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Abstract: Micropterus salmoides rhabdovirus (MSRV) is a primary viral pathogen in largemouth bass
aquaculture, which leads to tremendous economic losses yearly. Currently, there are no approved
drugs for the treatment and control of this virus. Our previous studies screened the herb Magnolia
officinalis from many traditional Chinese medicines, and we isolated and identified magnolol as its
main active compound against multiple rhabdoviruses, including MSRV. On the basis of the structure–
activity relationship and pharmacophore model of magnolol, two new magnolol derivatives, namely,
hydrogenated magnolol and 2,2′-dimethoxy-magnolol, were designed and synthesized. Their
anti-MSRV activities were systematically investigated both in vitro and in vivo. By comparing
the half-maximal inhibitory concentration (IC50), it was found that hydrogenated magnolol possessed
a higher anti-MSRV activity than magnolol and 2,2′-dimethoxy-magnolol, with an IC50 of 13.37 µM.
Furthermore, hydrogenated magnolol exhibited a protective effect on the grass carp ovary (GCO) cell
line by reducing the cytopathic effect induced by MSRV. Further studies revealed that hydrogenated
magnolol did not directly impact virions or interfere with MSRV adsorption. It worked within the
6–8 h of the phase of virus replication. In vivo treatment of MSRV infection with magnolol and
hydrogenated magnolol showed that they significantly improved the survival rate by 44.6% and
62.7%, respectively, compared to MSRV-infected groups. The viral load measured by the expression
of viral glycoprotein in the organs including the liver, spleen, and kidney also significantly
decreased when fish were intraperitoneally injected at a dose of 20 mg/kg. Altogether, the structural
optimization of magnolol via hydrogenation of the propylene groups increased its anti-MSRV
activity both in vitro and in vivo. These results may provide a valuable reference for anti-MSRV drug
discovery and development in aquaculture.

Keywords: Micropterus salmoides rhabdovirus (MSRV); magnolol; largemouth bass; antiviral activity

1. Introduction

Largemouth bass (Micropterus salmoides) have been cultured in China since being
introduced into the Guangdong province of China from the United States in 1983, and
they are considered one of the most popular warm-water fish in China [1]. Due to their
popularity as a sport fish and food fish, they have been stocked across North, Central,
and South America, Europe, and Asia [2]. In 2020, the production of largemouth bass
was 61,9519 tons, being the eighth largest farmed fish species in China [3]. However, with
the fast development of intensive fish farming and high stocking densities, largemouth
bass farming has suffered from epidemic infectious diseases caused by organisms such
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as bacteria, fungi, viruses, or parasites. Among these pathogens, a lethal viral disease
caused by Micropterus salmoides rhabdovirus (MSRV) results in tremendous economic losses
to the industry. Outbreaks of MSRV could cause symptoms such as spiral, erratic swim-
ming, distorted bodies, and bloated abdomen [4]. What is most important is that MSRV
infection can lead to high mortality of fish. In April 2011, MSRV infection caused about
200,000 deaths of largemouth bass fingerlings (2.5–4.5 cm in body length) in a fish farm
located in Zhongshan city, Guangdong Province, China [5]. However, no commercially
approved drug is available for treating this viral infection. Thus, the development of
effective methods for the prevention and control of MSRV disease is in great demand.

Remarkable progress has been achieved in the field of herbal therapy owing to the
increasing concerns of drug resistance development and limited advances in the field of
antiviral drug discovery. In many civilizations, natural compounds from herbs have been
used for the treatment of viral diseases for centuries, and they play a vital role in modern
medicinal development because of their broad therapeutic spectrum and minimal or no
side-effects [6]. As synthetic antiviral drugs are not available against most viral pathogens,
all possible efforts have been focused on the search for novel pharmaceuticals to treat viral
infection through the isolation, characterization, and synthesis of pharmacologically actives
from natural plants. In aquaculture, arctigenin (from Arctium lappa L.), bavachin (from
Psoralea coryfolia), and saikosaponin D (Bupleurum kunmingense) showed high antiviral effi-
cacy against spring viremia of carp virus (SVCV) in epithelioma papulosum cyprini (EPC)
cells [7–9]. Ursolic acid extracted from Prunella vulgaris L. inhibited infectious hematopoi-
etic necrosis virus (IHNV) replication with a maximum inhibitory percentage >90% [10].
More importantly, magnolol, a natural product identified from Magnolia officinalis Rehd et
Wils., was found by our laboratory, which shows efficient antiviral bioactivity against grass
carp reovirus (GCRV), by suppressing viral replication and protecting cells from apopto-
sis [11,12]. Furthermore, magnolol also showed admirable anti-Saprolegnia activity at a
concentration of 9.2 mg/L [13]. In the abovementioned published research, we synthesized
six magnolol derivatives and investigated their structure–activity relationship (SAR) by
testing their anti-Saprolegnia activity. Together with the pharmacophore model using the
Phase module of Schrodinger software (Schrodinger LLC, New York, NY, USA) [14], it
was revealed that the phenolic hydroxyl groups and propylene groups of magnolol con-
tribute greatly to the hydrogen bond acceptor and hydrophobic interactions, respectively
(Figure S1). Thus, in the present study, we synthesized two magnolol derivatives on the
basis of our previous studies to conduct further structural optimization and biological
evaluation assays against MSRV.

