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Abstract
Readily-accessible and standardised capture of genotypic variation has revolutionised our

understanding of the genetic contribution to disease. Unfortunately, the corresponding sys-

tematic capture of patient phenotypic variation needed to fully interpret the impact of genetic

variation has lagged far behind. Exploiting deep and systematic phenotyping of a cohort of

197 patients presenting with heterogeneous developmental disorders and whose genomes

harbour de novo CNVs, we systematically applied a range of commonly-used functional ge-

nomics approaches to identify the underlying molecular perturbations and their phenotypic

impact. Grouping patients into 408 non-exclusive patient-phenotype groups, we identified a

functional association amongst the genes disrupted in 209 (51%) groups. We find evidence

for a significant number of molecular interactions amongst the association-contributing

genes, including a single highly-interconnected network disrupted in 20% of patients with in-

tellectual disability, and show using microcephaly how these molecular networks can be

used as baits to identify additional members whose genes are variant in other patients with

the same phenotype. Exploiting the systematic phenotyping of this cohort, we observe phe-

notypic concordance amongst patients whose variant genes contribute to the same func-

tional association but note that (i) this relationship shows significant variation across the

different approaches used to infer a commonly perturbed molecular pathway, and (ii) that

the phenotypic similarities detected amongst patients who share the same inferred pathway

perturbation result from these patients sharing many distinct phenotypes, rather than shar-

ing a more specific phenotype, inferring that these pathways are best characterized by their

pleiotropic effects.
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Author Summary

Developmental disorders occur in*3% of live births, and exhibit a broad range of abnor-
malities including: intellectual disability, autism, heart defects, and other neurological and
morphological problems. Often, patients are grouped into genetic syndromes which are
defined by a specific set of mutations and a common set of abnormalities. However, many
mutations are unique to a single patient and many patients present a range of abnormali-
ties which do not fit one of the recognized genetic syndromes, making diagnosis difficult.
Using a dataset of 197 patients with systematically described abnormalities, we identified
molecular pathways whose disruption was associated with specific abnormalities among
many patients. Importantly, patients with mutations in the same pathway often exhibited
similar co-morbid symptoms and thus the commonly disrupted pathway appeared re-
sponsible for the broad range of shared abnormalities amongst these patients. These find-
ings support the general concept that patients with mutations in distinct genes could be
etiologically grouped together through the common pathway that these mutated genes
participate in, with a view to improving diagnoses, prognoses and therapeutic outcomes.

Introduction
Developmental disorders and congenital abnormalities affect 3% of births, and represent an ex-
tremely heterogeneous group of disorders including intellectual disability, autism, and develop-
mental delay, along a diverse range of structural and morphological defects[1]. The
epidemiology of these heterogeneous disorders strongly implicates an underlying genetic etiol-
ogy, with many patients possessing an increased burden of copy number variants (CNVs; re-
gions of the genome> 1Kb that are deleted or duplicated). CNV screens now routinely
included in primary diagnostics[2] with exome analyses expected to grow in use as the cost
falls [3,4]. However, the heterogeneity in patient phenotypes is similarly reflected in the under-
lying genetic variation making it difficult to pin-point those particular genes whose mutation
contributes to the phenotype. The field of disease genomics has, in particular, heralded two de-
velopments to address heterogeneous and multigenic disorders, namely (i) deep and systemati-
cally-defined patient phenotypes[5,6] and (ii) pathway analysis approaches[7,8].

For genetically heterogeneous disorders, the power of a cohort of patients to identify a
shared pathoetiology may be diminished by the presence of multiple etiologies, each etiology
contributing non-exclusively to different aspects of the phenotypic heterogeneity. Accordingly,
it is often advantageous to analyse more phenotypically-similar subgroups, assuming that these
subgroups would be enriched for a particular etiology[9]. Indeed, the observation by clinicians
of marked phenotypic similarities across a broad range of features for a particular subgroup of
patients has enabled the identification of the genetic causes of many syndromes; for examples
see[10]. To enable large-scale, systematic and automated patient phenotypic comparisons, phe-
notype ontologies, such as the Human Phenotype Ontology (HPO)[11,12], have been devel-
oped. These ontologies consist of thousands of predefined phenotypic terms arranged in a
hierarchy in which more specific child terms are organised underneath broader parent terms;
for example, a patient ascribed the more specific phenotype “abnormality of the retina” would
also recursively inherit any overarching phenotypic terms such as “abnormality of the eye”.
Once these phenotypic terms have been rigorously assigned to large numbers of patients, on-
tologies such as the HPO enable various degrees of phenotypically-similar subgroups of pa-
tients to be systematically and objectively constructed, permitting the search for shared
pathoetiologies at many levels of phenotypic homogeneity. A second challenge for large-scale
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analyses of patient phenotypes is that often only the presence of phenotypes is recorded with-
out confirmation that unrecorded phenotypes had been considered. This forces the dangerous
assumption that the absence of evidence for the presence of a given phenotype is evidence of
absence of that phenotype. Many non-obvious and non-superficial genotype/phenotype rela-
tionships may be missed unless the presence/absence of phenotypes are explicitly determined
and, in particular, pleiotropy will likely be under-reported[6].

Complementing patient phenotype subgrouping, pathway analysis approaches rely on the
observation that disruptions to different genes that operate within the same pathway often pro-
duce similar phenotypes[9]. Thus, the analysis of patients that share a common phenotype, re-
gardless of whether they can be classed into an over-arching disorder, may yield insights into
commonly disrupted pathways underlying that phenotype and contribute to the spectrum of
presentations in each patient. This approach is well suited to the study of multigenic disorders
as pathway approaches gain power from coverage of the pathway, rather than recurrent hits to
the same gene. One approach to identifying commonly disrupted pathways amongst distribut-
ed variants is to employ “functional enrichment” approaches[13]. This approach proposes that
the genes affected by dispersed variants that act within a common pathway are likely to share
other functional or biological characteristics, such as being annotated to a particular biological
process[14,15], exhibiting a particular expression pattern[16], expressing protein products that
interact with each another[17] and/or presenting a shared phenotype upon their orthologue’s
disruption in a model organism[15,18,19]. Such collections of gene annotations vary both in
terms of their rates of false positives, especially when formed from high-throughput experi-
ments or computational-inference, and false negatives, for example where gene coverage is
poor[20–22]. Thus, different annotation types may be combined to increase confidence that
genes are functionally concordant[23,24].

