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Potential for therapeutic manipulation of the UPR in disease
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Abstract Increased endoplasmic reticulum (ER) stress and
the activated unfolded protein response (UPR) signaling
associated with it play key roles in physiological processes
as well as under pathological conditions. The UPR normally
protects cells and re-establishes cellular homeostasis, but
prolonged UPR activation can lead to the development of
various pathologies. These features make the UPR signaling
pathway an attractive target for the treatment of diseases
whose pathogenesis is characterized by chronic activation of
this pathway. Here, we focus on the molecular signaling
pathways of the UPR and suggest possible ways to target
this response for therapeutic purposes.
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Abbreviations
ER Endoplasmic reticulum
UPR Unfolded protein response
ERAD ER-associated degradation
PERK Protein kinase RNA (PKR)-like

ER kinase
IRE1 Inositol requiring enzyme-1
ATF6 Activating transcription factor-6
GRP78 Glucose regulating protein 78
Hsp70 Heat shock protein 70
eIF2α Eukaryotic initiation factor 2
ATF4 Activating transcription factor 4
uORFs Upstream open reading frames

CHOP C/EBP homologous protein
GADD34 Growth arrest and DNA

damage-inducible 34
PP1c The catalytic subunit of protein

phosphatase
C/EBP CCAAT/enhancer-binding protein
PPARγ Peroxisome proliferator-activated

receptor γ
Nrf2 Nuclear factor erythroid2-related

factor 2
Keap1 Kelch-like erythroid-cell-drived

protein with cap’n’collar
homology-associating protein 1

cLD Core of yeast IRE1 ER-luminal
domain

XBP1 X-box binding protein-1
XBP1s Spliced form of XBP1
CREB/ATF cAMP response element binding/

activating transcription factor
XBP1u Unspliced form of XBP1
bZIP The basic-leucine zipper motif
GLS Golgi localization signals
SP1 Serine protease site 1 protease
SP2 Metalloprotease site 2 protease
CRE ATF/cAMP response element
ERSE ER stress response elements
HFD High-fat diet
STZ Streptozotocin
LPS Lipopolysaccharide
IL-4 Interleukin-4
FFA Free fatty acids
mTOR Mammalian target of rapamycin
mTORC1 and mTORC2 mTOR complex 1 and 2
IGF1 Insulin-like growth factor
TSC Tuberous sclerosis complex
IRS1 and IRS2 Insulin receptor substrate 1 and 2
PI3K Phosphotidyl inositol 3-kinase
SERCA Sarco(endo)plasmic reticulum

Ca2+-ATPase
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p38 MAPK p38 Mitogen-activated protein
kinase

TNF-α Tumor necrosis factor α
WR Wolcott-Rallison
α1-AT α1-antitrypsin
CF Cystic fibrosis
CFTR Cystic fibrosis transmembrane

conductance regulator
NBD Nucleotide-binding domain
PD Parkinson’s disease
HD Huntington’s disease
AD Alzheimer’s disease
AR-JP Autosomal recessive juvenile

parkinsonism
6-OHDA 6-Hydroxydopamine
Herp Homocystein-induced ER protein
JNK c-Jun N-terminal kinase
FoxO1 Forkhead box protein O1
Aβ Amyloid β peptide
APP Amyloid precursor protein
PS Presenilin
FAD Autosomal dominant familial AD
MEFs Mouse embryonic fibroblasts
MM Multiple myeloma
NFκB Nuclear factor κB
PBA 4-Phenylbutyric acid
TUDCA Tauroursodeoxycholic acid
MPTP 1-Methyl-4-phenyl-1,2,3,

6-tetrahydrophyridine

The endoplasmic reticulum and ER stress

The endoplasmic reticulum (ER) is an organelle that com-
prises a continuous membranous structure consisting of
tubules, flattened sacs, and the lumen [1]. The entire ER
network is interconnected, and the membranes serve to
separate molecules that reside in the lumen of the ER from
those in the cytoplasm [2, 3]. The ER is highly sensitive to
the nutritional and energy states of the cell, and it dramati-
cally adjusts its machinery depending on the demand creat-
ed in the cell [4, 5]. The ER folds and modifies newly
synthesized peptides into their tertiary, lowest energy con-
formation [6], following which proteins are translocated to
the Golgi apparatus for packaging and secretion, or are
transported to membranes [5, 7, 8] (Fig. 1). Proteins that
enter the ER are subjected to post-translational modifica-
tions such as N-linked glycosylation, disulfide bond forma-
tion, and proline hydroxylation [9, 10].

The ER lumen has characteristics of the extracellular
environment [10], and it is possible that the ER is evolved

from an invagination of the plasma membrane [10]. This is
indeed a viable possibility and is supported by the observation
that secretory proteins are produced in the ER in an environ-
ment similar to that of the extracellular conditions, enabling
proteins to protect their conformation when they are outside
the cell. Similarly, the calcium concentration within the ER is
the same as that of the extracellular environment [11]. As all
secretory and membrane proteins pass through the ER before
exiting the cell to face the extracellular environment, it is
likely the ER provides a final control point to ensure the
fidelity of proteins before exporting them out of the cell. In
addition to proteins, sterols, phospholipids, and assembled
lipoproteins are also synthesized in the lumen of ER [12,
13]. Finally, the ER serves as a major calcium reservoir:
maintenance of a high calcium concentration within the ER
is essential for ER function, and for optimizing the activity of
enzymes within the ER [14–16].

The so-called misfolded proteins, which are not properly
folded into their functionally active structures, are retained in
the lumen of ER until they attain their proper conformations
[5, 17, 18]. If this final tertiary structure cannot be achieved,
misfolded proteins are then transported back to the cytosol and
subjected to ubiquitination and proteasome-dependent degra-
dation, a process referred to as ER-associated degradation
(ERAD) [17–19] (Fig. 1). Under conditions wherein
misfolded proteins accumulate within the lumen of the ER,
or when ER capacity cannot meet the demand for protein
synthesis, the organelle enters into a state called “ER stress”
[5, 17, 18]. This condition is triggered by processes such as
increased protein synthesis, genetic mutations that cause de-
fects in folding, alteration in calcium homeostasis, and nutri-
ent starvation such as glucose deprivation [5, 15, 17]. As a
cellular recovery and survival mechanism, the ER responds to
ER stress by activating a series of complex coordinated sig-
naling pathways, collectively called the unfolded protein re-
sponse (UPR) [4, 5, 17, 18, 20–22] (Fig. 2). The UPR is a
physiological response when it occurs in acute settings, but it
can lead to pathologies, or even cell death (reviewed below)
under conditions of chronic, unresolved ER stress.

The unfolded protein response

The UPR is initiated by activation of three major transducers:
protein kinase RNA (PKR)-like ER kinase (PERK),
inositol requiring enzyme-1 (IRE1), and activating transcrip-
tion factor-6 (ATF6) [5, 23] (Fig. 2). The primary role of the
UPR is to maintain and re-establish ER homeostasis [4, 23].
Under physiological conditions, the UPR is activated as a
cellular survival program that protects the cell from ER stress
and helps it recover from damage or increased work over-
loads. In essence, the UPR functions to reset the ER, from the
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“stress” state back to its normal condition [4, 17]. However,
sustained ER stress and prolonged UPR activation can also
trigger the apoptotic machinery, and ultimately lead to cell
death [4, 18]. Despite the beneficial role of the UPR in the
maintenance of cellular homeostasis, prolonged ER stress
often leads to pathological conditions [21, 24, 25]. The func-
tional significance of the UPR is not yet fully understood, but
it is known to contribute to the pathogenesis of many diseases
including diabetes, cancer, atherosclerosis, neurologic dis-
eases, and inflammatory bowel disease [4, 22, 26–28].