The chemical structures and general reaction scheme of magnolol and two mag-
nolol derivatives, namely, 5,5′-dipropyl-[1,1′-biphenyl]-2,2′-diol (compound 16) and 2,2′-
dimethoxy-5,5′-diallyl-biphenyl (compound 17), are shown in Figure 1. Their anti-MSRV
activities were analyzed by real-time quantitative PCR (qRT-PCR). Moreover, virus titration
assay, cytopathic effect (CPE) reduction analysis, and nucleus damage observation were
applied to validate their antiviral activity. In addition, the mechanism of action of magnolol
and its derivatives were investigated by studying the effect of magnolol on each stage of
MSRV virion proliferation. Subsequently, the anti-MSRV activity of magnolol was evalu-
ated in vivo as a function of the viral load and survival of largemouth bass fingerlings. The
present study further explores the structural optimization of magnolol for the treatment of
MSRV, and sets the foundation for antiviral drug development in aquaculture.



Viruses 2022, 14, 1421 3 of 15Viruses 2022, 14, 1421 3 of 15 
 

 

 
Figure 1. Reaction scheme showing the synthesis of compound 16 and compound 17 from magnolol. 
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Breeding Farm in Chongqing, China and confirmed to be MSRV-free for the experiments 
by qRT-PCR. Largemouth bass were maintained in a recirculating system at 25 °C, pH of 
6.8–8.0, and dissolved oxygen >5.7 mg/L. Fish were fed with commercial fodder (Fuxing 
Organism Co., Ltd., Fuzhou, China) twice a day and accommodated for 3 weeks prior to 
experiments.  

2.2. Reagents 
Magnolol (>99% purity) was purchased from Aladdin Biochemical Technology 
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Silica gel H (200–300 mesh, Qingdao Marine Chemical Factory, Qingdao, China) was ap-
plied for column chromatography. Silica gel (cat no. GF254, Qingdao Marine Chemical 
Factory, Qingdao, China) was used for thin-layer chromatography (TLC). Milli-Q water 
(Millipore, Burlington, MA, USA) was used to make aqueous solutions.  
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As shown in Figure.1, magnolol solution (1.00 g, 3.75 mmol) in 30 mL of methanol 

with 10% Pd/C (100 mg, ca. 0.1 mmol of Pd metal) was stirred under atmospheric H2 pres-
sure at room temperature. After reacting for 12 h, the product (compound 16) was dried 
and collected for nuclear magnetic resonance (NMR) characterization. For the synthesis 
of compound 17, 1.07 g magnolol (4.07 mmol) was added to 30 mL of anhydrous acetone 
and 2.76 g of anhydrous K2CO3 (19.97 mmol) at room temperature (r.t.). The mixture was 
stirred vigorously for 30 min, followed by adding 0.77 mL of DMS, before reacting for 
another 12 h. Crude products were washed with 30 mL of acetone and extracted with ethyl 
acetate three times. The organic layer was combined, dried with anhydrous Na2SO4, and 
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2. Materials and Methods
2.1. MSRV Virus Strain, Cell Lines, and Largemouth Bass