In this study, we tested the paradigm that pathway analysis approaches applied to a large
and systematically-phenotyped cohort that present heterogeneous developmental disorders
can detect common molecular pathologies and the extent to which these inferred common
etiopathologies confer common phenotypic presentations. Focusing on 197 patients that pos-
sessed de novo CNVs smaller than 5 Mb, we systematically grouped them according to the
structure of the HPO and applied a range of complementary functional enrichment approaches
that converged on numerous molecular pathways underlying a range of phenotypes. These
gene networks were deemed biologically coherent through enrichments of direct molecular in-
teractions, and we provide an exemplar as to how they can be used as “baits” to identify genes
disrupted in other cohorts that participate in the same network. Finally, we show that patients
whose variants contribute to the same functional enrichments are significantly more phenotyp-
ically-similar overall and results primarily from pleiotropic effects arising from the perturba-
tion of the same inferred network, but that this similarity varies with the enrichment
approach employed.

Results

Summary of data
We sought to employ common functional enrichment and pathway analysis to a large cohort
of deeply and systematically-phenotyped patients presenting with heterogeneous developmen-
tal disorders, in order to identify the genes and molecular pathways underlying these pheno-
types and to investigate the phenotypic similarity among patients whose variants affect genes
detected to lie in the same pathways. We focused on sporadic patients possessing de novo CNV
events as it is often the case that the de novo CNV mutation is consequential, and thus copy
change of one or more of the genes disrupted by the CNV is responsible for the phenotypes
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observed2; 10. Furthermore, we excluded patients with CNVs>5Mb, as the large numbers of
genes affected make it substantially more challenging to identify specific functional enrich-
ments. Through our integrative approach, we sought to identify the genes and pathways under-
lying each phenotype presented by members of the cohort.

A cohort of 4297 patients was collected by the Radboud University Medical Centre, Nijme-
gen, the Netherlands. All patients were diagnosed with intellectual disability, developmental
delay and/or congenital abnormalities. Each patient was deeply phenotyped by clinicians,
using terms from the Human Phenotype Ontology (HPO) to describe their clinical abnormali-
ties. The HPO contains over 10,000 terms for clinical phenotypic abnormalities, which relate to
one another through a hierarchical structure, with less specific parent terms, covering more
specific child terms. All parent (more general) phenotypic terms were additionally assigned to
patients based on their clinically-assigned phenotypes. Central to the analyses performed in
this study, these patients were systematically phenotyped and thus each patient was considered
for the same phenotypes as every other, enabling accurate comparison of patient phenotypic
similarity.

Of 1663 rare CNVs observed within at least one patient in the cohort, 437 were identified as
de novo. Filtering our patients to include those that had only a de novo CNV shorter than 5Mb
left 197 patients remaining (seeMaterials and Methods). Of these, 154 patients (78%) had in-
tellectual disability of varying severity, 80 were diagnosed with developmental delay, 54 with
growth abnormalities, and 37 with autistic spectrum disorder (ASD). These 197 patients pos-
sessed 826 distinct HPO phenotypes (individuals possessing 2–182 phenotypes, including pa-
rental terms), while the median number of phenotypes per patient increased to 31. There were
219 de novo CNVs remaining across the 197 filtered patients, with a median size of 1.37 Mb.
Of these, 82 were duplication, or gain, CNVs, while the remaining 137 were deletion, or loss,
CNVs. Gains and Losses had a median size of 1.36Mb and 1.40Mb respectively. 2907 unique
genes were affected across all 197 patients, ranging from 0–190 genes per patient, with a medi-
an 95 gene disrupted per patient.

Inferring molecular pathways
We employed a multifaceted functional genomics approach to analyzing the genes disrupted in
the cohort. In turn, we investigated each set of genes found to be affected by de novo CNVs in
patients that shared a specific HPO phenotype, where patients sharing the phenotype num-
bered 3 or more (408 patient-phenotype groups). For each phenotype, we employed a four-
way functional genomics analysis, to identify functional associations between genes disrupted
in these particular patient-phenotype groups which could represent a disrupted biological pro-
cess that underlies the shared phenotype. Firstly, we employed a Gene Ontology (GO) analysis
[25], in order to determine whether or not genes disrupted with each phenotype were associat-
ed with any particular GO terms, using a whole genome background as a comparator. The sec-
ond method applied was to similarly determine enrichments among disrupted genes using
pathway annotations from the Kyoto Encyclopedia of Genes and Genomes (KEGG) [26]. As a
third method, we examined the abnormal phenotypes observed from gene disruption events
(“knockouts”) in mouse [18,27]. For this, we asked whether the unique mouse orthologues of
genes affected by these CNVs yield particular phenotypes when disrupted. Finally, our fourth
method examined whether or not genes from patients’ CNVs clustered together in a gene co-
expression network. Given these patients predominantly neurological phenotypes, we used the
BrainSpan dataset which measured the spatiotemporal expression of genes across 16 brain re-
gions and at 6 developmental time points (seeMaterials and Methods).
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Each of these functional association approaches was applied to each of 408 sets of genes dis-
rupted by CNVs in patients presenting a particular phenotype (patient-phenotype groups).
Genes variant in only two patient-phenotype groups were found to possess significant func-
tional associations using all four of the methods applied, namely HP:0001250 (Seizures)
(Fig. 1) and HP:0010864 (Intellectual disability, Severe). Significant enrichments using three of
the methods were observed in a further 64 patient-phenotype groups, enrichments for two
methods for 120 patient-phenotype groups, and for just one method in a further 143 groups.
Of the four methods employed, enrichments of phenotypes from mouse-orthologue knockouts
(MGI) gave the least number of significant results, identifying functional association among af-
fected genes in only 12 phenotype groups including HP:0001250 (Seizures) and HP:0000717
(Autism) (S1 Table). While the MGI method identified fewest associations, the enriched terms
were the most relevant to the particular HPO phenotypes. For example, for patients with Sei-
zures we saw an enrichment of genes whose mouse orthologue knockouts present with,
amongst others (Fig. 1), Absence seizures (MP:0003216; 6.2-fold enrichment; p = 3 x 10–4).