Under ER stress conditions, a chaperone called the glu-
cose regulating protein 78 (GRP78) initially cues the three
transducers of the UPR for activation of downstream sig-
naling cascades [5, 29]. GRP78, also known as BiP, is a
member of the Hsp70 family of chaperones, and it negative-
ly regulates the UPR signaling pathway by physically
interacting with the three UPR transducers [5]. In the basal
state (no external stimulus or stress condition), GRP78 is

bound to the luminal domains of PERK, IRE1, and ATF6,
and the three UPR transducers remain in a state of low
activity [5]. Under stress conditions (accumulation of un-
folded and misfolded proteins in the ER), GRP78 is released
from all three transducers and binds to unfolded and
misfolded proteins in the lumen of ER [30]. Exactly how
the transducers sense ER stress is still under investigation
[23]. Several models have been proposed for activation of
the UPR and suggest that each branch of the UPR is sepa-
rately regulated [17, 18]. Below, we briefly outline how the
UPR signaling elements are regulated in order to understand
potential therapeutic approaches.

Protein kinase RNA (PKR)-like ER kinase

PERK is a type I transmembrane kinase that resides in the
ER. Activation of PERK during ER stress reduces protein
synthesis globally [29, 31], thereby decreasing the speed of
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entry of new polypeptides into the ER. This mechanism
facilitates the process of homeostasis, by enabling the
existing unfolded proteins in the lumen to attain their folded
conformation. While PERK plays a central role in the reg-
ulation of the UPR, we do not fully understand the mecha-
nism by which PERK senses ER stress, although several
models have been suggested [18]. For example, the binding
of GRP78 to PERK may maintain PERK in an inactive
state, as supported by reports that GRP78 and PERK form
a complex under normal conditions [30], and that PERK is
activated by reduction in the expression of GRP78 and is
inhibited when GRP78 is overexpressed [30]. Thus, one
model posits that as a result of an increase in the amount
of unfolded proteins in the lumen of ER, GRP78 is titrated
away from PERK by the misfolded proteins, and this disso-
ciation leads to oligomerization and activation of PERK [17,
18]. Another model proposes that accumulation of unfolded
proteins leads to a dissociation of GRP78 from the unfolded
proteins that it is bound to in the lumen. This leads to direct
binding of the unfolded proteins to the luminal domain of
PERK, which in turn results in oligomerization and

autophosphorylation of PERK [18]. The deep groove
formed by the dimeric structure of PERK can support the
direct binding of a peptide [17, 18]. Additional detailed
studies are needed to unravel the mechanisms of PERK
activation.

The kinase activity of PERK leads to phosphorylation of
Serine51 of its main downstream effector, the eukaryotic
initiation factor 2 (eIF2α), which then leads to global atten-
uation of protein synthesis [29, 31]. However, proteins such
as activating transcription factor 4 (ATF4) escape from this
global inhibition of protein synthesis [32]. ATF4 contains
inhibitory upstream open reading frames (uORFs) in its
mRNA that normally suppress the initiation of translation
in the absence of ER stress [33]. However, when ER stress is
elevated, phosphorylated eIF2α leads to ribosomal skipping
of the uORFs and active translation of ATF4 mRNA [33].
ATF4 acts as a transcription factor for genes that contribute
to ER function and apoptosis. An example of an immediate
ATF4 target gene is the transcription factor C/EBP homol-
ogous protein (CHOP) [34, 35], which is believed to partic-
ipate in the initiation of apoptotic pathways by upregulating
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the transcription of genes when accumulation of unfolded/
misfolded proteins goes beyond the capacity of the ER [36].
Another gene induced by ATF4 is growth arrest and DNA
damage-inducible 34 (GADD34) [37, 38]. GADD34 inter-
acts with the catalytic subunit of protein phosphatase (PP1c)
[37] and serves as a negative feedback loop to deactivate
PERK action by dephosphorylating eIF2α, by which it re-
sets the UPR to the basal state once ER stress is resolved
[37, 38].

eIF2α phosphorylation also increases translation of
CCAAT/enhancer-binding protein (C/EBP) in in vitro models
[39]. Likewise, reduced phosphorylation of eIF2α, achieved
by overexpression of GADD34 in the liver, leads to decreased
expression of C/EBPα and C/EBPβ, and of their downstream
effector PPARγ [39]. Accordingly, GADD34 transgenic mice
display lower blood glucose levels, improved glucose toler-
ance, lower levels of liver glycogen, and diminished
hepatosteatosis [39].

Another effector protein that is phosphorylated by PERK
is nuclear factor erythroid2-related factor 2 (Nrf2) [40],
which forms a complex with Kelch-like erythroid-cell-
drived protein with cap’n’collar homology-associating pro-
tein 1 (Keap1). The Nrf2/Keap1 complex is maintained in
the cytoplasm under normal conditions (without ER stress)
and is subjected to degradation by ubiquitin–proteasome
pathway [40]. Upon ER stress, PERK phosphorylates Nrf2
and results in dissociation of the Nrf2/Keap1 complex. The
released free Nrf2 stably translocates to the nucleus, and acts
as a transcription factor for genes that encode antioxidant
proteins and detoxifying enzymes [40].

Inositol requiring enzyme 1

The second arm of the UPR is IRE1. Like PERK, IRE1 is
also a type I transmembrane kinase, and the two transmem-
brane proteins share similar structures in their luminal do-
mains [18, 41]. IRE1 is highly conserved from yeast to
humans [42, 43]. Two homologues of IRE1 have been
identified: IRE1α and IRE1β [41]. IRE1α is expressed in
all cells throughout the body, while expression of IRE1β is
restricted to the intestinal epithelium and lung [44, 45].
IRE1 has endoribonuclease as well as kinase activity
[46–48]. During ER stress, IRE1-bound GRP78 is released
from IRE1 [49]. Studies in yeast document that, once this
release occurs, the structure of IRE1 allows it to bind to
unfolded proteins, providing insight into the mechanism of
the IRE1 activation that follows ER stress [17, 30, 49].
IRE1α has a conserved cLD, which contains interface 1
and interface 2 [50]. Interface 1 forms a deep groove where
peptides can bind, while interface 2 induces further oligo-
merization [50]. As IRE1 senses ER stress and oligomerizes,
its kinase and endoribonuclease activities are activated
[51], and it is auto-phosphorylated, which increases its

kinase activity, initiating a signaling cascade that can
activate c-Jun amino terminal kinase (JNK) [52]. The
endoribonuclease domain of IRE1 cleaves the mRNA of a
transcription factor called X-box binding protein-1 (XBP1)
[53–55], and leads to the translation of a higher molecular
weight protein, which is the spliced form of XBP1 (XBP1s)
[43, 56–58].

XBP1 is a member of the CREB/ATF basic region-
leucine zipper family of transcription factors, and is ubiqui-
tously expressed in adult tissues [59]. The full-length XBP1
mRNA is referred to as unspliced XBP1 (XBP1u) [53, 54].
IRE1 cleaves the mRNA of XBP1u and initiates the exci-
sion of 26 nucleotides from the mRNA [53], which in turn
results in a frame shift and ultimately in the generation of
the spliced form XBP1s [53–55]. While XBP1u is extreme-
ly unstable, and is subjected to proteasome-dependent and
-independent degradation soon after translation [60], XBP1s
is a highly active transcription factor and a master regulator
of ER capacity [4, 5, 18, 57, 58, 61]. XBP1s upregulates
expression of ER chaperones [57, 62] and the components
of ER-associated degradation [57], and also plays a key role
in ER expansion [58, 63]. While XBP1s target genes are
fairly well known [57], the exact role of XBP1u is debated.
XBP1u was initially believed to negatively regulate the
transcriptional activity of XBP1s by directly interacting with
the spliced form, forming a complex, and directing XBP1s
to proteasome-mediated degradation [64, 65]. However, a
subsequent report suggested that XBP1u is capable of in-
ducing the UPR and increasing expression of XBP1s target
genes as well as other non-target genes, but only if XBP1u is
stabilized and its degradation is blocked as implicated by a
XBP1u mutant with improved stability [60]. It has been
documented that the half-life of XBP1u is extremely short
and the protein is usually subjected to rapid proteasomal
degradation soon after synthesis, at a rate that is almost the
same as its level of synthesis [60]. The same study also
concluded that the short half-life of XBP1u abrogates a
physiologically significant role for the unspliced protein
and proposed that the rapid degradation of XBP1u is re-
quired to prevent uncontrolled activation of the UPR [60].
We also agree that XBP1u does not have any physiological
importance as we have been unable to detect the unspliced
protein in any tissue or cells that we have examined to date
(unpublished observations).