The MSRV strain (MSRV-FJ985) was isolated, identified, and stored in our labora-
tory with GenBank access no. MT818233.1 [15]. The grass carp ovary (GCO) cells were
kindly provided by the Zhejiang Institute of Freshwater Fisheries (Huzhou, China). Cells
were cultured at 25 ◦C under humidified air/5% CO2 in medium 199 (Hyclone, Grand
Island, NY, USA) containing 10% fetal bovine serum (FBS, Zeta Life, Menlo Park, CA,
USA), streptomycin (100 U/mL), and penicillin (100 U/mL). Largemouth bass fingerlings
(n = 1000, 4.72 ± 0.46 cm in length, 1.34 ± 0.35 g in weight) were bought from an Aquatic
Animal Breeding Farm in Chongqing, China and confirmed to be MSRV-free for the experi-
ments by qRT-PCR. Largemouth bass were maintained in a recirculating system at 25 ◦C,
pH of 6.8–8.0, and dissolved oxygen >5.7 mg/L. Fish were fed with commercial fodder
(Fuxing Organism Co., Ltd., Fuzhou, China) twice a day and accommodated for 3 weeks
prior to experiments.

2.2. Reagents

Magnolol (>99% purity) was purchased from Aladdin Biochemical Technology (Shang-
hai, China). Other chemicals were obtained from Sigma-Aldrich (St. Louis, MO, USA) and
used without further purification. Anhydrous acetone, methanol, and dimethyl sulfate
(DMS) were bought from Sinopharm Chemical Reagent Co., Ltd. (Beijing, China). Silica
gel H (200–300 mesh, Qingdao Marine Chemical Factory, Qingdao, China) was applied
for column chromatography. Silica gel (cat no. GF254, Qingdao Marine Chemical Factory,
Qingdao, China) was used for thin-layer chromatography (TLC). Milli-Q water (Millipore,
Burlington, MA, USA) was used to make aqueous solutions.

2.3. Synthesis of Magnolol Derivatives 16 and 17

As shown in Figure 1, magnolol solution (1.00 g, 3.75 mmol) in 30 mL of methanol with
10% Pd/C (100 mg, ca. 0.1 mmol of Pd metal) was stirred under atmospheric H2 pressure
at room temperature. After reacting for 12 h, the product (compound 16) was dried and
collected for nuclear magnetic resonance (NMR) characterization. For the synthesis of
compound 17, 1.07 g magnolol (4.07 mmol) was added to 30 mL of anhydrous acetone and
2.76 g of anhydrous K2CO3 (19.97 mmol) at room temperature (r.t.). The mixture was stirred
vigorously for 30 min, followed by adding 0.77 mL of DMS, before reacting for another
12 h. Crude products were washed with 30 mL of acetone and extracted with ethyl acetate
three times. The organic layer was combined, dried with anhydrous Na2SO4, and purified
via silica gel column chromatography with mixed petroleum ether and ethyl acetate (8:1,
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v/v) as eluent. The elution was collected and evaporated under reduced pressure to obtain
compound 17.

2.4. Cytotoxicity of Magnolol and Compounds 16 and 17 toward GCO Cells

For the cytotoxicity assay of magnolol derivatives 16 and 17, GCO cells were grown to a
90% confluent layer in 96-well plates. Then, cells were treated with different concentrations
of magnolol (7.51, 15.02, 18.77, 30.04, and 38.86 µM), compound 16 (5.92, 11.10, 14.79, 22.19,
and 28.89 µM), and compound 17 (135.87, 271.75, 543.50, 679.37, 815.25, and 1019.06 µM)
for 48 h. The cell viability assay was conducted using a CCK-8 kit (Beyotime Biotechnology,
China) according to the manufacturer’s introduction. A 20% cytotoxic concentration (CC20)
was regarded as the highest safe concentration according to other researchers’ studies [16].

2.5. Anti-MSRV Activity of Magnolol and Magnolol Derivatives 16 and 17 In Vitro

To measure the anti-MSRV activity of 16 and 17, GCO cells were seeded into a 12-well
plate and cultured overnight. After changing the cell culture medium, freshly prepared
cell culture medium containing 1 × 103 TCID50 MSRV was added and incubated for 2 h.
Then, the cell culture medium was pipetted out and washed with PBS (pH 7.2) three times.
Subsequently, GCO cells were maintained for 2 days with a cell culture medium containing
magnolol, compound 16, or compound 17 at the concentration of CC20. The expression of
MSRV glycoprotein (G protein) was detected to calculate viral load by qRT-PCR.