Fig 1. Functional genomics enrichments significantly enriched in genes affected by de novo CNVs in 33 patients presenting with seizures. (A)
Significant functional genomics enrichments. Many of these functions have links to seizures or associated phenomena (synaptic deficits, receptor signaling,
gustatory aura[73]) but also to regions prone to copy number variation[74]. (B)Genes disrupted by short CNVs in patients were also observed to cluster
significantly in a brain-specific gene co-expression network. Here we display the strongest clusters (r> 0.92 for all co-expression similarities) of genes from
seizure patients from this network. (C)Overall, the functional enrichments identified known (HPO-defined) seizure genes for 11 of the 33 patients, and
proposed causal genes for 21 of the remaining 22 patients.

doi:10.1371/journal.pgen.1005012.g001
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Similarly, in patients with HP:0010864 (Intellectual Disability, Severe) we see an enrichment of
mouse synaptic phenotypes such as Abnormal synaptic transmission (MP:0003635; 3.3-fold en-
richment; p = 2.0x10–5). This was in contrast with the results for Intellectual Disability,mild
(HP:0001256) which was significantly enriched in learning phenotypes in mouse, such as ab-
normal associative learning (MP:0002062; p = 3.6x10–6). When these two subsets of patients
were combined under the more general term of Intellectual Disability (HP:0001249) no mouse
phenotypes were significantly associated but many signalling pathways described in KEGG
were significantly enriched among the patients, including theMAPK signalling pathway, and
Neurotrophin signalling pathway. Other methods provided a larger number of significant re-
sults, with enrichments of GO terms found for each of 121 human phenotypes; however these
enrichments were generally smaller, and involve less specific categories than those observed
using mouse phenotypes (S1 and S2 Tables, S1 Fig.). Additionally, affected genes within each
of 189 phenotype groups were associated with particular KEGG pathways (S3 Table), while
genes affected within each of 262 phenotype groups showed similarities in their brain spatio-
temporal expression patterns, clustering significantly in the BrainSpan expression network (S4
Table). For 186 of 408 patient-phenotype groups, we found functional associations using mul-
tiple methods, and of these 177 (95%) phenotype groups identified the same genes using multi-
ple methods, with the number of genes repeatedly identified for these groups ranging from 1 to
355 (Fig. 2, S5 Table).

A central tenet of pathway approaches is that a common phenotype can result from the per-
turbation of different genes that act within a common molecular pathway. We sought to vali-
date that these functional association approaches were identifying commonly perturbed
molecular pathways through protein-protein interactions, arguing that the protein products of
genes involved in the same molecular pathway are more likely to directly interact with one an-
other. Considering each of the 177 sets of multiply detected candidate genes and employing the
Dapple protein-protein interaction (PPI) network[28], we found that 65 (37%) phenotype-
grouped candidate genes showed significant clustering of genes within the PPI network dem-
onstrating that the candidate genes identified for many of these phenotypes work together
within the same molecular pathways (Fig. 2, S4 Fig.)

To demonstrate the relevance of these phenotype-associated molecular networks beyond
the cohort considered here, we looked for genes acting in the same molecular pathways that
were affected by de novo CNVs in a second set of patients presenting with the same phenotype.
Specifically, given each of the 65 PPI molecular networks perturbed by CNVs in Nijmegen pa-
tients presenting with the same specific phenotype, we asked whether the proteins encoded by
genes found to be copy number changed in an additional cohort with the same phenotype also
interacted within the same molecular networks. For this, we considered patients possessing de
novo CNVs that were annotated within the DECIPHER database[29]. Although the DECI-
PHER patients have not been systematically phenotyped and their presentations denoted using
the LDDB dysmorphology terms[30] rather than the HPO phenotypes, 15 LDDB terms used
to describe their phenotypes could be mapped equivalently to 15 of the 65 HPO terms for
which a PPI was identified in the NIJMEGEN patients (S7 Table). Of these 15 phenotypes,
only forMicrocephaly was there found to be a sufficient number of genes in both the NIJME-
GEN-derived PPI network and DECIPHER patients CNVs to test for interactions. Nonethe-
less, after 13 DECIPHER patients whose variant genes participated in the NIJMEGEN-derived
microcephaly PPI network, the genes variant in the remaining 58 DECIPHER patients with
Microcephaly were found to interact with the NIJMEGENmicrocephaly PPI network genes sig-
nificantly more frequently than expected (p = 0.04; Fig. 3B), demonstrating recurrently hit
phenotype-associated pathways. Most notably, whereas the NIJMEGEN-derived PPI molecular
network alone is fractured into four unconnected sets of interacting genes, the interacting
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genes identified from the DECIPHER patients link three of these disparate groups to form a co-
herent molecular pathway (Fig. 3B). The PPI network perturbed in 14/27 (52%) of Nijmegen
patients and perturbed in 13/71 DECIPHER patients withMicrocephaly was able to identify
genes interacting with the same network that were perturbed in an additional 30/71 (42%) of
DECIPHER patients, implicating this network’s disruption in 57/98 (58%) of all microcephaly
patients considered (S6 and S7 Tables).

Phenotypic similarity between patients contributing to enrichments
Known developmental syndromes, particularly those involving ID, are frequently identified
based upon shared phenotypic characteristics beyond ID, which may reflect the pleiotropic ef-
fects of a recurrently mutated gene [31–35]. Moving beyond a mutation in a single gene, we

Fig 2. Forty non-exclusive patient groups, each group’s patients sharing the same HPO term, amongst whom individual copy number variant
candidate genes were each recurrently identified by multiple functional genomicsmethods and whose recurrently-identified candidate genes
demonstrated a significant number of protein-protein interactions. The dendrogram displays the relationship between categories based upon the
number of candidate genes identified by multiple methods that are shared between the phenotype-group patients. Categories are marked if there were
significant enrichments using clustering in a gene expression network (Blue), GO (Green) or KEGG (yellow). No phenotype-grouped patients with candidate
genes meeting these criteria were identified use mouse KO phenotype (MGI) associations.

doi:10.1371/journal.pgen.1005012.g002
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reasoned that if a functional enrichment identified among the copy number variant genes with-
in a given set of patients identifies a common biological pathway perturbed within those pa-
tients, then the consequence of perturbing the same pathway may yield a similar set of
phenotypes. To investigate this hypothesis, for each significant functional enrichment and the
respective patient-phenotype group it was identified in (S1–S4 Tables), we subdivided the pa-
tients with that phenotype into those whose variant genes contribute to that specific functional
enrichment (“contributing patients”) and those patients whose copy number variant genes do
not contribute (“non-contributing patients”). Exploiting the consistent and structured

