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Abstract

Purpose: The purpose of this study was to develop automated planning for whole‐
brain radiation therapy (WBRT) using a U‐net‐based deep‐learning model for pre-

dicting the multileaf collimator (MLC) shape bypassing the contouring processes.

Methods: A dataset of 55 cases, including 40 training sets, five validation sets, and 10

test sets, was used to predict the static MLC shape. The digitally reconstructed radio-

graph (DRR) reconstructed from planning CT images as an input layer and the MLC

shape as an output layer are connected one‐to‐one via the U‐net modeling. The Dice

similarity coefficient (DSC) was used as the loss function in the training and ninefold

cross‐validation. Dose‐volume‐histogram (DVH) curves were constructed for assessing

the automatic MLC shaping performance. Deep‐learning (DL) and manually optimized

(MO) approaches were compared based on the DVH curves and dose distributions.

Results: The ninefold cross‐validation ensemble test results were consistent with

DSC values of 94.6 ± 0.4 and 94.7 ± 0.9 in training and validation learnings, respec-

tively. The dose coverages of 95% target volume were (98.0 ± 0.7)% and

(98.3 ± 0.8)%, and the maximum doses for the lens as critical organ‐at‐risk were

2.9 Gy and 3.9 Gy for DL and MO, respectively. The DL technique shows the con-

sistent results in terms of the DVH parameter except for MLC shaping prediction

for dose saving of small organs such as lens.

Conclusions: Comparable with the MO plan result, the WBRT plan quality obtained

using the DL approach is clinically acceptable. Moreover, the DL approach enables

WBRT auto‐planning without the time‐consuming manual MLC shaping and target

contouring.
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1 | INTRODUCTION

Metastatic brain cancer is the most common type of intracranial

tumor.1 From common primary cancer sites such as lung, breast,

and melanoma, brain metastasis occurs in 15% to 40% of the

cancer patients.2,3 The treatment of metastatic brain tumors

depends on the number of metastatic tumors, extracranial tumor

status, and performance status.4–6 Currently, whole‐brain radiation

therapy (WBRT) is considered a well‐established treatment for

patients with multiple brain metastases. For patients with
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resectable solitary brain metastases, surgical resection followed by

adjuvant WBRT, which is a standard treatment with enhanced sur-

vival chances, demonstrated improved oncological outcomes.4,7

Meanwhile, several prospective studies suggested stereotactic

radiosurgery (SRS) as an effective treatment option for patients

with three brain metastasis or less.4,8–10 These studies, which were

based on the fewer side effects and higher local control of SRS

compared to WBRT, are inconclusive about the optimal treatment

strategy for a small number of brain metastases, even though they

have reported encouraging results. Additionally, compared to

WBRT, the SRS approach has an added risk of intracranial progres-

sion outside the treatment field.9 However, a noninvasive treat-

ment combining WBRT with SRS has demonstrated improved

survival in cases of brain metastases.11,12 Although several treat-

ment approaches have been proposed, WBRT remains the corner-

stone for the treatment of brain metastases.6,11,12

Because multiple brain metastases with or without peri‐tumoral

edema can lead to various symptoms such as headache, nausea,

vomiting, seizure, and visual field disorders,6,13 we often encounter

patients in urgent need of WBRT to alleviate the symptoms. How-

ever, radiation therapy requires multi‐step processes, including simu-

lation computer tomography (CT) scan, normal organ contouring,

gross tumor volume contouring, clinical target volume contouring,

and radiation treatment planning (RTP). Therefore, depending on the

complex workflow scheduling, radiation therapy can be delayed. It

has recently been reported that deep‐learning techniques provide

improved workflow for radiation therapy.14–17 The outcomes of the

contouring tasks performed by deep‐learning methods are improved

consistency of contouring quality and reduced contouring time.14–16

Also, the automated RTP with deep learning provides shorter plan-

ning time with lower error rate.17

In this study, we investigate the feasibility of an automated RTP

for WBRT, designed using deep‐learning techniques for predicting

the multileaf collimator (MLC) shape bypassing the contouring pro-

cesses. Further, this study compares the RTP results obtained by the

deep‐learning approach with the results of the human‐driven RTP,

which includes multiple steps of contouring and MLC shaping.

