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Liquids flow, and in this sense are close to gases. At the same time, interactions in liquids are strong as in
solids. The combination of these two properties is believed to be the ultimate obstacle to constructing a
general theory of liquids. Here, we adopt a new approach: instead of focusing on the problem of strong
interactions, we zero in on the relative contributions of vibrational and diffusional motion. We show that
liquid energy and specific heat are given, to a very good approximation, by their vibrational contributions as
in solids over almost entire range of relaxation time in which liquids exist as such, and demonstrate that this
result is consistent with liquid entropy exceeding solid entropy. Our analysis therefore reveals an interesting
duality of liquids not hitherto known: they are close to solids from the thermodynamic perspective and to
flowing gases. We discuss several implications of this result.

T
he development of basic theories of solids involved a number of important discoveries that date back to over
100 years. This was preceded by the development of the theories of gases. These developments form the basis
for current understanding of most essential properties of these two basic states of matter1. The third state of

matter, the liquid state, remains poorly understood in comparison. A testament to this comes from a surprising
fact that even recent textbooks dedicated to liquids do not discuss most basic liquid properties such as specific
heat2. Surprising though it may seem to a scientist outside the area, this fact has long been appreciated by those
teaching the subject. In an amusing story about student teaching experience, Granato recalls his persistent fear of
a potential student question about liquid specific heat3. Noting that such a question was never asked over many
years by a total of 10,000 students, Granato observes that this possibly reflects an important deficiency of our
standard teaching method that fails to mention unsolved problems in physics, both in lectures and textbooks.

Liquids flow, and share this property with gases. At the same time, interactions in a liquid are strong, and are
similar to those in solids. This presents a fundamental difficulty in calculating liquid energy in general form.
Indeed, strong interactions, combined with system-specific form of interactions, imply that the energy is strongly
system-dependent, ostensibly precluding the calculation of energy in general form, contrary to solids or gases1.

Strong interactions are successfully treated in solids in the phonon approach, but this approach has long been
thought to be inapplicable to liquids where atomic displacements are large. Stated differently, the ‘‘small para-
meter’’ in the theory of solids are atomic displacements, and a harmonic contribution to the energy, the phonon
energy, is often a good approximation. The small parameter in gases are weak interatomic interactions. On the
other hand, liquids have none of these because interactions are strong and displacements are large. The absence of
a small parameter was, in Landau view, the fundamental property of liquids that ultimately precluded the
construction of a theory of liquids at the same level existing for solids or gases1.

Here, we propose that reformulating the problem and exploring it in the new formulation provides an
important way in. Instead of starting at the level of strong interactions at the atomistic scale, we focus on the
atomic trajectories that result from these interactions. This reason is not unrelated to the one stated by Landau
above, but operates at a different level.

We have recently proposed4 that from the point of atomic dynamics, solids and gases are pure states of matter
in the sense that dynamics in solids is purely oscillatory and dynamics in gases is purely ballistic and collisional.
The dynamics of a liquid, on the other hand, is not pure but mixed: it involves both oscillations and ballistic
motions, and the relative contributions of the two types of motion change in response to external parameters,
temperature and pressure. Physically, the different behaviors arise because in solids the kinetic energy of particles,
K, is much smaller than the energy barriers between various potential minima, U: K = U. In gases, it is the other
way around: K ? U. In liquids, the mixed nature of dynamics originates because none of these strong inequalities
apply.

Notably, the solid-like oscillatory component of liquid dynamics originates from large energy barriers pre-
venting local atomic jumps and diffusion processes. Large energy barriers, in turn, are set by strong interactions -
this is how interaction strength, emphasized by Landau, enters our approach.
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In our approach to liquid thermodynamics, we therefore focus on
atomic trajectories and relative weights of solid-like oscillatory and
gas-like diffusional motions. In this approach, we present a proof that
liquid energy and heat capacity are given, to a very good approxi-
mation, by their vibrational contributions as in solids over almost
entire range of relaxation times in which liquids exist as such. We
show that this result is consistent with liquid entropy exceeding solid
entropy. Our analysis therefore shows that while liquids are close to
gases from the point of view of flow, they are also close to solids from
the thermodynamic perspective. This reveals a new property of
liquids not hitherto known: their duality.