Fig 3. Molecular pathways serially identified among patients with microcephaly phenotypes in two large cohorts. (A) 12 copy variant genes drawn
from 14 of 27 Nijmegen patients with Microcephaly that were identified using multiple functional genomics methods (KEGG, Gene Expression and GO) and
cluster strongly (p = 0.04) in the Dapple protein-protein interaction network. (B)Genes (n = 51; Red)) that were copy number variant in 30 of 71 Decipher
patients with Microcephaly were found to possess a significant number of interactions with the genes from panel A (Green) (p = 0.04), forming an extensive
and intertwined microcephaly-associated molecular network.

doi:10.1371/journal.pgen.1005012.g003
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phenotyping of the cohort, we then compared the pairwise phenotypic similarity amongst con-
tributing patients to the pairwise similarity between contributing and non-contributing pa-
tients (S5 Fig.).

Overall, we found a significant excess of instances where contributing patients are more
similar to each other than they are to non-contributing patients; p = 4 x 10–4, one-sided bino-
mial test (Fig. 4A). However, this is highly variable between the different functional genomics
resources used to identify the functional enrichment, as well as between phenotypes examined.
Only patients whose copy number variant genes showed significantly co-ordinated brain ex-
pression patterns within the BrainSpan data were consistently found to be more similar in their
overall phenotypes as compared to pairs of patients whose genes were not similarly co-ordi-
nately expressed in the brain (Fig. 4A and B). Considering the remaining 3,871 patients with-
out de novo CNVs, patients whose CNVs affected genes co-expressed within BrainSpan
continued to show the most significant phenotypic similarity when the analysis was repeated
considering the phenotypic similarity amongst patients whose inherited CNVs affected the
previously-identified candidate pathway genes. This was also true for phenotypic comparisons
involving patients whose CNVs affected genes related to the candidate pathways (have the
same annotation or are co-expressed with or have a PPI with candidate pathway genes (See
Methods)), but here patients whose CNVs affected novel genes with the same GO annotation
also demonstrated phenotypic convergence (S6 Fig.). Furthermore, restricting the patient phe-
notype comparisons to those patients possessing copy number variant genes that contributed
to enrichments identified by two different functional resources did not increase the proportion
of cases where contributing patients were more similar to each other than to non-contributing
patients (14% vs 13%, p>0.9, Fig. 4A).

For those phenotypic comparisons where significantly similar phenotypes were observed
amongst patients contributing to a functional enrichment (p< 0.05, 2-sided Wilcox-rank-sum
test; Fig. 4A, blue points), we considered whether the functional enrichment was segregating
patients based on more fine-scale differences of the phenotype that was associated with the en-
richment or whether it reflected co-morbid phenotypic characteristics distinct from the enrich-
ment-associated phenotype. To examine this, we repeated the phenotype-similarity analysis
including only the child terms (subterms) of the enrichment-associated phenotype term
(Fig. 4C). In almost all cases, the distribution of subterms was indistinguishable between pa-
tients contributing to the pathway enrichment and non-contributing patients, demonstrating
that the phenotypic similarity between patients whose variant genes contribute to the same
functional enrichment was produced by common co-morbidities of phenotypes distinct from
the enrichment-associated phenotype. Taken together, our findings propose that the copy
number variation of genes that contribute to those functional enrichments shared by patients
who present with significantly similar phenotypes underlie the broad spectrum of phenotypes
presented by these patients as a consequence of the perturbing the same inferred molecular
pathway.

Finally, since the same KEGG and GO annotations were significantly associated with multi-
ple human phenotypes, we combined patients from multiple patient-phenotype sets (patients
sharing a particular phenotype) where those phenotypes had been associated with the same
GO or KEGG pathway (Fig. 4D). Three GO pathways were significantly associated with fewer
than 15 human phenotypes (ion channel, nutrient reservoir, and peptidase); these identified
subsets of patients who are significantly more similar to each other, whereas the remaining
three GO pathways (plasma membrane, receptor, and signal transduction) were significantly as-
sociated with more than 30 human phenotypes and did not identify phenotypically similar pa-
tient subsets. Similarly the four KEGG pathways significantly associated with more than 30
human phenotypes failed to identify phenotypically similar patient subsets. However, only five
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Fig 4. Phenotypic concordances amongst patients whose copy number variant genes contribute to the same functional associations and
molecular pathways. (A)Overall, patients with genes that contribute to the same functional association are phenotypically similar (p = 1 x 10–4). The Y-axis
gives the significance of the overall phenotypic similarity amongst patients within a patient-phenotype group whose variant genes contribute to a functional
association (Intra) as compared to those patients in the same phenotype group who do not contribute (Inter), with higher values indicating increasing relative
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of the thirteen KEGG pathways associated with fewer than 30 human phenotypes identified
phenotypically similar patient subsets; these tended to be the more biologically plausible path-
ways (eg. Cell motility, Nervous system, and Transport and Catabolism). The eight which failed
to identify phenotypically similar patient subsets tended to be more general or unexpected
pathways (eg. Glycolysis, Drug, and Cancer; Fig. 4D). Pathways significantly enriched in many
human phenotypes may reflect biases in CNV occurrence, which have not been completely
eliminated by removing genes found in control CNVs (seeMaterials and Methods).

Discussion
This study represents the first systematic functional genomics analyses of a systematically and
deeply phenotyped cohort of patients presenting with developmental disorders. By grouping
patients on the presence of a common phenotype, as defined by a shared HPO term, and apply-
ing often-used functional enrichment approaches to the genes affected by those patients’ de
novo CNVs, we identified functional enrichments for 329 (81%) of 408 patient-phenotype
groups (S1–S4 Tables). For 177 patient-phenotype groups the same genes were identified
using more than one approach; and for 65 (37%) of these we found evidence for a significant
number of molecular interactions between genes supporting shared molecular pathoetiologies
(Fig. 2, 3 and 5; S4 Fig. and S6 Table). The generality of these pathways was further demon-
strated by the ability of the microcephaly PPI network to identify additional pathway members
mutated in another cohort with a similar phenotype (Fig. 3). Exploiting the “evidence of ab-
sence” of a phenotype among these patients, we were able to test the phenotypic convergence
amongst patients whose variant genes contribute to the same functional enrichment. Overall,
we find that there is significant phenotypic convergence providing general support for the
“same perturbed molecular pathway, similar resulting phenotype” paradigm, but we note (i)
that this relationship shows significant variation across the different functional genomics re-
sources used to infer a commonly perturbed molecular pathway among a group of patients,
and (ii) that these phenotypic convergences result from these patients sharing many distinct
phenotypes, rather than sharing a more specific phenotype, suggesting that these pathways are
best characterised by their pleiotropic effects (Fig. 4).