2.6. RNA Isolation, cDNA Transcription, and qRT-PCR Assay

Total RNA was extracted from harvested GCO cells using Trizol (Accurate Biology
Co. Ltd., Shenzhen, China) according to the manufacturer’s protocol. The quality and
the purity of isolated RNA were determined using a Nanodrop 2000c spectrophotometer
(NanoDrop Technologies, Wilmington, DE, USA). RNA was reverse-transcribed to cDNA
using the HiScript Q Select RT Supermix kit (Vazyme, Nanjing, China) for qPCR (+gDNA
wiper). The qRT-PCR protocol was as follows: 95 ◦C for 4 min, and then 38 cycles at 95 ◦C
denaturation for 10 s, followed by annealing at 59 ◦C for 30 s with a Bio-Rad iCycler IQ5
Multicolor real time PCR detection system. Table 1 shows the primers used for qRT-PCR in
the study.

Table 1. Sequences of primers for this study.

Genes Primer Sequences (from 5′ to 3′)

MSRV glycoprotein (G) Forward TGTCAATGTGCGGAGAGGTG
Reverse TGTGATACGTAGCTGAGCCG

GCO cells β-actin Forward GATGATGAAATTGCCGCACTG
Reverse ACCGACCATGACGCCCTGATGT

Largemouth bass β-actin Forward CCACCACAGCCGAGAGGGAA
Reverse TCATGGTGGATGGGGCCAGG

2.7. Anti-MSRV Activity of Magnolol and Magnolol Derivative 16 In Vitro

To investigate the antiviral activity of magnolol and compound 16 on the basis
of the antiviral activity screening in Section 2.5, a dose–effect assay of magnolol and
compound 16 against MSRV in GCO cells was carried out. GCO cells at 90% confluence
were infected with MSRV (1 × 103 TCID50) and treated with magnolol or compound 16 at
six different concentrations, ranging from 5.92 µM to 38.86 µM. The viral load of GCO cells
was measured following the methods described in Section 2.5. Furthermore, the CPE and
the number of cytopathic cells were tracked and recorded every day for 4 days.

2.8. Fluorescence Microscopy Observation of Cell Nucleus Damage

Inoculated GCO cells were seeded on glass coverslips in a 12-well cell culture plate,
and cultured overnight to form a monolayer. Next, the cells were incubated with MSRV
and compounds for 48 h. Then, the cells were washed with PBS buffer three times and
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fixed with 4% paraformaldehyde fixing solution for 20 min. Cell nuclei were stained with
DAPI (Beyotime, Shanghai, China) for 20 min according to the manufacturer’s instructions
and imaged using an upright fluorescence microscope (Leica DM5000, Wetzlar, Germany).

2.9. Effect of Hydrogenated Magnolol on MSRV Infection Steps in Host Cells

To study the effect of hydrogenated magnolol on MSRV infection steps in GCO cells,
four different experimental setups were designed. The first assay was scheduled to eval-
uate whether hydrogenated magnolol could directly interact with the virions. MSRV
(1 × 103 TCID50) and hydrogenated magnolol (28.89 µM) were coincubated for 1, 2, and
4 h at 25 ◦C. Then, the viral particles were collected by ultracentrifugation (33,000 rpm,
4 ◦C, 2 h) using an overspeed refrigerated centrifuge (Optima XPN-100, Beckman, Palo
Alto, CA, USA). Then, GCO cells were infected with the collected virus and incubated for
48 h before determining the viral load by qRT-PCR. In addition, the effect of hydrogenated
magnolol on virus adsorption by GCO cells was investigated. Specifically, 90% confluent
GCO cells in a 25 cm2 cell culture flask were infected with MSRV (1 × 103 TCID50) with or
without hydrogenated magnolol (28.89 µM) for 30 min at 4 ◦C to allow MSRV binding but
not internalization and replication. Then the viral load was measured using the method
described above. Furthermore, a time-of-addition study was performed to analyze the
effect of hydrogenated magnolol on different phases of the virus replication cycle. GCO
cells in a monolayer were infected with MSRV (1 × 103 TCID50) for 2 h and exposed to
hydrogenated magnolol (28.89 µM) after 1, 2, and 4 h. After being coincubated for another
2 h, hydrogenated magnolol was removed, and cells were washed with PBS three times
prior to 24 h culture with maintenance medium. The same method was applied to de-
termine the viral load. A fourth assay was designed to evaluate whether hydrogenated
magnolol could inhibit the release of MSRV virions from host cells. GCO cells were seeded
into a 12-well plate to a monolayer. After being infected with MSRV (1 × 103 TCID50)
for 2 h, the medium was replaced with maintenance medium containing hydrogenated
magnolol (28.89 µM), and cell supernatants were collected to determine the viral titer after
incubating for 48 h. Viral titer was calculated using the Spearman–Karber method [17].