Activating transcription factor 6

The third arm of the UPR is ATF6, which is categorized as a
type II transmembrane protein with two homologs, ATF6α
and ATF6β [66]. Structurally, ATF6 contains a DNA-binding
domain with the bZIP and a transcriptional activation domain
in the cytoplasmic portion [66]. In its N-terminus, ATF6
carries two Golgi localization signals (GLS), referred to as
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GLS1 and GLS2 [67, 68]. Under normal conditions without
ER stress, GRP78 binds to GLS1, and this interaction retains
ATF6 in an inactive state in the ER membrane [67, 68]. Once
activated by ER stress, GRP78 is released from ATF6, and
triggers the translocation of ATF6 to the Golgi apparatus, a
process that requires the GLS2 domain [67]. The transported
ATF6 is subjected to intramembrane proteolysis, whereby it is
cleaved by SP1 and SP2 [69–71], resulting in the generation
of a 50-kDa DNA-binding domain of ATF6 derived from its
cytoplasmic tail, referred to as ATF6F or ATF6N [68]. The
cleaved fragment translocates to the nucleus and acts as a
transcription factor that activates UPR target genes. ATF6
regulates the expression of a variety of genes that contain that
CRE and ERSE [62, 72]. While little is known about the
negative regulation or deactivation of ATF6, XBP1u also
reportedly binds ATF6α and leads to proteasomal degradation
of ATF6α [65].

The UPR elements in pathophysiology

The exact functions of the UPR under physiological and
pathological conditions, and its role in disease pathogenesis,
are not fully understood yet. However, what we do know is
that the UPR is involved in various processes, including
development, differentiation, maintenance of homeostasis,
and apoptosis [17, 25]. The physiological role of the UPR is
well defined from studies with animal models. In this section,
we review the knockout models that have been developed for
elucidating the role of the major UPR signaling molecules in
pathophysiology, focusing mainly on metabolic diseases.

PERK in pathophysiology

An important characteristic of the Perk−/− mouse is that it
develops diabetes, due to the destruction of pancreatic β cells
[73]. Under normal conditions, insulin is synthesized in re-
sponse to increased glucose levels in the blood, and is secreted
into the circulation to keep glucose levels within a very tight
range [74]. Insulin biosynthesis takes place in the ER of
pancreatic β cells, and is dynamically controlled by ER ca-
pacity and stress conditions. When the demand for insulin
synthesis exceeds the capacity of the ER, it triggers ER stress,
and activates PERK [4] and its downstream effector eIF2α, to
reduce the workload. In Perk−/− mice, however, protein syn-
thesis cannot be controlled by PERK even under conditions of
ER stress [73]. In fact, when Perk−/−mice are challenged with
glucose, uncontrolled synthesis of insulin further triggers ER
stress [31, 73]. The prolonged unresolved ER stress initiates
the apoptotic pathway, culminating in the destruction of β
cells and the development of diabetes [73].

While the study of whole body knockout mouse models
of PERK points out an important role this kinase activity in

pancreatic β cell biology, β cell-specific PERK-deficient
mice surprisingly do not develop diabetes [75]; rather they
have a normal number of β cells and display normal glucose
tolerance with low of blood glucose level [75]. Further
investigation is needed to clarify the relationship between
PERK, insulin biosynthesis, and its regulation in β cells.

eIF2α in pathophysiology

Mice in which Serine51 of eIF2α is mutated to Alanine
(eIF2αS51A mice) have a complete defect in eIF2α phos-
phorylation at Serine51. They display defects in pancreatic
β cells during late embryonic development, and develop
severe hypoglycemia and a failure to survive for more than
18 h after birth [76]. Multiple factors are believed to be
responsible for the hypoglycemia in eIF2αS51A mice, in-
cluding lower levels of gluconeogenic enzymes and dimin-
ished glycogen storage in the liver [76]. Heterozygous
eIF2αS51A mice, on the contrary, have a functionally active
pancreas, plus normal basal glucose and insulin levels [77].
They display normal glucose tolerance levels and insulin
sensitivity under normal diet feeding conditions. However,
when heterozygous eIF2αS51A mice are challenged with a
high-fat diet (HFD), they develop a higher level of obesity
compared to control animals [77]. A combination of an
eIF2α mutation and HFD leads to abnormal ER function,
glucose intolerance, and reduced insulin sensitivity [77].
Note that transgenic mice, in which the function of eIF2α
is impaired, exhibit features that are similar to those ob-
served in humans with type 2 diabetes. The absence of
eIF2α in mice results in increased ER stress and malfunc-
tion of the pancreas, resulting from β cell destruction [77].

CHOP in pathophysiology

Depletion of CHOP, a factor that promotes programmed cell
death, improves β cell function and cell survival in mice [78].
The type 2 diabetes that is induced by a high fat diet (HFD)
and treatment with a moderate dose of streptozotocin (STZ) is
reversed by deletion of the CHOP gene [78]. Deficiency in
CHOP maintains insulin secretion and prevents hyperglyce-
mia in the HFD/STZ mouse model [78]. These features are
also observed in the leptin receptor-deficient obese db/db
mouse model [78]. CHOP deletion alone leads to an increase
in body weight with augmented adiposity, but without any
disturbance in glucose metabolism [78–80]. The contributions
of CHOP function to other organs have also been reported [81,
82]. In particular, the induction of apoptosis in lung tissue
following intraperitoneal treatment with LPS is suppressed in
CHOP knockout mice [82], as is ischemia-associated apopto-
sis of neurons in the brain [81].

Another example of the pathological effects of a chronic
UPR is seen in the AkitaIns2 mouse model [83]. This mouse
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has a missense mutation in the proinsulin 2 (Ins2) gene
(Cysteine96 residue to Tyrosine) [84, 85], which disrupts
disulfide bonds between chains of insulin and leads to
improper folding of insulin. The resulting unfolded insulin
is retained in the ER of pancreatic β cells, induces ER stress,
and activates UPR signaling [83]. Phenotypic features of the
AkitaIns2 mouse include hypoinsulinemia and hyperglyce-
mia [83]. These features of type I diabetes are believed to be
primarily due to chronic activation of the UPR in β cells,
triggered by the accumulation of unfolded insulin protein
[83, 86]. This notion is substantiated in studies of AkitaIns2

mice that are crossed with Chop−/− mice. Prolonged ER
stress in the pancreatic β cells is known to induce expres-
sion of CHOP, an ER stress-associated apoptosis factor [87];
thus, increased expression of CHOP, as in the AkitaIns2

mouse, causes programmed cell death of pancreatic β cells
and the development of progressive hypoinsulinemia and
diabetes [83]. However, when the AkitaIns2 mouse is bred
with Chop−/− mice, the offspring AkitaIns2Chop−/− mice
exhibit decreased apoptosis of pancreatic β cells and a
resulting delay in the progression of diabetes [83].