2 | MATERIALS AND METHODS

2.A | Datasets

Fifty‐five patients, treated with WBRT in our hospital, were chosen.

They were treated with total doses of 30 Gy in 10–12 fractions. The

treatment plans, which were designed in C‐Linac 2300 iX and Vital-

Beam (Varian Medical System, Palo, Alto, CA, USA) with a 120‐leaf
MLC, had two lateral radiation static fields (gantry angles of 90° and

270°) with the treatment isocenter at the center between the eyes.

The C‐spine region was excluded from the treatment plans to pre-

pare a consistent dataset to be localized in the brain region as a tar-

get. In those 55 cases, 45 cases were assigned to the training and

validation sets, while the remaining 10 cases were assigned to the

test set to evaluate the plan quality for unknown cases.

The static MLC shapes, as reference were obtained from the

manually optimized (MO) treatment plan files formatted in Digital

Imaging and Communications in Medicine (DICOM). A dosimetrist

optimized the MLC shape used in the treatment based on the CT

image in the treatment planning system (TPS) of Eclipse (Eclipse

15.6, Varian Medical Systems, Palo Alto, CA, USA). The digitally

reconstructed radiograph (DRR) image used in the deep learning

(DL), shown in Fig. 1(a), was generated with Hounsfield unit range of

(−100, 1000) from the CT image. The open‐field region collimated

by MLC was converted into a white color mask image, as shown in

Fig. 1(b). The MLC shape [in Fig. 1(c)] predicted by the DL process

was finally converted to the real MLC shape [in Fig. 1(d)] with 120

leaf positions. The mask and DRR images were saved as portable

network graphics (PNG) files with a single gray channel after pixel

normalization in the range of 0–255 under the same scale for all

cases. The pixel values of both DRR and MLC shape were normal-

ized to one in the DL training procedure. A dataset that was 15

times larger than the reference was generated by image data aug-

mentation via rotation, translation, shearing, and zooming with the

nearest filling mode.

2.B | U‐net model and training

The DL framework, Tensorflow18 with Keras,19 was used for the

automatic treatment planning of whole‐brain cases. This analysis

used the convolution neural network (CNN) architecture called “U‐
net,”,20 which is the convolutional encoder‐decoder network widely

used to prevent resolution loss for the image segmentation. The

shapes of the DRR in the input layer and MLC in the output layer

were one‐to‐one connected via the U‐net modeling shown in Fig. 2.

Both the input and output layers consisted of 512 × 512 voxels with

a single channel. The network for the downsampling of feature maps

contained two‐dimensional (2D) convolution (Conv2D) blocks and

applied 3 × 3 filters with identical padding and rectified linear unit

(ReLU) activation. Besides, max‐pooling (MaxPooling2D) to reduce

the pixel size and random deactivation of the unit (dropout) were

employed.21 For the first two convolution layer blocks, 50% dropout

portions were achieved, and the dropout portion was 30% for the

next two convolution layer blocks. The network for the upsampling

of the feature map involved the inverse operation (Conv2DTrans-

pose) of Conv2D and the concatenation process for better pixel

localization regarding the input arrays. The output layer with the sig-

moid activation was a 1 × 1 convolution with a single‐channel con-
verted from a previous layer with 32 channels. The number of

network parameters was 7.7 M. An adaptive moment estimation

(Adam) optimizer with a learning rate of 5 × 10‐5 was applied. Dice

similarity coefficient (DSC) as loss function was used for the similar-

ity assessment between the input and predicted MLC shapes.22 The

DSC is defined as −2|Xi ∩ Xp+S| / (|Xi|∪|Xp|+S), where Xi (Xp) is an

input (predicted) tensor obtained from image pixel values, and S is

the smoothness (in this study, S = 1). The training was performed up

to 50 epochs until the DSC value was saturated in the learning curve

with the validation samples. Further, DSC values were obtained in
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the ensemble learning for ninefold cross‐validation with samples of

40 training cases and five validation cases and were used for training

reproducibility estimation. The DL training and test procedures were

run under the following environment: Python 3.6.8, TensorFlow‐Gpu
1.14.0, Keras 2.2.4, and CUDA 10.1 with TITAN Xp 12 GB GPU

(NVIDIA Corp., CA, USA) in the operating system Ubuntu 16.04.6

LTS.