2.10. In Vivo Anti-MSRV Activity of Hydrogenated Magnolol

A total of 120 healthy largemouth bass were randomly divided into four groups
(30 fish/group), named groups A, B, C, and D. Fish in groups A, B, C, and D were in-
traperitoneally injected with 20 µL of PBS (control group), MSRV (1 × 103 TCID50), MSRV
(1 × 103 TCID50) and magnolol (20 mg/kg), or MSRV (1 × 103 TCID50) and hydrogenated
magnolol (20 mg/kg), respectively. The survival rate of fish in each group was recorded
daily for 14 days post injection. Three fish were randomly sampled on days 1, 3, 5, and
7 post injection. The liver, spleen, and kidney of each fish were collected for viral load
determination by analyzing the expression of MSRV G protein.

2.11. Statistical Analysis

The half-maximal inhibitory concentration (IC50) of the magnolol derivatives was cal-
culated using the Probit regression model (SPSS, IBM company, USA). Data were analyzed
using an unpaired, two-tailed Student’s t-test or one-way ANOVA after normalization to
determine significance. All data are presented as the mean ± SEM (standard error of the
mean). The differences were determined by LSD test and were considered as significant at
* p < 0.05 and very significant at ** p < 0.01.

3. Results
3.1. Synthetization and Characterization of Magnolol Derivatives

As shown in Figure 2, the 13C- and 1H-NMR spectra of hydrogenated magnolol yielded
the following results: 13C-NMR (126 MHz, Me OD): δ 152.88, 135.76, 132.52, 129.57, 127.64,
117.32, 38.30, 25.99, 14.09; 1H-NMR (CDCl3, 500 MHz): δ 7.06 (d, J = 9.5 Hz, 4H), 6.88(d,
J = 7.9 Hz, 2H), 2.58 (t, J = 7.3 Hz, 4H), 1.68 (dt, J = 14.5,7.1 Hz, 4H), 0.98 (t, J = 7.1 Hz, 6H).
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The 13C- and 1H-NMR spectra of 2,2′-dimethoxy-magnolol yielded the following results:
13C-NMR (126 MHz, CDCl3): δ 155.65, 137.98, 131.91, 131.74, 128.56, 128.01, 115.62, 111.32,
56.03, 39.54; 1H-NMR (CDCl3, 500 MHz): δ 7.14 (dd, J = 8.4, 2.2 Hz, 2H),7.07 (d, J = 2.1 Hz,
2H), 6.91 (d, J = 8.4 Hz, 2H), 6.00 (ddt, J = 16.8, 10.0, 6.8 Hz, 2H), 5.04–5.14 (m, 4H), 3.77 (s,
6H), 3.38 (d, J = 6.7 Hz, 4H). According to a comparison with NMR data from other studies,
the magnolol derivatives were successfully synthesized.
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3.2. Cytotoxicity and Anti-MSRV Activities of Magnolol and Compounds 16 and 17 on GCO Cells

The cytotoxicity of magnolol, compound 16, and compound 17 toward GCO cells was
measured using a CCK-8 kit, and the results are shown in Figure 3. The 20% cytotoxic
concentration and corresponding inhibitory rate are reported in Table 2. According to
Table 2, only magnolol and compound 16 showed satisfying anti-MSRV activity at CC20,
with values of 90.69% and 99.59%, respectively. On the other hand, compound 17 had
the lowest inhibitory rate of 43.85% and was considered ineffective. Thus, magnolol and
compound 16 were chosen for the subsequent experiments.
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350.90 (201.20–472.09) 43.85%

3.3. Antiviral Activity of Magnolol and Compound 16 against MSRV In Vitro

Different concentrations of magnolol and compound 16 were used to evaluate the
dose–effect of these compounds against MSRV on GCO cells by measuring the expression
of viral G protein. As shown in Figure 4, both magnolol and hydrogenated magnolol
inhibited MSRV replication in a dose-dependent manner. The 48 h IC50 of magnolol and
hydrogenate magnolol against MSRV was 19.06 µM and 13.37 µM, respectively.