Phenotypic convergence amongst patients whose variant gene contributed variant gene
contributed to inferred (GO, expression) and/or determined (KEGG, PPI) molecular path-
ways was identified from the shared spectrum of distinct phenotypes presented by these pa-
tients, indicating common pleiotropic effects arising from the disruption of the inferred
molecular pathway. Patients with the same perturbed pathway did not form a more specific

similarity amongst association-contributing patients. Each point represents a single significant patient-phenotype group association, while the methods used
to identify the association are shown on the X-axis (KEGG, MGI mouse KO phenotypes, GO, BS BrainSpan gene co-expression). Combinations of methods
(e.g. GO-KEGG) illustrate the relative phenotypic similarity amongst patients possessing copy variant genes that individually contribute to multiple functional
associations (seeResults). “PPI” values are those among patients contributing the interacting molecular networks identified in Fig. 2 (seeResults). Dots
coloured blue or red indicate nominally significantly phenotypic similarity or dissimilarity, respectively. The black line connects all enrichments associated
with the intellectual disability (ID) patient-phenotype group. (B) BrainSpan (BS) was the only pathway-resource to consistently identify phenotypically similar
subgroups through a shared molecular association. Detail on the phenotypic similarities shown in Panel A. Solid line: p = 0.5, dashed line: p = 0.05, dotted
line: p = 0.007 conferring significance after a Bonferroni correction. (C) The significant phenotypic similarities amongst patients who contribute to the same
functional association are not derived from these patients presenting more specific subphenotypes of the original phenotype. Y-axis as in panel A. For all
nominally significant enrichments in panel A (top, solid points) we recalculated the patient phenotypic similarities considering only child terms of the original
HPO phenotype (open points connected to their respective solid point by an arrow). Points are grouped horizontally by HPO and coloured by enrichment-
type. Solid line: p = 0.5, dashed line: p = 0.05. (D) In general, the fewer patient-phenotype groups that a functional enrichment term was associated with, the
more phenotypically similar the patients associated with that functional term were. Patient-phenotype groups associated with the same KEGG pathway or
GO term were combined and for each association the phenotypic similarity amongst those patients whose variant genes contributed to the given association
was compared to those who did not contribute. Y-axis as in panel A. The number of patient-phenotype groups each functional association is associated with
is given on the X-axis.

doi:10.1371/journal.pgen.1005012.g004
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phenotypic-subgroup, based upon sharing more specific features (subterms), within the whole
group pf patients presenting that phenotype (Fig. 4C). Inevitably, this may in part be a conse-
quence of the phenotypic resolution captured for these patients, but we note that most patient
phenotypic clustering based on subterms performed poorly including the more phenotypical-
ly-detailed “Abdomen” patient/pathway groups. Irrespectively, our finding of common pleio-
tropic effects arising from perturbing the same pathway strongly supports broad, systematic
patient phenotyping to identify shared underlying molecular pathology [6,36].

Systematically combining large-scale molecular and phenotypic variation is at the heart of
disease genomics. However, the limitations of attempts to correlate imposed categorisations of
both gene function and patient phenotype are obvious; both depend on limits of experimental/
diagnostic techniques, prevailing ideas of biologically- or clinically-relevant observations, and
motivation to investigate a given gene or patient. Surprisingly, the functional enrichment re-
source that is arguably the most well-aligned with HPO phenotypes[37], namely the MGI
mouse phenotypes, appeared to perform poorest in this study, both in detecting functional

Fig 5. Clusters of 33 genes whose products have known protein-protein interactions copy changed among 34 (22%) of 154 patients with
intellectual disability. These genes were those identified using two or more methods (from KEGG, GO and Gene Expression clustering) and that were
found to contribute to a significant enrichment of interactions identified by the Dapple protein-protein interaction network (p< 1x10–4).

doi:10.1371/journal.pgen.1005012.g005
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associations among variant genes (S1 Table) and in identifying phenotypically homogenous
patient groups (Fig. 4A). Importantly, neither the literature-based pathways of the KEGG data-
base nor GO-defined functionality delivered as many functional associations, nor identified as
much phenotypic homogeneity within associations, as the most functionally/phenotypically-
agnostic approach of correlated gene expression (BrainSpan; Fig. 2 & 4B). Despite the pleiotro-
pic character of the phenotypic convergences, we found that a brain-specific gene expression
set (BrainSpan) proved more effective than a body-wide expression set (GTEx; seeMaterials
and Methods; S2 Fig.). This may reflect the preponderance of neurological phenotypes in the
cohort and/or the value of BrainSpan’s longitudinal expression data. Regardless, these findings
bode well for future studies as ever more detailed systematic gene expression maps are prom-
ised[38] (www.brain-map.org).

Despite current limitations in our ability to map phenotypes between different cohorts/stan-
dards, we demonstrated the utility of these networks. Using theMicrocephaly PPI network as a
“bait”, we were able to identify an additional 51 gene members of this interaction network copy
changed amongst DECIPHERMicrocephaly patients, and found this network perturbed in
58% of all microcephaly patients considered here (Fig. 3). The “bait” network (Fig. 3A) con-
tained genes such as AKT3, considered the underlying cause for the microcephaly in patients
with the 1q44 microdeletion syndrome[39], andMAPK1, involved in neurogenesis[40] and lo-
cated within the distal 22q11 deletion frequently associated with microcephaly[41]. In addition,
the extended network (Fig. 3B) contains several genes previously associated with an abnormal
head circumference including ACTB in Baraitser-Winter syndrome (MIM #243310)[42],
AKT1 in Proteus syndrome (MIM #176920)[43], CASK in Mental retardation and microcepha-
ly with pontine and cerebellar hypoplasia (MIM #300749)[44], and NDE1 in microcephaly and
lissencephaly[45,46]. Other genes within the combined network are involved in neuronal pro-
genitor cell proliferation, a common mechanism underlying microcephaly[47](RAC1[48,49]
and GNB1[50]) and neuronal development (CEBPB[51], L1CAM[52],MAPT[53], PAK2[54],
SPTBN1[55], and YWHAE[56,57]).