We note that the possibility of oscillatory motion contributing to
liquid heat capacity has been contemplated before. This was done on
the basis of empirical observation that experimental specific heat of
some monatomic liquids (e.g. liquid metals) around the melting
point is close to the Dulong-Petit value5–7. Our new result here is
the rigorous proof that liquid heat capacity is given by the vibrational
motion over almost entire range of liquid relaxation time. This is an
important advance in view of the absence of a theory of liquids3.

Results
Energy and specific heat. Our first step is to calculate the liquid
energy by evaluating relative contributions of oscillatory and
ballistic diffusional motions. The evaluation can be done using the
concept of liquid relaxation time proposed by Frenkel8. Atoms or
molecules in a liquid are not fixed, but rearrange in space due to
thermally activated processes, giving liquid flow. Each flow event is a
jump of an atom from its surrounding cage, accompanied by large-
scale rearrangement of the cage atoms. We call this process a local
relaxation event (LRE). Frenkel introduced liquid relaxation time t as
the time between LREs at one point in space in a liquid8, and showed
that t is related to liquid viscosity g via the Maxwell relationship g 5
G‘t, where G‘ is the instantaneous shear modulus.

The concept of t has been widely used since to discuss liquid
dynamics and its changes with temperature9,10. In this picture, liquid
dynamics acquires a simple description: a particle spends time t
oscillating inside the cage before jumping to a nearby quasi-equilib-
rium site. The range of t is bound by two important values. At low
temperature, t increases until it reaches the value at which the liquid
stops flowing at the experimental time scale. This corresponds to t <
103 s and the liquid-glass transition9,10. At high temperature, t
approaches its minimal value given by Debye vibration period, tD

< 0.1 ps, when the time between the jumps becomes comparable to
the shortest vibrational period. As a result, t varies by about 16 orders
of magnitude in which the liquid state of flow can be measured.

There are two contributions to liquid energy, El: El 5 Evib 1 Edif,
where Evib and Edif are the energies of vibrations and diffusion,
respectively. Edif includes the kinetic energy of jumping atoms as
well as the energy of their interaction with other atoms during the
local jump events. Evib has two contributions predicted by Frenkel8:
one longitudinal mode and two transverse modes with frequency

vw

1
t

. The prediction was made on the basis of observation that at

times shorter than t, a liquid is essentially a frozen solid with all three
vibrational modes, including transverse ones. On the other hand, a
liquid flows and yields to shear stress at times longer than t, and

therefore does not support transverse modes at frequency vv

1
t

.

Since Frenkel’s prediction, the ability of liquids to support solid-like
modes with wavelengths extending to the shortest distance comparable
to interatomic separations has been confirmed experimentally11–17.
Notably, most of this experimental evidence is fairly recent, and has
started to come to the fore only when powerful synchrotron radiation
sources started to be deployed, some 50–60 years after Frenkel’s pre-
diction. This long-lived absence of experimental data about propagat-
ing collective excitations in liquids may have contributed to their poor
understanding from the theoretical point of view.

We note here that contrary to sometimes expressed views18,19,
collective excitations in disordered systems such as glasses and
liquids do not decay or get damped, and are propagating up to the
shortest wavelengths. Indeed, disordered systems support non-
decaying solutions, eigenstates, of the secular equation involving
the force matrix constructed from the disordered structure (this
structure is static in a glass whereas in a liquid it is static at times
smaller than t as discussed by Frenkel). The energy of the disordered
system is then equal to the energy of non-decaying eigenstate col-
lective excitations. Harmonic (plane-wave) excitations, including
those measured by the experimental probes, naturally decay in dis-
ordered systems, yet importantly these are clearly seen in liquids as
solid-like quasi-linear dispersion curves up to the shortest wave-
lengths11–17. This includes transverse waves with the shortest wave-
lengths comparable to interatomic separations that are seen in even
low-viscous liquids such as liquid Na15, Ga16, water17 and so on,
consistent with Frenkel’s prediction. A detailed discussion of this
point is forthcoming. Below, we will make use of the fact that the
experimental solid-like quasi-linear dispersion curves in liquids
imply that their vibrational density of states can be approximated
by the quadratic form g(v) / v2 to the same extent as in solids.