In parallel, deletion of CHOP prevents UPR-induced apo-
ptosis and improves glucose homeostasis in HFD-fed
eIF2αS/A mutant mice that are obese and diabetic [78]. CHOP
deletion improves β cell function and preserves pancreatic β
cell mass [78]. These phenotypic features are also observed in
STZ-treated mice and leptin receptor-deficient db/db mouse
model wherein CHOP deletion improves glucose tolerance
and prevents hyperglycemia in the fasting state [78].

ATF6α in pathophysiology

ATF6α knockout mice do not display significant differences
in the expression of ER chaperones relative to controls [88].
mRNA expression profiling of Atf6α−/− cells demonstrates
no changes except in expression of the Atf6α gene. More-
over, mice in which ATF6α is deleted do not display any
developmental defects, leading to the conclusion that
ATF6α does not have an important role in embryonic and
postnatal development [88]. However, in vitro as well as in
vivo studies show that ATF6α is needed for folding, secre-
tion, and degradation during ER stress condition [88],
suggesting that ATF6α is involved in mediating adaptation
to chronic ER stress. Atf6α−/− mice also display persistent
ER stress in the liver and kidneys upon induction of ER
stress with chemicals [89], and unresolved ER stress in the
liver of these mice results in a loss of lipid homeostasis and
microvesicular steatosis [89].

XBP1 in pathophysiology

A physiological role for XBP1 was first identified for the
differentiation of plasma cells [90]. XBP1 expression was found

to be upregulated by IL-4 when plasma cells were induced to
differentiate [91]. Accordingly, XBP1 overexpression in B cells
induces terminal differentiation of these cells into antibody-
producing plasma cells [90]. Likewise, XBP1 depletion results
in fewer numbers of plasma cells, while the B cells themselves
display a defect in immunoglobulin production in in vitro [90].
The importance of XBP1 in physiological conditions is sub-
stantiated by reports that germline deletion of XBP1 is lethal
[92, 93]. These initial studies on XBP1 were performed prior to
the recognition that XBP1 is the mammalian homolog of
Hac1p, and that it plays a key role in UPR signaling. Germline
Xbp1−/− mice die from severe liver hypoplasia [92] or necrosis
of cardiac myocytes [93]. On the other hand, heterozygous
Xbp1+/− mice are viable and appear to possess no phenotype
until they are challenged with a HFD (discussed further below
under “Obesity and type 2 diabetes” section) [26].

The UPR in disease

As outlined above, elements of the UPR participate in
various physiological conditions. Although precise genetic
and mechanistic association of the UPR with human disease
has not been fully investigated yet, considerable ongoing
basic research is focused on uncovering how the UPR
contributes to human disease, and results of such studies
are rapidly being translated to clinical settings. Malfunction
of the ER and failure in localization of proteins to their
correct cellular destinations are widely believed to cause a
number of diseases in humans [4, 5, 25, 94, 95]. Some of
these examples, which are related to metabolic, neurodegen-
erative, and oncologic disorders, are discussed briefly below
and of potential therapeutic relevance to UPR-directed strat-
egies are outlined below.

Obesity and type 2 diabetes

Obesity is a complex metabolic disorder that contributes to
the development of many other life-threatening diseases,
including heart disease, type 2 diabetes, and cancer
[96–98]. Type 2 diabetes is a highly debilitating condition
that arises in obesity [96, 99]. Over the last decade, in-
creased ER stress signaling has been implicated in the
development of insulin resistance and type 2 diabetes [26,
27, 100, 101]: initial observations indicated that ER stress
parameters, such as phosphorylation of PERK and IRE1, are
increased in the liver and adipose tissues of obese and type 2
diabetic mice [26, 100, 102–105]. Increased ER stress sig-
naling, through activation of IRE1, leads to inhibition of
insulin receptor signaling, which in turn results in insulin
resistance and type 2 diabetes [26]. Furthermore, when
Xbp1+/− mice, which are on a background that is completely
resistant to the development of obesity, insulin resistance,
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and type 2 diabetes, are fed a HFD, these mice in fact
develop obesity, severe insulin resistance, and type 2 diabe-
tes [26]. These observations provide the first evidence that
ER stress has a key role in the pathology of type 2 diabetes.
Since then, other groups have also reported that ER stress is
increased in obesity, and have established a causal relation-
ship between the protein folding capacity of the ER and
insulin sensitivity in obesity [103, 105].

Intense efforts are currently aimed at understanding why
ER stress develops in obesity. It was reported that free fatty
acids (FFA), which are implicated in the development of
insulin resistance in obesity, cause ER stress and activate the
UPR [106–108]. For example, the saturated FFA palmitate
creates ER stress in pancreatic β cells, hepatocytes, and
cardiomyoblasts. Excess palmitate causes perturbations in
the ER system, and activates the UPR by altering the integ-
rity of the ER membrane [109–112]. Another possible link
between obesity and the development of ER stress is the
mammalian target of rapamycin (mTOR) signaling pathway
[113]. mTOR is involved in regulating a wide range of
cellular events, such as growth, proliferation, metabolism,
autophagy, and apoptosis [114, 115]. mTOR functions in
two different complexes called mTOR complex 1 and 2
(mTORC1 and mTORC2) [116, 117]. mTORC1 comprises
mTOR, raptor, mLST8, Deptor, and PRAS40; and
mTORC2 is composed of mTOR, rictor, Deptor, Protor,
mSIN1, and mLST8 [117]. Increased activation of the
mTORC1 pathway blocks insulin and IGF1 signaling path-
ways. In tuberous sclerosis complex (TSC)-deficient cells,
the insulin-induced tyrosine phosphorylation of insulin re-
ceptor substrate 1 and 2 (IRS1 and IRS2) is blocked, and
consequently, activation of phosphotidyl inositol 3-kinase
(PI3K) and its downstream Akt is inhibited [118, 119]. A
deficiency of the TSC1 or TSC2 genes leads to constitutive
activation of the mTORC1 complex [120, 121]. ER stress
levels in these TSC-deficient cells are elevated in an
mTORC1-dependent manner, and activation of the UPR
contributes to mTORC1-mediated inhibition of insulin sig-
naling via degradation of IRS1 [113]. Considering the fact
that obesity is characterized by increased mTORC1 activity,
it is possible that this pathway contributes to the develop-
ment of ER stress in obesity.

As discussed above, even heterozygous deficiency of
XBP1s is sufficient to create severe ER stress, insulin resis-
tance, and type 2 diabetes in mice fed a HFD [26]. Our
recent observations led us to identify an interesting pathol-
ogy that plays a central role in the development of ER stress
in obesity. We have shown that p85α and p85β, the regula-
tory subunits of PI3K, interact with XBP1s, and that this
interaction plays an important role in nuclear translocation
of XBP1s [122] (Fig. 3). This interaction is also extremely
important for driving the nuclear translocation of XBP1s
during postprandial states to inhibit gluconeogenesis, and

also to reduce ER stress as a result of nutrient fluxes.
However, the interaction between p85s and XBP1s is
disrupted in obesity, and there is a major reduction in nu-
clear translocation of XBP1s and in the upregulation of
chaperones [122]. These results indicate that obesity is
characterized by loss of XBP1s activity or by an XBP1s-
deficient state. Given these observations, it is possible to
postulate that loss of XBP1s activity contributes significant-
ly to the development of ER stress in obesity, and conse-
quently to insulin resistance and type 2 diabetes. Indeed,
reestablishing the activity of XBP1s in the liver of obese and
diabetic mice greatly enhances glucose tolerance, increases
insulin sensitivity, and reduces blood glucose levels to
euglycemia [123].