The most common phenotype, Intellectual disability (ID), was observed in 78% of the co-
hort considered here, and thus is of particular interest. Within the de novo CNVs of the 154 pa-
tients presenting with ID, 68 potential candidate genes were identified using enrichments from
at least two different methods (GO, KEGG, or BrainSpan expression). Of these 68 genes, the
proteins expressed by 33 genes had known interactions with proteins expressed by other candi-
date genes, far more than would be expected by chance (p< 1x10–4), with 30 of these genes
forming one single interacting cluster (Fig. 5). This cluster comprises of a selection of genes
that have been associated previously with intellectual disability, such as YWHAE [58], SOS1
[59], andMAP2K2 [60], and several whose function makes them likely candidates for involve-
ment in ID. For example, CAMK2 encodes a subunit of the Calcium/calmodulin-dependent
protein kinase type II that is critical for regulation of synaptic plasticity[61]. This gene has been
found to harbor a de novomutation in a patient with severe intellectual disability[4], and an
intronic SNP (rs11000787) which has been associated with memory performance[62]. In addi-
tion,MEF2D is a member of the myocyte enhancer factor-2 family of transcription factors that
regulates neuronal development[63]. Mutations in another member of this family,MEF2C,
have been observed previously in patients with severe ID[64]. Furthermore, ID patients whose
CNVs perturb this network present significantly similar phenotypes as compared to other pa-
tients with ID (p = 0.016; Fig. 4A). The single interacting cluster of 30 genes in this network po-
tentially explains 31/154 (20%) of patients with ID in the cohort (Fig. 5), and thus the nature
of this molecular convergence warrants further study.

Finally, the 826 phenotypes present amongst patients in this cohort do not represent the full
spectrum of human phenotypic variation (the HPO ontology alone contains 10,000 unique
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terms). Even the focused phenotyping of developmental abnormalities among the cohort con-
sidered here could be significantly enriched through detailed brain imaging, as well as longitu-
dinal and more quantitative phenotyping[36]. Similarly, our focus only on those genes affected
by de novo CNVs ignores the influence of the genetic background on phenotype[65]. Nonethe-
less, the systematic genotyping and phenotyping of these patients has in turn enabled systemat-
ic pathway-based genotype/phenotype approaches that identify extensive molecular networks
that appear perturbed, often with pleiotropic consequences, thereby giving insight into the
more rigorously genotyped and phenotyped future of genomic medicine. These pathways
could be used to categorize patients with currently unknown developmental disorders and po-
tentially identify new developmental syndromes.

Materials and Methods

Copy number variants
The patient data were previously described in detail in a manuscript by Vulto-van Silfout et al.
[66], but shall be described here in brief. Four thousand two hundred and ninety seven patients
with either intellectual disability, developmental delay, and/or multiple congenital abnormali-
ties were recruited by the Radboud University Nijmegen Medical Centre. Each patient was phe-
notyped by clinicians using a uniform and standardised clinical form, classified using the
Human Phenotype Ontology (HPO) terms[12]. More general HPO terms assigned to individu-
als were imputed from specific terms recorded. Of*10,000 possible HPO phenotypic terms
covering the full spectrum of human phenotypic abnormalities, 1350 terms were assigned to
one or more patients within the cohort. DNA samples were mainly taken via peripheral blood
and analysed using the Affymetrix 250k Nspl SNP array platform (262,264 SNPs, 200 Kb reso-
lution). CNVs were called where there were at least five or seven consecutive aberrant SNPs,
for losses and gains, respectively. Where CNVs were observed, parental DNA was considered
in order to determine whether CNVs were de novo, or to determine the mode of inheritance.
We focused on the subset of 197 patients who possessed likely-causative de novo CNVs of
<5Mb, amongst whom a total of 826 HPO phenotypic terms had been assigned.

To demonstrate the utility of the networks identified in this study (see Results), we selected
93 de novo CNVs possessed by 71 patients annotated with aMicrocephaly (London Dysmor-
phology Database code: 32.08.05) phenotype that were recorded within the DECIPHER (Data-
basE of Chromosomal Imbalance and Phenotype in Human using Ensembl Resources)
database (S7 Table). Merging overlapping (by at least 1bp) or bookended CNVs (losses and
gains combined) yielded 76 CNV regions (CNVRs). From these 76 CNVRs, we removed 8
CNVRs (representing 13 patients) that affected genes that already participate in theMicroceph-
aly network we had identified among the Nijmegen cohort (Fig. 3) and removed a further 12
CNVRs that did not affect genes annotated within the protein-protein interaction (PPI) data-
base and thus could not be considered. Our final set of DECIPHER CNVs fromMicrocephaly
patients contained 55 CNVRs, overlapping 606 genes that were represented in the PPI database
(S7 Table).

Ensembl gene IDs. Genomic co-ordinates of CNV regions were mapped from hg17 to
hg18 using the USCS LiftOver tool (http://genome.ucsc.edu/cgi-bin/hgLiftOver) through the
bedTools application (https://code.google.com/p/bedtools/). Gene annotations were taken
from Ensembl using the Ensmart 54 database. Genes were considered to be completely over-
lapped if the entire Ensembl gene was within the CNV boundaries. Partial gene disruptions
were those cases where a gene is not entirely overlapped by a CNV, but the CNV intersects
with at least one exon in every transcript in the database. This method ensures that all coding
transcripts of a gene are affected, not just a fraction of very long transcripts, and has been
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demonstrated to remove length biases associated with genes that show brain-specific expres-
sion patterns[13,17]. CNVs which did not affect all coding transcripts of a gene were excluded.
As we were primarily interested in genes whose de novo copy change would be highly pene-
trant, we removed 5768 genes that had been observed as copy number changed in the same di-
rection within the Shaikh et al. set, a control cohort that represents deleted and duplicated
regions in individuals with no overt abnormalities[67].