In addition, we further investigated the titers of MSRV after magnolol and hydro-
genated magnolol treatment for various times, ranging from 24 h to 96 h. Consistent with
the results of qRT-PCR, significant inhibition of MSRV was observed in magnolol- and
hydrogenated magnolol-treated GCO cells by measuring the viral titers. As shown in
Figure 5, magnolol and hydrogenated magnolol could both decrease the viral titer signifi-
cantly compared with the control groups. However, from 72 h to 96 h, only hydrogenated
magnolol showed viral protection compared with the magnolol and control groups. These
results indicated that MSRV replication could be significantly inhibited by magnolol and
hydrogenated magnolol treatment, while hydrogenated magnolol had a better protective
effect than magnolol.
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Figure 5. Effects of magnolol and hydrogenated magnolol on MSRV titers. GCO cells infected with
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were calculated using the Karber method at the indicated times. The error bar indicates the SEM.
** p < 0.01.

3.4. Protective Effect of Magnolol and Compound 16 on GCO Cells with MSRV Infection

Rhabdovirus infection can induce severe cellular and nuclear damage of host cells [18].
Figure 6 shows that MSRV infection could induce significant CPE and cell death in GCO
cells. When virus-infected cells were treated with magnolol or hydrogenated magnolol,
no obvious CPE phenomenon or nuclear damage was observed. Moreover, hydrogenated
magnolol could inhibit MSRV infection better than magnolol. This result demonstrated that
hydrogenated magnolol exhibited highly efficient inhibition of MSRV-induced cell death.
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of 28.89 µM.

3.5. Antiviral Activity of Hydrogenated Magnolol on MSRV Infection Steps in GCO Cells

To investigate the anti-MSRV mechanism of magnolol and hydrogenated magnolol,
different experimental setups were designed. First, we investigated whether hydrogenated
magnolol had a direct impact on MSRV particles. MSRV particles were incubated with
28.89 µM compound 16 for 2 h and 4 h in vitro and recovered by ultracentrifugation before
inoculation of cultures (Figure 7A). As shown in Figure 7B, MSRV G gene expression was
not significantly changed, which indicated that incubation of the virus with hydrogenated
magnolol did not directly impact the viral particles. To further study the mechanism of
hydrogenated magnolol against MSRV, we analyzed whether hydrogenated magnolol
could interfere with virus adsorption by host cells (Figure 7C). As shown in Figure 7D,
hydrogenated magnolol did not affect viral adhesion.

Since hydrogenated magnolol exhibited no obvious influence on MSRV infectivity
and binding, a time-of-addition study was performed by exposing MSRV-infected cells to
hydrogenated magnolol at different phases of the virus replication cycle (Figure 7E). The
results showed that when hydrogenated magnolol was added 6–8 h after viral infection,
viral G protein expression levels were significantly decreased by 72.7%. Meanwhile, no
inhibition was observed at 0–2 h, 2–4 h, 4–6 h, and 8–10 h (Figure 7F). These results
suggested that the time of MSRV replication in the initial cycle was 6–8 h, and the replication
of MSRV was suppressed by hydrogenated magnolol. To further study the mechanism
of hydrogenated magnolol against MSRV, the effect of hydrogenated magnolol on the
release of virus particles was examined (Figure 7G). The viral titer of supernatants from
MSRV-infected cells was significantly reduced after treatment with hydrogenated magnolol
for 24–96 h (p < 0.05, Figure 7H), which indicated that hydrogenated magnolol inhibited
the release of the virus.
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Figure 7. Effect of hydrogenated magnolol on MSRV infection steps in GCO cells. (A,C,E,G) illustrate
the workflows of the assay design followed in (B,D,F,H), respectively. (B) The infectivity of MSRV
was not affected by hydrogenated magnolol. (D) MSRV adhesion was not influenced by hydrogenated
magnolol. (F) The replication of MSRV in the 6–8 h period was inhibited by hydrogenated magnolol.
(H) The release of MSRV particles in GCO cells was restrained by hydrogenated magnolol. Relative
glycoprotein G gene expression was analyzed by qRT-PCR and calculated on the basis of the 2−∆∆Ct

method. The viral titers in the supernatant were calculated using the Karber method at the indicated
times. Error bars indicate the SEM. ** p < 0.01.

3.6. In Vivo Antiviral Activity of Magnolol and Hydrogenated Magnolol

In this assay, the cumulative mortality of fish was determined in order to evaluate the
antiviral effect of magnolol and hydrogenated magnolol against MSRV infection during
the 15 day observation period. After intraperitoneal injection with 20 mg/kg magnolol or
hydrogenated magnolol, the survival rate of largemouth bass was increased by 44.6% and
62.7% compared to fish only infected with MSRV, respectively (Figure 8).