Calcium levels in the ER also contribute to the develop-
ment of obesity-related ER stress. Normally, the ER stores
free calcium, and the high calcium levels in its lumen are
essential for ER functions and ER homeostasis [14, 16].
Perturbation of luminal calcium concentrations in the ER
creates severe ER stress as it interferes with the activities of
enzymes and chaperones [14, 124]. The Ca2+ pump
sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) re-
sides in the ER membrane and functions to reuptake cyto-
solic calcium into the lumen of the ER [16]. Inhibition of
SERCA activity by thapsigargin blocks calcium reuptake
from the cytoplasm into the ER lumen, bringing about
severe ER stress and triggering activation of the UPR [16,
124]. Notably, SERCA2b, the main isoform of SERCA2 in
the liver [124], is significantly reduced in the liver of obese
and diabetic mice, and overexpression of this isoform in the
liver of obese mice markedly reduces ER stress and blood
glucose levels, resulting in improved glucose tolerance and
insulin sensitivity [15]. This role of SERCA2b is likely
mediated via increased chaperone activity as a result of
restoration of calcium levels in the ER by SERCA2b [15].

A recent surprising finding was that the inflammatory kinase
p38 mitogen-activated protein kinase (p38 MAPK) interacts
with XBP1s [125] (Fig. 3). In general, inflammatory pathways
are believed to be detrimental for metabolic homeostasis
[126–128]. Indeed, recent reports indicate that ER stress in
obesity could be induced by inflammation and inflammatory
signaling cascades [129–134]. However, activation of inflam-
matory signaling cascades by TNF-α during ER stress condi-
tions has a completely different effect, and in fact may lead to a
reduction in ER stress [125]. This outcome is mediated through
activation of p38 MAPK. Despite being one of the main
inflammatory nodules in the cell, p38 MAPK greatly enhances
nuclear translocation and activation of XBP1s by phosphory-
lating it on Threonine48 and Serine61 [125]. Furthermore, p38
MAPK is normally activated in the liver after refeeding, but this
signaling mechanism is blunted in obesity. Thus, phosphoryla-
tion of XBP1s is also diminished in obesity and its activity is
reduced [125]. Gain-of-function experiments in the liver of
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obese and diabetic mice support the finding that activation of
p38MAPK enhances XBP1s activity, relieves ER stress, great-
ly reduces glucose intolerance and insulin resistance, and ulti-
mately normalizes the blood glucose levels [125]. Collectively,
these observations raise the important issue of the various roles
played by inflammatory signaling in the development of met-
abolic diseases, and indicate that inflammation itself might even
be beneficial for ER stress states and for metabolic homeostasis
under certain circumstances.

Increased ER stress in hypothalamic neurons of obese
mice significantly contributes to the development of leptin
resistance and obesity [27]. In this context, brain-specific
XBP1 depletion in mice leads to the development of obesity
and severe leptin resistance when the animals are challenged
with a HFD [27].

Taken together, current evidence that links ER stress to
obesity and obesity-associated diseases suggests that reducing
ER stress in obesity would be an attractive strategy for the
treatment of obesity and type 2 diabetes. How can this be
achieved by targeting elements of the UPR signaling

pathways? Inhibition of IRE1 kinase activity without effecting
its endoribonuclease activity could be a possible therapeutic
modality aimed at reducing ER stress-mediated insulin resis-
tance. Increasing the activity of XBP1 also holds great prom-
ise for increasing ER capacity and reducing ER stress in
obesity. Indeed, as discussed above, XBP1s activity is also
reduced in obesity, and re-establishment of this activity has
robust anti-diabetic effects [123]. A major challenge in this
area of research, however, is that inhibition of a single mole-
cule or arm of the UPR signaling network might be compen-
sated by other mechanisms. However, the strategy of targeting
the ER as a whole, and increasing its capacity and efficiency,
may yield new therapeutic approaches for treatment of type 2
diabetes and obesity.

Wolcott-Rallison syndrome

The possible contribution of UPR elements in the develop-
ment of human disease has direct relevance for the pathogen-
esis of Wolcott-Rallison (WR) syndrome, a disorder
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characterized by early-onset diabetes and multiple epiphyseal
dysplasias [135, 136]. WR syndrome is an autosomal reces-
sive disease caused by mutations in the EIF2AK3 gene, which
encodes PERK in humans [135, 136]. The mutations in WR
syndrome impair the ability of PERK to phosphorylate eIF2α
[136]. Patients with this syndrome exhibit features that are
similar to those reported for PERK-deficient mice, which is
now an accepted model for studying the pathologies associat-
ed with this disorder [73, 135]. Patients with WR syndrome
develop hypoinsulinemia and hyperglycemia, due to a pro-
gressive destruction of pancreatic β cells [135, 137]. Striking-
ly, however, WR patients often display acute severe
hypoglycemia, which is not reported for Perk−/− mice [138].
WR syndrome has not been investigated in depth at a molec-
ular level, but the fact that PERK is a major contributor to the
development of type 1 diabetes mellitus in this syndrome
underscores the significance of the UPR in the pathophysiol-
ogy of WR-related diabetes.

α1-Antitrypsin deficiency

Deficiency of α1-antitrypsin (α1-AT) is an example of a
human disease caused by protein misfolding in the ER. α1-
AT is a protease inhibitor that is synthesized in the liver, and
functions primarily to protect cells from neutrophil elastase
activity, which enzymatically destroys tissues, especially in
lung alveoli. α1-AT deficiency is a genetic disorder caused by
a mutation in the α1-AT gene [139]. The mutant α1-ATZ
molecule is one of the most common deficiency variants
[139, 140], arising from a point mutation at the Glutamate342
which is substituted with a Lysine residue [140]. The substi-
tution disrupts the structure of α1-AT such that mutant α1-
ATZ molecules favor the formation of a dimer [140]. α1-ATZ
is functionally active even after it has been secreted
[141–143]. However, the ER machinery tends to retain the
misfolded α1-ATZ proteins in the lumen until such time as it
may be properly folded [142]. α1-ATZ is degraded by the
proteosome-dependent pathway [144], but also by autophagy
[145]. The α1-ATZ that is trapped in the ER of liver cells
triggers elevated ER stress and inflammation [146].

Levels of ER stress and activation of the UPR have not yet
been extensively studied within the context of α1-AT defi-
ciency in humans. However, increased levels of XBP1s and
ATF4 are reported in monocytes from humans with α1-AT
deficiency [147]. Overexpression of active ATF6 in cells pro-
motes the disposal of α1-ATZ by ER-associated degradation
pathways [148], directing to a strategy that could limit hepatic
damage caused by α1-ATZ that is trapped in the ER. Howev-
er, the lack of functional α1-AT in patients by this approach
would present an obstacle. Methods that induce proper folding
ofα1-ATZ, or improve release ofα1-ATZ from the ER, might
be more viable in terms of therapeutic applications because
the mutated form would be active in this case.

Cystic fibrosis

Cystic fibrosis (CF) is caused by a mutation in the gene that
encodes the cystic fibrosis transmembrane conductance regu-
lator (CFTR) protein [149], an ion channel that regulates the
transport of chloride and sodium ions across epithelial mem-
branes. A mutation in CFTR results in the abnormal movement
of ions, and severely affects organs such as the lung, liver, and
pancreas [149]. As for other transmembrane proteins, CFTR is
synthesized in the ER [150]. The most common CFmutation is
the deletion of the phenylalanine508 residue (ΔF508-CFTR)
[151, 152]. While most of the misfoldedΔF508-CFTR protein
is subjected to proteasome-mediated degradation [150, 153],
some of it is retained in the ER and ER-Golgi intermediate
compartment [153, 154]. Newly synthesized CFTR is
glycosylated at Asparagine897 and 900 residues and
transported to the Golgi apparatus for further modification
before the transport to the plasma membrane [154]. The 508
aa resides in one of the two NBD, which is found in the
cytoplasmic region of the CFTR protein. TheΔF508 mutation
results in an overall conformational defect due to alterations in
domain–domain interactions within the protein. While the de-
tailed mechanism by which mutant CFTR is retained in the ER
is not fully understood, it is suggested that there are diarginine
(RXR) ER retention/retrieval signal motifs in the cytoplasmic
domain of CFTR. These motifs reside inside of the properly
folded CFTR protein. However, ΔF508 mutation leads to
exposure of these motifs to the ER lumen, and blocks complete
folding of the protein, which ultimately leads to retention of
CFTR protein in the ER and subsequent degradation [155]. In
support, replacing the arginine residues with a lysine restores
the trafficking and function of CFTR [156].