Functional enrichments
Mouse genome informatics (MGI) phenotypes. The phenotypes exhibited during pub-

lished mouse gene model experiments and described according to the Mammalian Phenotype
Ontology (MPO)[68] were obtained from the Mouse Genome Informatics (MGI; http://www.
informatics.jax.org)[69]. For each patient, we mapped the disrupted genes to mouse genes
using simple, unambiguous, 1:1 human:mouse gene orthology relationships as defined by
MGI. For each set of patients annotated with a specific HPO term, we mapped the HPO term
over to MPO, to identify the most relevant of 33 overarching categories within the MPO. For
each of the mouse phenotypic terms within the relevant overarching category, we determined
enrichments amongst the respective set of variant human genes, by comparing the frequency
of variant genes associated each phenotype as compared to the frequency expected given the
whole genome background using a hypergeometric test (False Discovery Rate (FDR) of less
than 5%[70]). Underpowered and uninformative results were reduced by excluding pheno-
types populated by less than 1% of the genes in the overarching category.

Gene ontology. Gene Ontology (GO) data were obtained from the Gene Ontology website
(http://www.geneontology.org/). For a set of patients associated with a specific HPO pheno-
type, we looked for enrichments as compared to the genomic background using a hypergeo-
metric test and an FDR of less than 5%.

KEGG. Gene annotation data was obtained from the Kyoto Encyclopedia of Genes and
Genomes (KEGG; http://www.genome.jp/kegg/). For a set of patients associated with a specific
HPO phenotype, we looked for enrichments as compared to the genomic background using a
hypergeometric test and a FDR of less than 5%. The majority of the detected functional enrich-
ments using MGI, GO or KEGG pass a more stringent Bonferroni correction.

Gene expression network. Normalized RNAseq gene expression data from was down-
loaded from BrainSpan (http://www.brainspan.org; 16 brain regions, 41 individuals aged from
8 weeks post-conception to 40 years). Genes with RPKM<1 in>95% of the samples were ex-
cluded and the expression correlation between each pair of remaining genes was calculated. A
network was built with genes as nodes and edges between two genes weighted with their corre-
lation coefficient r, considering only edges with weight r� 0.7 gave 13,953 unique genes with at
least one edge. We confirmed our findings at r� 0.6 and r� 0.8, but found inconsistent and di-
minished results when r� 0.9 (S7 Fig.). We compared the strength of connections between
genes in our test set (i.e. the sum of the correlation coefficients between the genes), as com-
pared to genes randomly sampled from the co-expression network. We controlled for the num-
ber of edges associated with each gene (i.e. degree) by randomly sampling without replacement
a maximum of 10,000 sets equal in gene number and that possessed the same gene degree dis-
tribution to determine significance.

Given our findings of pleiotropic effects associated with the perturbations of the inferred
pathways we report here (see Results), we briefly examined employing a recently-released
body-wide expression data, GTEx[38], instead of the brain-specific dataset, BrainSpan. A coex-
pression network was derived from the GTEx data using the correlation method used in[71]
which accounts for missing data. However, we found that BrainSpan-derived molecular
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associations outperformed GTEx-derived association in the phenotype comparisons on which
this decision would have been based, and thus retained the BrainSpan-derived co-expression
approach (S2 Fig.).

Protein-protein interactions. All protein-protein interaction (PPI) data were obtained
from the Dapple website (http://www.broadinstitute.org/mpg/dapple/dapple.php). We deter-
mined whether or not gene sets clustered within the protein-protein interaction network by
comparing the number of interactions between test genes to randomly sampled gene sets, con-
trolling for the number of degrees in the same manner as performed with the gene-
expression network.

To investigate the connections between the genes within the NijmegenMicrocephaly
(HP:0000252) PPI network and the genes variant in DECIPHER patients presenting withMi-
crocephaly (Fig. 3B), we took the set of 12 genes participating in the NIJMEGEN-derived mi-
crocephaly PPI network (Fig. 3A) and asked whether they were more connected to the 606
genes (in the PPI database) affected by 55 CNVRs identified amongst the DECIPHER micro-
cephaly patients (seeData; S7 Table), than to genes hit by 500 randomised sets of 55 CNVRs,
matched in the number of contiguous genes that were present in the PPI database as the origi-
nal set. Randomised regions were prohibited from containing any of the 12 genes participating
in the NIJMEGEN-derived microcephaly PPI network.

Phenotypic similarity
Phenotypic similarity between patients was calculated using the Goodall3measure [72]. The
Goodall3measure gives a high weight to the shared presence of rare phenotypes and the shared
absence of common phenotypes and was deemed more appropriate than other measures such
as semantic similarity (S3 Fig.). For each pair of patients, the phenotypic similarity was calcu-
lated as the sum of the weighted similarity (G) of the presence/absence of each of all the pheno-
types annotated to any of the 197 patients considered, where G is weight by the frequency (fi)
of the phenotype in the patient population:

Gi ¼
1� f 2i if i is present in both patients

1� ð1� fiÞ2 if i is present in neither patient

0 if i is present in only one patient

8>><
>>:

For each of the significant functional enrichments, the group of patients sharing the respective
HPO term was divided into those patients with variant genes participating in the enrichment
(“contributing patients”) and those without (“non-contributing patients”). The significance
of the difference between the phenotypic similarity amongst contributing patients and be-
tween contributing patients and non-contributing patients was evaluated using a two-sided
Wilcox-rank-sum test (S5 Fig.). To ensure the test was well-powered, only those cases
where there were at least 10 contributing patients and at least 10 non-contributing patients
were considered.

Replicating phenotypic convergence. We replicated the phenotype analysis described
above using inherited CNVs amongst those 3,871 patients who did not possess a de novo CNV.
We reasoned that if the pathways identified above are indeed responsible for those patients’
phenotype then these same pathways could be used to identify the potentially pathogenic
CNVs from the likely benign CNVs among the 1,043 inherited or unknown inheritance CNVs
identified in these patients. We placed patients with the same specific phenotypic abnormality
into three mutually exclusive groups: (1) ‘candidate pathways’, defined as those patients whose
CNVs affect genes identified previously in the de novo CNV analyses above that contributed to
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significant functional enrichments; (2) ‘Extended pathways’, defined as those patients whose
CNVs affect no gene included in the candidate pathways but that are nonetheless annotated
with the same GO or KEGG function as previously associated functional enrichments or, for
BrainSpan and the PPI, genes with a direct functional link to one of the genes in the functional
enrichment; (3) ‘No pathway’, defined as those patients that possess either no CNVs or whose
CNVs do not affect genes within previously associated pathways. Firstly, phenotypic similarity
was calculated within the group of patients affecting candidate pathways as compared to the
phenotypic similarity observed between the patients in this group and those within the com-
bined group of patients affecting extended pathways or no pathway. Secondly, the phenotypic
similarity was calculated within the group of patients whose CNVs affected the extended path-
ways as compared to the phenotypic similarity between patients within the extended pathway
group and patients affecting no pathway.