Lets now consider the regime where LREs take place rarely com-
pared to the short period of vibrations:

tD

t
=1 ð1Þ

The jump probability for a LRE, r, is the ratio between the time spent
diffusing and vibrating. A LRE lasts on the order of Debye vibration

period tD < 0.1 ps. Therefore, r~
tD

t
. In statistical equilibrium, r is

equal to the ratio of diffusing atoms, Ndif, and the total number of
atoms, N. Then, at any given moment of time:

Ndif

N
~

tD

t
ð2Þ

If Edif is the energy associated with diffusing LREs, Edif / Ndif.
Together with Etot / N, Eq. (2) gives

Edif

Etot
~

tD

t
ð3Þ

Eq. (3) implies that under condition (1), the contribution of Edif to
the total energy at any moment of time is negligible. We note that Eq.
(3) corresponds to the instantaneous value of Edif which, from the
physical point of view, is given by the smallest time scale of the
system, tD. During time tD, the system is not in equilibrium. The
equilibrium state is reached when the observation time exceeds sys-
tem relaxation time, t. After time t, all LREs in the system relax.
Therefore, we need to calculate Edif that is averaged over time t.

Let us divide time t into m time periods of duration tD each, so that

m~
t

tD
. Then, Edif, averaged over time t, Eav

dif , is

Eav
dif ~

E1
dif zE2

dif z . . . zEm
dif

m
ð4Þ

where Ei
dif are instantaneous values of Edif featured in Eq. (3).

Eav
dif

Etot
is

Eav
dif

Etot
~

E1
dif zE2

dif z . . . zEm
dif

Etot
:m

ð5Þ

Each of the terms
Ei

dif

Etot
in Eq. (5) is equal to

tD

t
, according to Eq. (3).

There are m terms in the sum in Eq. (5). Therefore,

Eav
dif

Etot
~

tD

t
ð6Þ

We therefore find that under the condition (1), the ratio of the
average energy of diffusion motion to the total energy is negligibly
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small, as in the instantaneous case. Consequently, the energy of the
liquid under the condition (1) is, to a very good approximation, given
by the remaining vibrational part:

El~Evib
l ð7Þ

This, in turn, implies that the liquid constant-volume specific heat,

cv,l~
1
N

dEl

dT
(here, N is the number of particles), is entirely vibrational

in the regime Eq. (1):

cv,l~cvib
v,l ð8Þ

The vibrational energy and specific heat of liquids in the regime (1)
can be easily ascertained. When the regime (1) is operative, Evib

l to a
very good approximation is Evib

l ~3NT (here and below, kB 5 1).
Indeed, a solid supports one longitudinal mode and two transverse

waves in the range 0vvv

1
tD

. The ability of liquids to support shear

modes with frequency vw

1
t

, combined with t ? tD in Eq. (1),

implies that a liquid supports most of the shear modes present in a
solid. Furthermore and importantly, it is only the high-frequency
shear modes that make a significant contribution to the liquid vibra-
tional energy, because the density of states of liquid quasi-harmonic
modes is approximately proportional to v2 as discussed above.
Hence in the regime (1), Evib

l ~3NT to a very good approximation,
as in a solid.