2.C | MLC shape prediction performance

The automatic MLC shaping using the DL technique was evaluated.

Dose‐volume‐histogram (DVH) curves constructed from the pre-

dicted MLC shape were compared with the MO results for dosimet-

ric parameters of planning target volume (PTV) and organs‐at‐risk
(OARs) such as lenses, eyes, and brainstem. The predicted MLC

parameters on the 90° and 270° fields were imported to TPS. Dose

calculations in given static MLC shaping were performed by the dose

calculation algorithm of the analytical anisotropic algorithm (AAA) in

Eclipse under the delivered monitor unit (MU) setting used in the

previous treatment plan.23 For 10 test cases, excluded from the

training and validation dataset, the consistency and deviations of

DVH curves were used to assess the learning performance. Also, the

relative dose covering of PTV (D95%, D90%, D50%, D10%, D5%, and

Dmax) and the absolute maximum dose (Dmax) were calculated to

estimate the target coverage and the OAR saving chances, respec-

tively. Based on the statistical function library of SciPy v1.1.0 imple-

mented on Python, the paired t‐test with a two‐tailed option was

used to compare two data samples of MO and DL for DVH parame-

ters. The significance level was set to P < 0.05 in this t‐test.

3 | RESULTS

The training and validation learning curves for ninefold cross‐valida-
tion are shown in Fig. 3. The training DSC curves saturate at

94.6 ± 0.4, where the errors were obtained from the standard

(a) (b) (c) (d)

F I G . 1 . DRR images and MLC masks: (a) DRR‐reconstructed CT images, (b) mask image of manually optimized MLC field in white, (c) DRR
image overlaid with MLC shape predicted by the deep learning, and (d) DRR image overlaid with a predicted MLC shape considering the
discrete leaf size.

F I G . 2 . Architectures for the U‐net model using the input shape of DRR and the output shape of MLC. Each gray (light gray) box represents
the (copied) multichannel feature map. The number of maps (map size) is denoted on the upper side (left‐side) of the box. The different
operations are denoted as the arrows with different colors indicating different filter sizes.
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deviation of the nine saturated DSC values while the validation DSC

curves saturate at 94.7 ± 0.9. Above ten epoch, the validation DSC

curves for different datasets show consistent and stable learning

within the statistical variation in the saturation range.

Ten DVH curves corresponding to 10 test samples obtained from

the MO and the DL processes are depicted in Fig. 4 for (a) PTV, (b)

brainstem, (c) right lens, and (d) left lens. The DVH curves of PTV

and the brainstem for the DL approach are approximately identical

F I G . 3 . Learning curves for the ninefold cross‐validation with (a) training datasets and (b) validation datasets.

F I G . 4 . DVH comparisons evaluated with 10 test sample plans between the manually optimized plan (solid green line) and the deep‐learning
plan (red dashed line) for (a) PTV, (b) Brainstem, (c) right lens, and (d) left lens.
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with those for the MO approach. However, for the lens cases, DVH

curves for DL shift toward the lower‐dose region compared to MO.

The D95% values of PTV and Dmax values of OARs for these 10 cases

are summarized in Table 1. The average D95% value for PTV is

(98.0 ± 0.7)% for DL and (98.3 ± 0.8)% for MO with uncertainties

calculated from the standard deviation. DVH parameters of PTV

except for Dmax shows no significant difference, and Dmax difference

of PTV between MO and DL was 0.5% with P = 0.02. The OARs of

the brainstem and eyes have approximately the same average Dmax

for both approaches except for the left eye case of patient 2 owing

to anatomical difference. The average Dmax values for both lenses as

critical OARs are 2.9 Gy for DL and 3.9 Gy for MO. The lens Dmax

differences between MO and DL were approximately 1 Gy

(P < 0.01).