Supporting Information
S1 Fig. Distribution of significant functional enrichments across phenotypes with different
numbers of patients. (A) Average number of significant functional enrichments per pheno-
type. Error bars indicate 95% Confidence Intervals. (B) Total number of significant enrich-
ments by data type: Gene Ontology (GO), Kyoto Encyclopaedia of Genes and Genomes
(KEGG), mouse knockout phenotypes (MGI), BrainSpan gene co-expression (BS). (C) Num-
ber of significant annotations (GO, KEGG, or MGI) vs the number of patients with the respec-
tive HPO and the number of genes in the whole genome with the respective annotation.
(TIF)

S2 Fig. Comparing GTEx and BrainSpan co-expression networks. (A) Pearson correlation
between GTEx and BrainSpan co-expression networks (all edges with r> 0.5 in both networks).
Each point is the average taken over 5000 edges. The Pearson correlation coefficient on the
unbinned data is noted in the corner of the plot (r = 0.14); (B) Phenotypic similarity of subset of
patients contributing to a significant GTEx co-expression network. Solid line is p = 0.5, dashed
line is p = 0.05. Dark bars are using all phenotypes to calculate phenotypic similarity; light bars
are using only the subterms of the original human phenotype to calculate phenotypic similarity.
(TIF)

S3 Fig. Comparing Goodall similarity metric to semantic similarity (SS) for patient pheno-
type comparisons.While semantic similarity strongly weights the presence of a shared rare
character, nothing is learned from the shared absence of a character. By comparison, the Goo-
dall metric considers both the presence of shared rare character and the absence of a common
shared character towards the overall similarity. The Goodall metric is thus more suitable where
both the presence and absence of phenotypes are known, as is the case here with the systemati-
cally phenotyped Nijmegen cohort.
(TIF)

S4 Fig. Protein-Protein Interaction (PPI)-defined molecular networks formed from genes
copy number changed in patients who share the specified phenotype. The genes considered
for these networks were those that were identified from multiple functional genomics/path-
ways approaches (GO, KEGG, BrainSpan, or MGI). See Fig. 2. Only those 14 PPI networks
identified that contain a minimum of 5 genes are shown.
(PDF)

S5 Fig. Testing phenotypic convergence. Each set of patients sharing a given phenotype was
subdivided using each significant functional enrichment associated with that phenotype, eg.
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the KEGG Neurotrophin pathway, which was significantly enriched among CNV genes in pa-
tients with intellectual disability (ID). One group, ‘contributing patients’, contained all patients
with the phenotype (ie. ID) whose CNV affected genes contributing to the functional enrich-
ment (ie. belong to the Neurotrophin pathway); the other patients with the phenotype were
placed in the ‘non-contributing’ group. Then the distributions of pair-wise patient phenotypic
similarity within the ‘contributing’ group and between groups was calculated using the Goo-
dall3 index. Finally the significant of the differences between the medians of these two distribu-
tions was determined using the Wilcox rank-sum test.
(TIF)

S6 Fig. Replication of phenotypic convergence in patients without de novo CNVs.Overall,
patients whose CNVs (inherited or of unknown inheritance) affect genes in the same pathway
are phenotypically similar (p< 10–40). As per Fig. 4A The Y-axis gives the significance of the
overall phenotypic similarity amongst patients with a specific phenotype whose variant genes
belong to the associated pathways (A) or the extended pathway (B) with the phenotype (Intra)
as compared to those patients with the phenotype without CNVs affecting genes in the path-
way (Inter), with higher values indicating increasing relative similarity amongst association-
contributing patients. Each point represents a single significant pathway-phenotype associa-
tion, while the resources used to identify the pathways are shown on the X-axis (KEGG, MGI
mouse KO phenotypes, GO, BS BrainSpan gene co-expression). Combinations of methods (e.g.
GO-KEGG) illustrate the relative phenotypic similarity amongst patients possessing copy vari-
ant genes that individually contribute to multiple functional associations (see Results). “PPI”
values are those among patients contributing the interacting molecular networks identified in
Fig. 2 (see Results). Dots coloured blue or red indicate nominally significantly phenotypic sim-
ilarity or dissimilarity, respectively.
(TIF)

S7 Fig. Phenotypic convergence of significant BrainSpan enrichments using different cor-
relation thresholds. Edges in the BrainSpan co-expression network were restricted to those
gene pairs with a correlation at least as high as each threshold. (A) Pearson correlation> = 0.6
(B) Pearson correlation> = 0.7 (C) Pearson correlation> = 0.8 (D) Pearson correlation> =
0.9. Dark bars are phenotypic convergence calculated using all patient phenotypes, light bars
are phenotypic convergence calculated using only the child phenotypes of the original pheno-
type the enrichment was detected in.
(TIF)

S1 Table. Enrichments of genes whose 1:1 orthologues’ disruption in the mouse yields a
particular phenotype, amongst the copy number variant genes of patients who share a par-
ticular phenotype (patient-phenotype group).
(XLSX)

S2 Table. Enrichments of GO terms amongst the copy number variant genes of patients
who share a particular phenotype (patient-phenotype group).
(XLSX)

S3 Table. Enrichments of KEGG pathways amongst the copy number variant genes of pa-
tients who share a particular phenotype (patient-phenotype group).
(XLSX)

S4 Table. Enrichments among copy number variant genes in patients who share a particu-
lar phenotype (patient-phenotype group), of genes whose expression patterns are highly
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correlated.
(XLSX)

S5 Table. Genes that were individually identified by multiple functional enrichment/path-
way approaches for a given patient-phenotype group (S1–S4 Tables).
(XLSX)

S6 Table. Genes that were individually identified by multiple functional enrichment/path-
way approaches for a given patient-phenotype group whose protein products were found to
cluster significantly in a protein-protein interaction network.
(XLSX)

S7 Table. Mappings between HPO and the LDDM ontologies for the PPI network pheno-
types.
(XLSX)
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