CF is often accompanied by chronic airway infection and
inflammation. Bronchial epithelia in humans with CF display
increased levels of XBP1s and ATF4 [157, 158], and in vitro
studies show that ATF6 levels are increased inΔF508-CFTR-
expressing cells [159]. Several studies suggest that activation of
the UPR in CF protects airway epithelia by increasing the
concentration of stored calcium [157, 158]. Activation of the
UPR protects from the amino acid loss and oxidative stress
caused by inflammation in CF [157, 158]. Meanwhile, CF
exhibits mechanisms to overcome increased ER stress and
inhibit further activation of the UPR. Mutant CFTR proteins
that are trapped in the ER are directly subjected to ubiquitin-
dependent proteasomal degradation [160]. In addition, CFTR is
transcriptionally repressed during ER stress and activation of
the UPR [161, 162]. Calreticulin, an ER stress-responsive
molecular chaperone found in the ER, decreases the expression
and membrane localization of CFTR [163, 164]. Accordingly,
downregulation of calreticulin increases CFTR expression in
the membrane, both in in vitro and in vivo settings [163, 164].
Thus, calreticulin likely traps mutant CFTR in the ER lumen.
Use of siRNA to downregulate ATF6 also leads to increased
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membrane CFTR and better ion flux through the CFTR [159].
The contribution of elements of the UPR to the regulation of CF
suggests that the modulation of UPR might yield opportunities
for developing novel CF therapeutics. As withα1-AT deficien-
cy, because the mutant CFTR molecule still retains some func-
tional capacity [165], a rewarding approach might be to
increase the membrane trafficking of CFTR with use of chem-
ical chaperones that facilitate its release from the ER.

Neurodegenerative diseases

ER stress and the UPR signaling are closely linked with
many neurodegenerative diseases, including Parkinson’s
(PD), Huntington’s (HD), and Alzheimer’s (AD) diseases.

Parkinson’s disease

PD is characterized by impairment of movement due to the
loss of dopaminergic neurons in the brain. Genetic studies
reveal that a familial form of PD, known as autosomal reces-
sive juvenile parkinsonism (AR-JP), results from defects in
the Parkin gene that encodes the ubiquitin protein ligase E3
[166–168], which tags proteins for degradation. It has been
suggested that the development of AR-JP, caused by a muta-
tion of the Parkin gene, is related to regulation of the UPR. In
this case, defective E3 activity in AR-JP leads to a failure in
the tagging of Parkin substrates for degradation, their accu-
mulation in the ER, and the triggering of ER stress in neurons
[169]. Prolonged ER stress ultimately leads to neuronal cell
death and the development of PD [169–171].

In vitro studies document that Parkin protein actively re-
sponds to the UPR. Parkin is upregulated during ER stress to
induce protein degradation [166, 167], and overexpression of
Parkin in dopaminergic neuroblastoma cells reduces ER stress
and suppresses neuronal cell apoptosis induced by the UPR
[166, 167]. Several studies indicate that CHOP mediates cell
death of dopaminergic neurons in PD [81, 172, 173]. For
example, the levels of CHOP are increased following admin-
istration of 6-hydroxydopamine (6-OHDA), a neurotoxin that
induces apoptosis of dopaminergic neurons [174]. In parallel,
Chop knockout mice are resistant to 6-OHDA treatment-
induced apoptosis of dopaminergic neurons [174]. Thus, with-
in the context of apoptosis and the development of neurode-
generative diseases, CHOP may emerge as an attractive target
for a therapeutic modality. However, because current data
were obtained from whole body Chop knockout mice, further
research is essential to confirm the role of CHOP in specific
populations of neurons.

Huntington’s disease

HD is also a genetic neurodegenerative disorder caused
by an increase in the number of CAG trinucleotide

repeats in the huntingtin (HTT) gene [175, 176]. Muta-
tions result in abnormally long huntingtin protein [177].
Fragments of long huntingtin protein bind with each
other and accumulate in regions of the cytoplasm and
in the perinuclear space [178, 179]. In most cases, these
accumulations form nuclear inclusions in neurons and
disrupt the function of the brain region that mediates
movement, thinking, and emotions [180, 181]. Aggregat-
ed huntingtin proteins impair the proteasome degradation
system, which leads to further accumulation of other
misfolded proteins [182, 183] and contributes to the
development of ER stress [177].

An in vitro study with the use of siRNA initially
suggested that the ER is involved in the development of
HD. Specifically, deletion of the HTT gene by siRNA
disrupts the structure and networks of the ER [184].
The finding that HTT proteins associate with microtu-
bules [185] led to the suggestion that HTT interferes
with the ER network by disrupting the configuration of
the cytoskeleton [184].

More direct evidence for the correlation of HD and ER
function is derived from postmortem brain samples of HD
patients, which display elevated expression levels of UPR
target genes such as CHOP, GRP78, and Herp [186]. Ex-
pression of these ER stress-related genes is augmented in an
HD mouse model [186]. In vitro studies by other investiga-
tors also confirm that ER stress and expression of UPR
target genes are increased in HD [187, 188]. Specifically,
expression of CHOP, GRP78, and PDI is higher (relative to
control) in a striatal cell line that was established from an
HTT knock-in mouse model [187]. Another group also re-
ports on elevated JNK activity in cells that overexpress
expanded poly(Q) peptides, which form aggregates resem-
bling those of HTT protein in HD [188]. JNK activation is
followed by caspase-12 activation and apoptosis [188].

Mutant HTT also disturbs ER calcium homeostasis [189].
Perturbation of high intraluminal calcium concentrations in
the ER interferes with the activity of chaperones, and creates
severe ER stress [14, 124]. A recent study showed that
XBP1 deletion decreases accumulation of HTT protein,
and protects against the development of HD symptoms in
the YAC128 mouse model, which carries the human HTT
gene with 128 CAG repeats [190]. The mechanism that
links reduced HTT protein with XBP1 deficiency is en-
hanced autophagy, which is regulated by increased expres-
sion of Forkhead box protein O1 (FoxO1) [190, 191]. This
observation is in parallel with the notion that XBP1s medi-
ates proteasome-mediated degradation of FoxO1 [123] and
by the observation that XBP1 deficiency results in increased
levels of FoxO1 [123]. Taken together, the above observa-
tions that ER homeostasis is disrupted in HD could be
incorporated into future studies aimed at developing novel
treatments for HD.
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Alzheimer’s disease

Elevated ER stress is a feature of AD, a disorder characterized
by formation of insoluble fibrous protein aggregates in the
brain. Amajor component of such aggregates is the amyloidβ
(Aβ) peptide [192, 193]. Aβ is generated via cleavage of the
transmembrane glycoprotein amyloid precursor protein (APP)
by presenilin (PS), which is a component of the γ-secretase
complex, a membrane-resident protease [192].