An example case chosen from 10 test samples for the sagittal

dose distributions is shown in Fig. 5. Upper two‐dose planes and

lower two‐dose planes were obtained from the MO and the DL

plans, respectively. Dose distributions in PTV and the brainstem,

shown in Figs. 5(a) and 5(c), respectively, have no significant differ-

ence between both plans except for the dose in the eyeball regions

shown in Fig. 5(b) and 5(d).

4 | DISCUSSION

The feasibility of the automatic MLC shape prediction planning using

the DL technique was evaluated in this study with whole‐brain
cases. To the best of our knowledge, this is the first study that

predicts the MLC shape without additional contouring tasks using

the U‐net DL model based on 2D DRR reconstructed from CT

images.

For the usual whole‐brain planning, the shaping of MLC leaves

does not follow the PTV shape, which means that the planning is

designed to have sufficient open‐field space between the edge lines

of the PTV and MLC fields in the superior brain region. Because the

predicted MLC edge line is highly dependent on high contrast

regions like bony structures in the DRR image, a question arises

about the DL's decision of the borderline between the brain and

other regions. Figures 5(c) and 5(d) show that some parts of the pre-

dicted MLC edge line are located more on the inner side than the

lines shown in Figs. 5(a) and 5(b). This tendency of the field edge

line may have originated from the DL property that assigns more

weight to regions close to the bony structure. However, after dose

calculations in given MLC shapes for the DL and MO, we observed,

TAB L E 1 Clinical indices of PTV and OARs for ten whole‐brain patients in the manually optimized plan and the predicted plan by the deep‐
learning technique. Averaged values with standard deviations and P‐values for 10 clinical indices were described.

Structure
Planning
method

Clinical
indices

10 patients

Average ± SD
P‐
value1 2 3 4 5 6 7 8 9 10

PTV MO D95% (%) 97.9 99.1 98.1 98.5 98.2 98.1 99.4 97.0 99.4 97.2 98.3 ± 0.8 0.135

DL 98.0 97.6 98.0 98.5 98.0 98.0 99.1 96.9 98.9 97.4 98.0 ± 0.7

MO D90% (%) 99.4 100.1 99.7 99.5 99.5 99.4 100.2 98.5 100.2 98.8 99.5 ± 0.6 1.000

DL 99.5 99.8 99.7 99.6 99.5 99.4 100.2 98.5 99.9 99.2 99.5 ± 0.5

MO D50% (%) 101.8 102.3 102.1 101.7 101.7 101.2 102.4 101.2 102.5 101.7 101.9 ± 0.5 1.000

DL 101.9 102 102 101.8 101.7 101.4 102.5 101.4 102.2 101.7 101.9 ± 0.3

MO D10% (%) 104.5 105.3 104.2 103.8 104.3 103.1 105 103.0 104.9 103.4 104.2 ± 0.8 0.175

DL 104.5 105.3 103.9 103.9 104.3 103.4 105.3 103.3 104.8 104.1 104.3 ± 0.7

MO D5% (%) 105.4 106.3 104.9 104.5 105.3 103.7 105.8 103.6 106.1 103.8 104.9 ± 1.0 0.209

DL 105.4 106.3 104.5 104.7 105.4 104 106.1 103.9 105.9 104.6 105.1 ± 0.9

MO Dmax (%) 108.5 111 111.4 107.2 110.9 108.9 110.6 107.6 112.3 105.8 109.4 ± 2.1 0.017

DL 109.1 111.5 111.8 107.6 111 109.1 110.8 108.2 112.1 107.4 109.9 ± 1.8

Brainstem MO Dmax (Gy) 32.2 30.1 35.6 26.3 31.9 30.3 31.1 30.4 32.8 32.0 31.3 ± 2.4 1.000