Furthermore, the viral load of MSRV in the liver, spleen, and kidney in the magnolol-
and hydrogenated magnolol-treated groups was significantly decreased compared with
MSRV-infected groups on days 1, 3, 5, and 7 (Figure 9). The above results showed
that magnolol and hydrogenated magnolol could effectively inhibit MSRV infection for
largemouth bass.
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4. Discussion

Largemouth bass, as a famous global economic fish, has been extensively cultured
all over the world, due to advantageous traits such as delicious meat, strong disease re-
sistance, and fast growth rate [19]. Since it was first introduced in China in the 1980s,
this fish quickly underwent culture in many provinces such as Guangdong, Sichuan, and
Zhejiang. To date, the fish has mainly been cultured in an intensive culture system, with
the average yield reaching about 37,500 kg/ha. However, with the increase in stocking
density and the massive use of artificial feed, outbreaks of viral diseases have acted as
major limiting factors for largemouth bass farming [20,21]. MSRV has been confirmed to
be one of the most prevalent and virulent pathogens, causing heavy economic losses [4].
MSRV infection was revealed to cause >40% mortality of largemouth bass fingerlings;
however, its mechanism of infection has remained largely explored [22]. Moreover, like
MSRV, other fish rhabdoviruses, including spring viremia carp virus (SVCV), viral hemor-
rhagic septicemia virus (VHSV), pike fry rhabdovirus (PFRV), perch rhabdovirus (PRV),
ulcerative disease rhabdovirus (UDRV), hirame rhabdovirus (HIRRV), and Siniperca chuatsi
rhabdovirus (SCRV), can infect marine and freshwater fish, causing great economic losses in
the aquaculture industry [23–27]. Currently, no drugs are available to prevent and control
MSRV infection [28,29]. The discovery and the development of new antiviral drugs are
usually costly and time-consuming processes. Initial steps in novel drug discovery involve
the identification of new chemical entities (NCEs). To find NCEs, drug screening from
herbs is one of the most important approaches, and the sources of many of the new drugs
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and active ingredients of medicines are derived from natural products. The starting step
for novel plant-based drug discovery should be the identification of the right candidate
plants. Substantial research has been conducted to search for useful herbal medicines or
to isolate and identify active compounds from these herbs for the prevention and control
of viral diseases [30]. For example, Micol et al. found that extracts from olive tree leaf
(Olea europaes) inhibited the in vitro infectivity of VHSV, a salmonid rhabdovirus [31].
Furthermore, extracts from Punica granatum [32], emodin, and barbaloin [33] have been
reported to show anti-rhabdovirus activity. Our research group found that arctigenin
from Fructus arctii showed activity against SVCV [34] and multiple rhabdoviruses (IHNV
and SVCV) in aquaculture [7]. However, few studies have focused on drug screening for
anti-MSRV infection. Recently, Wang et al. reported drug screening for anti-MSRV from
10 FDA-approved common antiviral drugs, namely, 1-adamantanamine, 1-adamantanamine,
1-adamantanamine, ribavirin, moroxydine hydrochloride, acyclovir, ganciclovir, vidarabine
monohydrate, isoprinosine, and N2,9-diacetylguanine. The results showed that ribavirin
exhibited the best antiviral activity, with a 98.33% inhibition rate at 17.32 µM, and signif-
icantly increased cell viability [15]. Searching for drugs to treat emerging viral diseases
among FDA-approved antiviral drugs is a quick and useful approach, because the scalable
production, antiviral mechanism of action, and side-effects of these drugs are well studied.
However, great caution should be paid when considering the use of these drugs for aquacul-
ture. Currently, no drugs have been approved by the FDA for application in fisheries and
aquaculture for viral disease treatment [35], since many of these drugs are from drug classes
considered “critically important” or “highly important” for human medicine and have been
found to be possible drug-resistant strains when used in aquaculture production [36,37].

Most aquaculture production comes from developing countries and depends on a
traditional system of medicines used for a variety of diseases [38]. Herbs have been widely
used in both veterinary and human medicine. They are natural products that are not only
safe for consumers but also widely available throughout Asia. Today, herbs or herbal
products also play a significant role in aquaculture. Several hundred plant genera are used
medicinally and are vital sources of potent and powerful drugs. Herbs are rich in a wide
variety of secondary metabolites of phytochemical constituents such as tannins, alkaloids,
flavonoids, and glycosides [39] against different diseases.