We now consider Eqs. (7,8) in harmonic and anharmonic cases. In
the harmonic case, Eqs. (7,8) give the energy and specific heat of a
liquid as 3NT and 3, respectively, i.e. the same as in a harmonic solid:

Eh
l ~Eh

s ~3NT ð9Þ

ch
v,l~ch

v,s~3 ð10Þ

where s corresponds to the solid and h to the harmonic case.
In the anharmonic case, Eqs. (7) and Eqs. (8) still hold, but the

equality of liquid and solid energies and specific heats holds only
approximately because anharmonicity affects the vibrational energy
and cv of a liquid and a solid in a different way. In particular, cv is
modified by the intrinsic anharmonicity related to softening of vibra-
tional frequencies at constant volume, and can be approximately
written as cv 5 3(1 1 aT), where a is the coefficient of thermal
expansion20,21. a is generally larger in liquids compared to solids,
resulting in larger liquid cv compared to solid cv, albeit the term aT
is usually small compared to 1.

The primary evidence supporting Eqs. (8,10) and our theory
comes from experimental specific heat of liquids. Early measure-
ments were done for liquid metals, and indicated that their specific
heat is very close to 3, the Dulong-Petit value5–7. This takes place close
the melting point where Eq. (1) applies and which, according to our
theory, gives Eqs. (8,10) and cv,l < 3. As experimental techniques
advanced and gave access to high pressure and temperature, specific
heats of many noble, molecular and network liquids were measured
in detail in a wide range of parameters including in the supercritical
region22. Similarly to liquid metals, the experimental cv of these
liquids was found to be very close to 3 at low temperature where
Eq. (1) applies (see Ref. 24 for a compilation of the NIST and other
data of cv for 21 liquids of different types). This universal behavior
provides strong support to our theory.

We note that on temperature increase when condition t starts to
approach tD and Eq. (1) no longer applies, experimental cv,l starts to
decrease from about 3 at the melting point to 2 at high temper-
ature6,7,22. We have recently provided a quantitative description of
this effect on the basis of the phonon theory of liquid thermodyn-
amics for many different liquids23,24. In this theory, the reduction of
heat capacity is due to the progressive loss of transverse modes with

frequency vw

1
t

. On further temperature increase when cv decreases

from 2 to its ideal-gas value of
3
2

, another mechanism kicks in: the

disappearance of the remaining longitudinal mode with the wave-
length smaller than the mean-free path of particles25. The two
mechanisms naturally give a crossover of cv at cv 5 2 that we recently
discovered25, the crossover that corresponds to the Frenkel line where
many liquid properties change4,26.

Entropy. Interestingly, although Eq. (6), combined with Eq. (1),
implies that the energy and cv of a liquid are entirely vibrational as
in a solid, this does not apply to entropy: the diffusional component
to entropy is substantial, and can not be neglected (here and below we
imply the equilibrium state, the condition for which t ? t, where t is
observation time).

Indeed, if Zvib and Zdif are the contributions to the partition sum
from vibrations and diffusion, respectively, the total partition sum
of the liquid is Z 5 Zvib ? Zdif. Then, the liquid energy is

E~T2 d
dT

ln Zvib
:Zdifð Þð Þ~T2 d

dT
ln ZvibzT2 d

dT
ln Zdif ~EvibzEdif

(here and below, the derivatives are taken at constant volume). Next,
Eav

dif

Etot
=1 from Eq. (6) also implies

Edif

Evib
=1, where, for brevity, we

dropped the subscript referring to the average. Therefore, the small-

ness of diffusional energy,
Edif

Evib
=1, gives

d
dT

ln Zdif

d
dT

ln Zvib

=1 ð11Þ

The liquid entropy, S~
d

dT
T ln Zvib

:Zdifð Þð Þ, is:

S~T
d

dT
ln Zvibzln ZvibzT

d
dT

ln Zdif zln Zdif ð12Þ

The condition (11) implies that the third term in Eq. (12) is much
smaller than the first one, and can be neglected, giving