DL 32.3 30.0 35.5 26.3 31.9 30.3 30.9 30.4 32.8 32.3 31.3 ± 2.4

Rt. Lens MO Dmax (Gy) 3.4 4.3 3.4 3.0 4.4 3.3 4.4 2.7 4.1 5.9 3.9 ± 0.9 0.004

DL 2.7 2.5 2.9 2.5 3.8 2.8 3.1 2.7 3.1 3.1 2.9 ± 0.4

Lt. Lens MO Dmax (Gy) 4.2 3.7 3.8 2.5 4.9 3.0 3.0 2.9 5.9 5.5 3.9 ± 1.2 0.002

DL 2.8 2.3 3.0 2.3 3.6 2.7 2.1 2.9 3.8 3.2 2.9 ± 0.6

Rt. Eye MO Dmax (Gy) 31.5 30.5 34.2 25.0 30.9 30.0 30.2 28.9 31.4 31.5 30.4 ± 2.4 0.030

DL 29.9 25.7 33.6 24.5 30.7 29.9 29.7 27.1 30.9 30.7 29.3 ± 2.7

Lt. Eye MO Dmax (Gy) 31.7 30.1 34.0 25.0 31.2 29.9 29.9 29.4 31.6 31.6 30.4 ± 2.3 0.211

DL 30.6 7.5 33.1 24.3 30.9 29.8 28.2 29.1 31.1 30.3 27.5 ± 7.4

SD, standard deviations; PTV, planning target volume; MO, manually optimized; DL, deep‐learning.
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based on the two DVH curves in Fig. 4, that the DL treatment plan-

ning offered approximately similar plan quality to the reference MO

plan. Moreover, Fig. 4 shows, and Table 1 confirms that the DL plan

outperforms the MO plan in terms of lens dose reduction even

though there is a small loss of approximately 0.3% in the dose cov-

erage for PTV. Further, the distributions of the DL DVH curves ver-

ify that the DL method provides a consistent plan quality for

different patient cases. The MO DVH curves are more spread than

the DL DVH curves in general.

The training method using 2D DRR images directly predicts MLC

leaf positions; thus, it enables quick planning without additional pro-

cedures such as target contouring and MLC shaping. Such a time‐
saving planning procedure bypasses the time‐consuming routine jobs

and results in the rapid treatment to alleviate patient pain. Also, the

results of this study can be extended to the applications that use a

2D setup image (gantry angle of 90° or 270°) or a DRR image recon-

structed from the cone‐beam CT scanning. If the MLC shape predic-

tion based on patient setup images is available, the treatment

procedure from the planning image acquisition to the radiation deliv-

ery to a patient will be significantly simplified. Also, implementations

of other automatic techniques such as the plan import and the dose

calculation are expected to accelerate the planning automation. This

implies that the simulation for the treatment setup and the first

treatment of a patient can be carried out simultaneously once the

patient enters the treatment room. Because other studies24,25 uses

the fluence map estimation based on the treatment target to deter-

mine the aperture (or MLC) shape, those methods could obtain the

accurate aperture shape. Our DL method is only available in cases

with clear bone stures around targets such as whole brain without

cervical spine involvement, although it has an advantange as being a

more intuitive prediction for the MLC shape without fluence calcua-

tions and target segmentations.

The limitations of this study leave considerable scope for future

work in this field. A dose inhomogeneity with Dmax = (109.8 ± 1.7)%

up to 112.1% appeared in the outer region of the brain because only

two static lateral fields were considered in this study. The automatic

planning technique for dynamic MLC fields to mitigate hot dose

regions would be a research target in future research. The inaccurate

MLC shape prediction to small organs such as lenses should be also

improved by the fine‐tuned DL modeling and the larger dataset. To

achieve complete automated planning, MU estimation for a given

prescribed dose is another exciting topic.

5 | CONCLUSION

In this study, we evaluated training results using the DL technique

with a dataset of 2D DRR images for whole‐brain cases. The pre-

dicted plan quality was clinically acceptable based on the DVH

curves and was comparable with the result of the MO plan. This DL‐
implemented planning without manual MLC shaping based on target

contouring can help save time in the entire treatment process. It has

the potential to improve the plan quality and enable rapid treatment

in the whole‐brain radiation therapy.
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F I G . 5 . Example dose distributions of
patient one on the planes with (a)
isocenter for the manually optimized plan,
(b) right lens for the manually optimized
plan, (c) isocenter for the deep‐learning
plan, and (d) right lens for the deep‐
learning plan.
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