The length of Aβ varies from 36 to 43 amino acid residues,
depending on the site where APP is cleaved. The most com-
mon peptides are Aβ40 and Aβ42, which arise from cleavage
after residues 40 and 42, respectively [194]. In neurons, gen-
eration of Aβ40 occurs in the Golgi apparatus, while Aβ42 is
generated in the ER [194]. Generation of Aβ42 in the ERmay
be an initial event in the development of AD. Thus, inhibition
of Aβ42 production may arrest the development or progres-
sion of disease [194]. Accumulation of unfolded proteins and
activation of the UPR is also seen in patients with AD [195],
and the levels of GRP78 and phosphorylated PERK are ele-
vated in the temporal cortex and hippocampus of these pa-
tients at different stages of AD [195]. Moreover, the UPR is
activated in pre-tangle hippocampal neurons of AD patients,
as shown by the report of increased levels of phosphorylated
PERK, eIF2α, and IRE1 [196].

Genetic studies reveal more than 100 mutations in the PS
gene that are associated with an autosomal dominant famil-
ial AD (FAD) [197, 198]. Recent evidence indicates that PS
forms an ion channel for calcium trafficking [199] and
mutations of PS that are associated with FAD is important
for ER calcium homeostasis [199]. Therefore, mounting
evidence points to dysregulation of ER function and ER
stress signaling as having a key role in AD pathology.

Cancer

The link between the UPR and cancers has been amply
established as the UPR is highly activated in a number of
cancers. The expression of GRP78 and other glucose-
regulated proteins that are induced during tumor growth
[200] was documented in the 1990s. Since then, increased
GRP78 levels have been reported in several cancers, includ-
ing malignant human breast cancer [201], lung cancer [202],
colon cancer [203], and ovarian cancer [204, 205]. In agree-
ment with this notion, suppression of GRP78 inhibits cancer
cell growth [206, 207]. Increased levels of chaperones could
be protective for tumor cells and enable them to grow faster
and have a more solid ER homeostasis.

A role for IRE1 in cancer biology has also been highlighted
by investigations of malignant gliomas [208], which are dead-
ly, highly proliferative brain tumors. Angiogenesis is a partic-
ular hallmark of gliomas. Inhibition of IRE1 signaling results

in decreased angiogenesis, slower tumor growth rates, and
reduced invasiveness of the glioma cells [208]. Similarly,
depletion of PERK or ATF4 in human tumor cells also reduces
tumor growth rate and angiogenesis [209]. Furthermore,
PERK induces the translation of pro-angiogenic genes, and
PERK deletion in MEFs impairs vasculogenesis and decreases
cancer cell proliferation [210]. In addition, ER stress leads to
degradation of p53, a tumor suppressor gene [211]. Taken
together, many tumors depend on an intact UPR for survival.

Another example of the association between the UPR and
cancer is seen in multiple myeloma (MM), which is charac-
terized by excess production of monoclonal proteins in bone
marrow plasma cells. MM cells display increased ER stress
and elevated levels of XBP1 [212]. Earlier reports identified a
requirement of XBP1 in plasma cell differentiation [90], which
makes it plausible that XBP1 is involved in the development
of MM. In support of this notion, transgenic mice with
overexpression of XBP1s in B cells and plasma cells develop
pathology, including subendothelial immunoglobulin deposi-
tion, similar to that reported for human MM [213]. Further-
more, these mice exhibit aberrant expression of genes that are
also dysregulated in human MM [213]. In an effort to treat
MM by manipulating the UPR, treatment of MM cell lines
with a small molecule IRE1α endoribonuclease inhibitor
called MKC-3946 [214] resulted in reduced ER stress and a
reduced rate of tumor cell growth [214].

Bortezomib, a 26S proteasome inhibitor that is used in the
treatment of MM [215, 216], has an anti-cancer activity that
prevents degradation of pro-apoptotic factors such as IκB, and
suppresses production of anti-apoptotic proteins such as Bcl-2
[217, 218]. Degradation of IκB by the proteasome promotes the
translocation of nuclear factor κB (NFκB) to the nucleus, and
increases the expression of genes involved in cell growth and
cell survival. NFκB activity is reportedly elevated in MM pa-
tients [219]. Another mechanism responsible for bortezomib-
induced apoptosis of MM cancer cells involves ER stress [220,
221]. Prolonged ER stress created by bortezomib-induced
proteasome inhibition disturbs calcium homeostasis, and results
in the release of calcium from the ER. Uptake of this calcium by
mitochondria is followed by the release of cytochrome c, which
activates caspases and induces apoptosis [220]. Bortezomib is
known to trigger apoptosis inMMcells by activation of caspase-
2 [221]. Bortezomib promotes ER stress-induced apoptosis in
pancreatic cancer cells through activation of JNK [222]. Many
other reagents, including MKC-3946, enhance the cytotoxic
effects of bortezomib in MM [214]. MKK-3946 blocks the
splicing of XBP1, induced by bortezomib by inhibiting
endoribonuclease activity of IRE1 [214], thereby creating fur-
ther ER stress. It is not clear how exactly MKK-3946 blocks
XBP1 splicing without affecting phosphorylation of IRE1.
However, through this mechanism, IRE1 still has apoptotic
effect via activation of JNK in the presence of MKK-3946.
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Interestingly, low levels of total XBP1 mRNA are correlated
with resistance to bortezomib treatment, whereas high XBP1
mRNA levels increase sensitivity to bortezomib [223]. This
suggests that the total XBP1 mRNA levels prior to bortezomib
treatment are important for the response to therapy [223].

Chemical chaperones

What are chemical chaperones?

Chemical or pharmaceutical chaperones comprise a group of
low molecular weight compounds that are known to stabi-
lize protein conformation against thermally and chemically
induced denaturation [224, 225]. Agents that have chemical
chaperone activity include polyols, amines, glycerol,
tr imethylamine N-oxide, and dimethyl sulfoxide
[225–228], plus compounds such as 4-phenylbutyric acid
(PBA) and tauroursodeoxycholic acid (TUDCA) [104, 229].

The mechanism underlying chemical chaperone functioning

The mechanisms that mediate the functioning of chemical
chaperones in protein folding are not fully understood. We
discuss here two categories of action (Fig. 4): (1) compounds

such as DMSO or glycerol have the ability to coat proteins in
the ER, and mask hydrophobic patches on unfolded proteins,
thereby increasing the secretion of the proteins [230]. These
compounds do not increase the folding capacity of the ER;
rather they create a detergent effect, which increases the
release of unfolded proteins from the ER by allowing them
to escape quality control mechanisms of the ER. As discussed
below, one example of such a mechanism of action is the
release of mutated CFTR protein from the ER before it is
completely folded (see below in section on “Cystic fibrosis”)
[224, 231]; (2) compounds indirectly affect ER folding capac-
ity. For example, molecules that activate transcriptional pro-
grams leading to increased expression of chaperones in the ER
can also act as chemical chaperones. We believe it is unlikely
that chemical chaperones increase the folding of proteins in
the ER directly, thereby increasing their folding. To the best of
our knowledge, no examples of such effects of direct binding
exist in the literature. The suggestion of direct binding having
an influence on protein folding probably is derived from the
observations that some chemicals can increase the secretion of
the unfolded proteins, which led to the belief that these com-
pounds (chemical chaperones), like the known molecular
chaperones, assist protein folding.

In addition to these two possibilities, agents that regulate
ER calcium homeostasis could also serve as chemical
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chaperones. Recent observations indicate that increased
SERCA2b function could be beneficial for ER homeostasis
[15]. This approach, without changing the expressions of
chaperones, may increase the activity of molecular chaperones
or folding enzymes in the ER, thereby increasing ER folding
capacity.