S~T
d

dT
ln Zvibzln Zvibzln Zdif ð13Þ

Eq. (13) implies that the smallness of Edif, expressed by Eq. (11), does
not lead to the disappearance of all entropy terms that depend on
diffusion because the term ln Zdif remains. This term is responsible
for the excess entropy of liquid over the solid. On the other hand, the
smallness of Edif does lead to the disappearance of terms depending

on Zdif in the specific heat. Indeed, cv,l~T
dS
dT

(here, S refers to

entropy per atom or molecule), and from Eq. (13), we find:

cv,l~T
d

dT
T

d
dT

ln Zvib

� �
zT

d
dT

ln ZvibzT
d

dT
ln Zdif ð14Þ

Using Eq. (11) once again, we observe that the third term in Eq. (14)
is small compared to the second term, and can be neglected, giving

cv,l~T
d

dT
T

d
dT

ln Zvib

� �
zT

d
dT

ln Zvib ð15Þ

As a result, cv does not depend on Zdif, and is given by the vibrational
terms that depend on Zvib only. As expected, Eq. (15) is consistent
with Eq. (8).

Physically, the inequality of liquid and solid entropies, Sl ? Ss, is
related to the fact that the entropy measures the total phase space
available to the system, which is larger in the liquid due to the diffu-
sional component present in Eq. (13). The diffusional component,
ln Zdif, although large, is slowly varying with temperature according
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to Eq. (11), resulting in a small contribution to cv (see Eqs. (14) and
(15)) and giving cv,l 5 cv,s. On the other hand, the energy corresponds
to the instantaneous state of the system (or averaged over t), and is
not related to exploring the phase space. Consequently, El 5 Evib,
yielding Eq. (11) and the smallness of diffusional contribution to cv

despite Sl ? Ss.

Discussion
On the basis of results in the previous chapter, we conclude that two
important properties of a liquid, energy and specific heat, are essen-

tially vibrational, as they are in a solid, provided
tD

t
=1. For practical

purposes, this takes place for t *> 10tD. Perhaps not widely recog-
nized, the condition t < 10tD holds even for low-viscous liquids such
a liquid monatomic metals (Hg, Na, Rb and so on) and noble liquids
such as Ar near their melting points22–24, let alone for more viscous
liquids such as room-temperature olive or motor oil, honey and so
on.

Notably, the condition t *w 10tD corresponds to almost the entire
range of t at which liquids exist. This fact was not fully appreciated in
earlier theoretical work on liquids. Indeed, on lowering the temper-
ature, t increases from its smallest limiting value of t 5 tD < 0.1 ps
to t < 103 s where, by definition, a liquid forms a glass at the glass
transition temperature. Here, t changes by 16 orders of magnitude.

Consequently, the condition
tD

t
=1, Eq. (1), or t *w 10tD, applies in

the range 103–10212 s, spanning 15 orders of magnitude of t. This
constitutes almost entire range of t where liquids exist as such.

That important elements of liquid thermodynamics can be under-
stood on the basis of thermodynamics of solids is a result hitherto not
anticipated. Indeed, starting from earlier proposals1,2,8, existing the-
ories approach liquids as interacting gases and consequently attempt
to calculate liquid energy as an integral of the product of interatomic
interactions and correlation functions (see below). The interactions
and correlations are often complex and are not generally known,
except in the simplest liquids such as Ar. On the other hand, our
theory circumvents this problem because the problem is reduced to
calculating the vibrational energy only as in solids.

We now make several further observations regarding the implica-
tions of our theory. First, our approach provides general insights into
the problem of liquid-glass transition, and implies that the theory of
solids is a good starting point for discussing important aspects of
liquid thermodynamics. This is a useful result in the area where the
calculation of thermodynamic properties of viscous liquids approa-
ching glass transition has been a long-standing problem9,10.

