vn, Pr oteinj

Ln, Pr oteinj

,
Vn, Pr oteink

Ln, Pr oteink

,:::

� �
ð6Þ

G matrix includes most collective modes of (i.e. global motion)

individual proteins that we obtained separately from REMD

trajectories. With construction of the G matrix our goal is to

cluster the proteins with similar global motion. Since global

dynamics (i.e. most spatially extensive collective mode) is most

related to the function, proteins with similar global dynamics

should cluster together and execute similar function. In order to do

clustering we perform an SVD on G matrix

Gn~UnSnWn
{T ð7Þ

The first through nth values in each column of W can be plotted

against each other to visualize the dynamic space occupied by each

protein.
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(green), and AncGR1-AncGR2 (red).
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Figure S3 The plot of most collective mean square fluctuation of

different sliding windows.
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Figure S4 The dynamics of the experimental AncCR, AncGR1,

and AncGR2 structures plotted in a reduced subspace.
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Figure S5 Plot and ribbon diagram of the dynamics of the single

mutation variant of human ferritin protein characterized by the

slowest collective mode.
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Figure S6 Radius of gyration of the hydrophobic residues versus

the RMSD from the experimentally determined structure of

AncCR for a single FRODA run.
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