Possible therapeutic implications of chemical chaperones
for disease

Type 2 diabetes and insulin resistance

The potential use of chemical chaperones for the treatment
of type 2 diabetes was first demonstrated in the study where
4-PBA and TUDCA were shown to reduce ER stress and
improve insulin sensitivity [104]. Administration of 4-PBA
and TUDCA, which have distinct structures but share sim-
ilar chemical chaperone activity, decreased PERK and IRE1
phosphorylation in the liver of obese and diabetic mice, and
greatly enhanced glucose tolerance and the diabetic pheno-
type [104]. While this study was a proof of principle, 4-PBA
and TUDCA are both weak chemical chaperones and must be
administered at high doses to reduce ER stress. Our current
working hypothesis with regard to the action of these chemical
chaperones is that they upregulate a complex transcriptional
program that increases ER capacity, and ultimately reduces
ER stress. Indeed, 4-PBA activates PPARα [232], and a more
recent report documents that PPARγ regulates ER function
[233]. Furthermore, TUDCA also affects other transcription
factors [234, 235]. Further and more detailed work is required
to understand the mechanism of action of these compounds in
regulating ER homeostasis.

The effects of TUDCA on ER stress and insulin sensitiv-
ity have been studied in humans [236]. TUDCAwas admin-
istered orally to obese and insulin-resistant human subjects
for 4 weeks, to determine whether it could effectively treat
insulin resistance in obese individuals by improving ER
capacity. However, our previous observations have shown
that TUDCA does not have a good oral availability in mice,
and high doses of the compound are required to reduce ER
stress in obese mice even when delivered via intraperitoneal
injection. Because it would be a challenge to achieve a
working dose of TUDCA through oral administration, the
experimental design was not optimally suited for exploring
possible beneficial effects of TUDCA in terms of reducing
ER stress in obese humans. Indeed, administration of
1,750 mg/day of TUDCA was not enough to reduce ER
stress in obese humans [236]. Nonetheless, significant in-
creases in insulin sensitivity were recorded following TUDCA
administration in this report [236]. The fact that TUDCA
caused increased insulin sensitivity in the absence of effects
on ER stress may indicate that the reduction in ER stress was

too low to detect by the techniques used or that TUDCA
exerted ER stress-dependent as well as -independent effects
on the insulin signaling pathway.

Leptin resistance

Increasing leptin sensitivity in obesity could provide a unique
strategy for treating this debilitating disease. Nevertheless,
despite extensive research efforts, no effective leptin sensi-
tizers have been described. Recent reports indicate that reduc-
ing ER stress in the hypothalamus of obese mice via the use of
chemical chaperones can provide a novel approach for in-
creasing leptin sensitivity and influencing the treatment of
obesity [27]. However, the same issues discussed above with
regard to a requirement for very high dose administration of 4-
PBA and TUDCA also apply in the case of leptin sensitiza-
tion. A critical next step will be to create more potent chemical
chaperones with better pharmacological availability to enable
translation of these studies from mice to humans.

α1-Antitrypsin deficiency

The first attempts at using chemical chaperones to stabilize
α1-ATZ and increase its secretion were with the use of glyc-
erol [143]. The simple addition of glycerol enhanced the
fidelity of protein folding, and resulted in better secretion of
α1-ATZ in in vitro models [143]. PBA treatment also signif-
icantly increases the secretion of ER-trapped mutant α1-ATZ.
Moreover, this effect of PBAwas demonstrated in transgenic
mice that carry the human α1-ATZ gene. Oral administration
of PBA significantly increased the release of human α1-ATZ
protein into the circulation [143, 237]. However, only the end
result, namely whether or not the chemical chaperone en-
hances secretion of α1-ATZ, was monitored in these experi-
ments. To understand the mechanistic underpinnings of how
chemical chaperones act, and to translate this approach to the
clinical setting, it is also important to verify whether the levels
of ER stress and activation of the UPR are affected.

Cystic fibrosis

As discussed above, the mutantΔF508-CFTR protein in CF
is retained in the ER [150, 160]. Earlier work showed that
glycerol facilitates the folding of mutant CFTR protein, and
increases the localization of CFTR to the membrane [238];
this work also examined the effect of PBA on CF in humans
[151]. Patients with the ΔF508-CFTR mutation, who re-
ceived 1 week of PBA therapy, exhibited partial improve-
ments of CFTR activity in nasal epithelia [151]. Nasal
potential difference responses, used to examine basal chlo-
ride transport as an indication of the channel’s activity, were
also improved following PBA treatment. However, the test
scores for sweat chloride concentration, which serves as an
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index of CFTR channel function, were unaffected by the
treatment [151]. With regard to this seeming discrepancy in
the results, it has been suggested that sweat chloride con-
centration does not necessarily predict the severity of lung
disease in CF patients [239]. The use of another compound
called benzo(c)quinolizinium has also been proposed for use
in increasing ΔF508-CFTR expression or for increasing
apical membrane trafficking of ΔF508-CFTR in the mem-
brane [240, 241]. The detailed mechanism of action of the
compound is not fully understood.

Neurodegenerative diseases

There is intense interest in how ER stress contributes to the
development of neurodegenerative changes, and in identify-
ing potential therapeutics that can target this process. A
number of studies have explored the effect of chemical
chaperones on neurodegenerative diseases. For example,
administration of PBA in in vitro and in in vivo models of
AD leads to a reduction in amyloid plaques in the brain and
improves phenotypic behaviors [242]. In vitro assays dem-
onstrated that PBA prevents apoptosis in neuronal cells
[243]. Similarly, amyloid plaques in the brain are also de-
creased with use of TUDCA [244], and apoptosis is reduced
in cell lines [245, 246]. Administration of TUDCA in a rat
model of HD improves the phenotypic features of HD [247].
TUDCA also has neuroprotective effects against MPTP, a
neurotoxin used to generate the rodent model of PD [248].

Cancer

Deficiency of tuberous sclerosis complex (TSC) genes consti-
tutively activatesmTOR signaling [120, 121] and contributes to
the development of tumors [219, 249]. It was shown that loss of
TSC activity elevates ER stress levels and promotes suscepti-
bility to ER stress-induced apoptosis [113]. In this study, more
apoptosis was observed in kidney adenomas from thapsigargin-
treated Tsc2+/− mice when compared to normal kidney tissues;
in other words, TSC-deficient tumor cells respond better to ER
stress-induced apoptosis. This observation provides an alternate
strategy for targeting tumors with TSC deficiency and
dysregulated mTOR signaling, and highlight that acute ER
stress-induced apoptosis may be stimulated with ER stress-
inducing agents in certain circumstances [113].

On the other hand, PBA treatment can induce apoptosis in
cancer cells, including those from colon cancer, prostate cancer,
and gastric cancer [250–252]. In fact, PBA has been already
tested in clinical trials for the treatment ofmalignant glioma [253]
and hematological malignancies [254]. However, the require-
ment for very high doses of PBA for successful treatment re-
mains as a challenge for this approach. Nonetheless, these studies
suggest that in certain tumors, the UPR provides anti-tumor or
tumor suppressor functions.

Conclusions

The UPR is a sophisticated and highly sensitive signaling
pathway that influences a broad range of activities within
cells. Its primary roles are to protect cells from undergoing
ER stress and to maintain ER homeostasis. However,
prolonged activation of the UPR can lead to apoptosis and
tissue damage. While significant progress has been made in
understanding how the UPR is regulated at the molecular
level, more detailed mechanistic knowledge is necessary for
effective manipulation of UPR elements in order to develop
strategies for the treatment of diseases. Reducing the effects
of ER stress in disease will probably require a variety of
approaches, depending on the disease. Increasing the fold-
ing capacity of the ER could be beneficial for some diseases
(e.g., obesity), as well as those that benefit the escape or
secretion of mutated proteins from the ER (e.g., CF). In
other circumstances, activating the UPR could be more
appropriate (e.g., TSC disease). It must be emphasized that
there is no universal solution that is relevant for developing
strategies to manipulate ER stress in different diseases.
Effective solutions will have to be individualized for each
condition.
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