Second, we can revisit the long-standing and puzzling question of
why Phillips constraint theory of glasses27 works. Proposed over 30
years ago, the theory is based on the idea that a short-ranged intera-
tomic bond in a glass can be viewed as a rigid mechanical constraint.
Equating the number of constraints and degrees of freedom gives the
average coordination number Æræ 52.4 at which, the theory proposes,
the glass-forming ability is optimized. The constraint theory has
since been used to explain other properties of glass transition28.
Importantly, the constraint theory derives its predictions from
counting the bonds (constraints) and Æræ in the solid glass, but sub-
sequently uses Æræ to predict the properties measured in the liquid
state above the liquid-glass transition. This is truly surprising:
indeed, in the liquid state above Tg, bonds are not intact because
atoms rearrange on the experimental time scale, and therefore can
no longer be viewed as rigid constraints. This poses an intriguing
question of why the constraint theory works.

Our approach to liquids readily answers this question on general
grounds: the measured properties operate in the regime where Eq. (1)
applies. Indeed, glass-forming melts such as silicates, chalcogenides
and others are measured at temperatures where they are viscous
enough to satisfy Eq. (1)28. Consequently, our theory predicts that
if a measured property is related to system energy or specific heat,

this property in the liquid state is, to a very good approximation,
equal to that in the solid glass, and can therefore be predicted from
solid-state properties.

Finally, our approach relates to previous theories of liquids in
another interesting way. When interactions and correlations are
pair-wise only as in simple noble liquids such as liquid Ar, previous
theories attempt to calculate cv,l as

cv,l~
3
2
z

d
dT

ð
g rð ÞU rð ÞdV ð16Þ

where g(r) is the normalized pair correlation function and U(r) is the
interaction potential.

There has been an extensive work on calculating g(r) and related
probability functions in liquids, involving Gaussian and other
approximations (see, e.g. Ref. 29). Using Eq. (16) and our solid-like
result for cv,l, cv,l~cvib

v,l (cv,l 5 3 in the harmonic case) gives an
important way to validate these approximations. In other words,
our result opens a new avenue to elucidate the structure of liquids,
a developing area with long history2.

In summary, we observe that liquids flow, making them remark-
ably distinct from solids and close to gases. However, from the point
of view of thermodynamics, liquid energy and specific heat are, to a
very good approximation, equal to those in solids for relaxation times
spanning 15 orders of magnitude, or almost entire range in which the
liquids exist as such. In this sense, liquids show an interesting duality
of physical properties not hitherto anticipated.

1. Landau, L. D. & Lifshitz, E. M. Statistical Physics (Nauka, Moscow, 1964).
2. Barrat, J. L. & Hansen, J. P. Basic concepts for simple and complex liquids

(Cambridge University Press, 2003).
3. Granato, A. The specific heat of simple liquids. J. Non-Cryst. Sol. 307–310,

376–386 (2002).
4. Brazhkin, V. V. & Trachenko, K. What separates a liquids from a gas? Physics

Today 65(11), 68 (2012).
5. Agren, J. Thermodynamics of supercooled liquids and their glass transition. Phys.

Chem. Liq. 18, 123 (1988).
6. Grimvall, G. The heat capacity of liquid metals. Phys. Scr. 11, 381 (1975).
7. Wallace, D. C. Liquid dynamics theory of high-temperature specific heat. Phys.

Rev. E 57, 1717 (1998).
8. Frenkel, J. Kinetic theory of liquids (ed. R. H. Fowler, P. Kapitza, N. F. Mott, Oxford

University Press, 1947).
9. Dyre, J. C. Colloquium: The glass transition and elastic models of glass-forming

liquids. Rev. Mod. Phys. 78, 953972 (2006).
10. Angell, C. A., Ngai, K. L., McKenna, G. B., McMillan, P. F. & Martin, S. W.

Relaxation in glassforming liquids and amorphous solids. J. Appl. Phys. 88,
3113–3157 (2000).

11. Pilgrim, W. C., Hosokawa, S., Saggau, H., Sinn, H. & Burkel, E. Temperature
dependence of collective modes in liquid sodium. J. Non-Cryst. Solids 250–252,
96–101 (1999).