Magnolol is small-molecule polyphenol isolated from the bark of Magnolia officinalis,
which is widely used in traditional Chinese medicines. Magnolol displays a wide range
of biological activities, including antioxidative, antimicrobial, antifungal, and anticancer
activity [40]. Our previous studies showed that magnolol could enhance antiviral immune
responses against GCRV [11] and protect Ctenopharyngodon idella kidney cells from apop-
tosis induced by GCRV [12]. In addition, Amblard et al. found that magnolol exhibited
specific anti-proliferation activity and moderate anti-HIV-1 activity in primary human
lymphocytes [41]. Many signaling pathways including NF-κB/MAPK, ROS-mediated
apoptosis, mTOR, Nrf2/HO-1, and PI3K/AKT pathways are implicated in the biological
functions mediated by magnolol [42]. Both findings demonstrated that magnolol could be
used as a lead compound for drug development. However, its content is too low when
extracted and purified from the crude extract. Structural optimization and modification
of the structure of magnolol is a promising and useful approach to increase its anti-MSRV
activity via the synthesis of novel magnolol derivatives. Within this context, a pharma-
cophore model of magnolol was predicted by Phase module 3.5 software, showing the
pharmacophoric features of the phenolic hydroxyl group and propylene group. Thus,
in this study, we synthesized two different kinds of magnolol derivatives. One deriva-
tive involved replacing the phenolic OH group with a methoxy group (compound 17),
while the other magnolol derivative involved the hydrogenation of the propylene group
(compound 16). The anti-MSRV activity of these derivatives showed that the cytotoxicity of
compound 17 against GCO cell was significantly increased compared to its parental natural
compound. Hydrogenation of magnolol decreased the viral titer and exhibited enhanced
anti-MSRV activity, with an IC50 of 13.37 µM. Baschieri et al. also found that the presence of
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hydroxylated substituents in magnolol derivatives could affect the antioxidant activity of
the resulting compounds [43]. Maioli et al. revealed that the presence of a free phenol OH
group is a key point in the cytotoxicity observed in HepG2 cells [44]. No cytotoxic effect
was observed in our experimental conditions toward GCO cells for hydrogenated magnolol.
Studies have indicated that hydroxyl groups in a compound structure affect the interaction
between molecules and biological macromolecules, thus affecting their bioactivity [45].
According to the results from the abovementioned research, the phenolic hydroxyl group
and aromatic ring are important active sites in magnolol. The increased anti-MSRV activity
of hydrogenated magnolol implies that the hydroxyl group will likely figure prominently
in synthesizing magnolol derivatives. Any functional disturbance of the hydroxyl group
could reduce anti-MSRV activity.

In conclusion, magnolol derivatives were designed and synthesized on the basis of
two different pharmacophore hypotheses. Their anti-MSRV activities were evaluated both
in vitro and in vivo. Substituting the phenolic hydroxyl group in magnolol with a methoxy
group greatly increased its cytotoxicity toward viral host GCO cells and decreased the anti-
MSRV activity to 43.85% at CC20. In contrast to modifying the phenolic hydroxyl group,
when the propylene group was hydrogenated, this new compound showed enhanced
anti-MSRV activity with an IC50 of 13.37 µM (vs. magnolol IC50 = 19.06 µM). Moreover,
hydrogenated magnolol could protect viral host GCO cells by reducing the CPE induced
by MSRV infection and significantly reducing the viral G gene expression. Hydrogenated
magnolol was found to not directly impact MSRV viral particles or viral adsorption. A
single intraperitoneal injection of 20 mg/kg hydrogenated magnolol increased the survival
rate of largemouth bass by 62.7% compared to the MSRV-infected groups, significantly
reducing viral loads in the liver, spleen, and kidney of fish (p < 0.05). Overall, structural
optimization of magnolol by hydrogenation of the propylene group increased its anti-MSRV
activity both in vitro and in vivo. This finding may provide a valuable reference for the
discovery and development of anti-MSRV drugs in aquaculture.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/v14071421/s1, Figure S1. Pharmacophore hypotheses
of Magnolol modeled by Phase module 3.5 (Schrödinger software) showed the pharmacophoric
features of phenolic hydroxyl group and propylene group.
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