12. Burkel, E. Phonon spectroscopy by inelastic x-ray scattering. Rep. Prog. Phys. 63,
171–232 (2000).

13. Grimsditch, M., Bhadra, R. & Torell, L. M. Shear waves through the glass-liquid
transformation. Phys. Rev. Lett. 62, 2616 (1989).

14. Pilgrim, W. C. & Morkel, Chr. State dependent particle dynamics in liquid alkali
metals. J. Phys.: Condens. Matter 18, R585–R633 (2006).

15. Giordano, V. M. & Monaco, G. Fingerprints of order and disorder on the high-
frequency dynamics of liquids. PNAS 107, 21985–21989 (2010).

16. Hosokawa, S. et al. Transverse Acoustic Excitations in Liquid Ga. Phys. Rev. Lett.
102, 105502 (2009).

17. Ruocco, G. & Sette, F. The high-frequency dynamics of liquid water. J. Phys.:
Condens. Matter 11, R259–R293 (1999).

18. Bryk, T., Ruocco, G. & Scopigno, T. Landau-Placzek ratio for heat density
dynamics and its application to heat capacity of liquids. J. Chem. Phys. 138,
034502 (2013).

19. Iwashita, T., Nicholson, D. M. & Egami, T. Elementary Excitations and Crossover
Phenomenon in Liquids. Phys. Rev. Lett. 110, 205504 (2013).

20. Trachenko, K. & Brazhkin, V. V. Heat capacity at the glass transition. Phys. Rev. B
83, 014201 (2011).

21. Andritsos, E. et al, The heat capacity of matter beyond the Dulong-Petit value.
J. Phys.: Condens. Matt. 25, 235401 (2013).

22. National Institute of Standards and Technology database, http://
webbook.nist.gov/chemistry/fluid (25/06/2013).

23. Trachenko, K. Heat capacity of liquids: an approach from the solid phase. Phys.
Rev. B 78, 104201 (2008).

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 2188 | DOI: 10.1038/srep02188 4

http://webbook.nist.gov/chemistry/fluid
http://webbook.nist.gov/chemistry/fluid


24. Bolmatov, D., Brazhkin, V. V. & Trachenko, K. The phonon theory of liquid
thermodynamics. Sci. Rep. 2(421), 1–6 (2012).

25. Bolmatov, D., Brazhkin, V. V. & Trachenko, K. Thermodynamic behavior of
supercritical matter, Nature Communications, in press (arXiv:1303.3153).

26. Brazhkin, V. V., Fomin Yu, D., Lyapin, A. G., Ryzhov, V. N. & Trachenko, K. Two
liquid states of matter: A new dynamic line on a phase diagram. Phys. Rev. E 85,
031203 (2012).

27. Phillips, J. C. Topology of covalent non-crystalline solids I: Short-range order in
chalcogenide alloys. J. Non-Cryst. Solids 34, 153–181 (1979).

28. Boolchand, P., Lucovsky, G., Phillips, J. C. & Thorpe, M. F. Self-organization and
the physics of glassy networks. Phil. Mag. 85, 3823–3838 (2005).

29. Weeks, J. D., Chandler, D. & Andersen, H. C. Role of repulsive forces in
determining the equilibrium structure of simple liquids. J. Chem. Phys. 54,
5237–5247 (1971).

Acknowledgements
K. Trachenko thanks EPSRC for financial support.

Author contributions
K. T. and V. V. Brazhkin have contributed equally to this work.

Additional information
Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Trachenko, K. & Brazhkin, V.V. Duality of liquids. Sci. Rep. 3, 2188;
DOI:10.1038/srep02188 (2013).

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 Unported license. To view a copy of this license,

visit http://creativecommons.org/licenses/by-nc-sa/3.0

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 2188 | DOI: 10.1038/srep02188 5

http://creativecommons.org/licenses/by-nc-sa/3.0

	Title
	References

