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A B S T R A C T

Purpose: To propose an intelligent, non-invasive, highly precise, and rapid method to predict the mutation status 
of the Epidermal Growth Factor Receptor (EGFR) to accelerate treatment with Tyrosine Kinase Inhibitor (TKI) for 
patients with untreated adenocarcinoma Non-Small Cell Lung Cancer.
Materials and methods: Real-world data from 521 patients with adenocarcinoma NSCLC who performed a CT scan 
and underwent surgery or pathological biopsy to determine EGFR gene mutation between January 2021 and July 
2022, is collected. Solutions to the problems that prevent the model from achieving very high precision, namely: 
human errors made during the annotation of the database and the low precision of the output decision of the 
model, are proposed. Thus, among the 521 analyzed cases, only 40 were selected as patients with EGFR gene 
mutation and 98 cases with wild-type EGFR.
Results: The proposed model is trained, validated, and tested on 12,040 2D images extracted from the 138 CT 
scans images where patients were randomly partitioned into training (80 %) and test (20 %) sets. The perfor-
mance obtained for EGFR gene mutation prediction was 95.22 % for accuracy, 960.2 for F1_score, 95.89 % for 
precision, 96.92 % for sensitivity, 94.01 % for Cohen kappa, and 98 % for AUC.
Conclusion: An EGFR gene mutation status prediction method, with high-performance thanks to an intelligent 
prediction model entrained by highly accurate annotated data is proposed. The outcome of this project will 
facilitate rapid decision-making when applying a TKI as an initial treatment.

1. Background

Lung cancer is one of the deadliest cancers in the world. The non- 
small-cell lung cancer (NSCLC) represents 85 % of different types of 

lung cancer [1–3]. Although chemotherapy is the key to controlling 
cancer, its success has been limited due to many difficulties [4]. To avoid 
conventional chemotherapy, researchers have proposed new treatments 
based on tyrosine kinase inhibitors (TKI) of the epidermal growth factor 
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receptor (EGFR). Targeted TKI-EGFR treatment considerably increases 
the overall survival of patients [5–10]. However, this therapy requires 
knowledge of the EGFR mutation status, which often involves an inva-
sive surgery or biopsy [11,12].

1.1. Literature review

In literature, the scientific community has moved towards exploiting 
Artificial Intelligence [13–16] to propose non-invasive methods for 
predicting EGFR mutations. Thus, several authors [17–20] have devel-
oped machine-learning models using radiomic features extracted from 
lung cancer patient CT images. Other researchers have exploited the 
many tumor characteristics of clinical and radiomic features to propose 
intelligent noninvasive methods for predicting EGFR mutation status. 
Yang et al. [21] use clinical features to establish an explainable 
machine-learning model to predict epidermal growth factor receptor 
(EGFR) mutations in lung cancer. However, this model did not exceed 
the accuracy of 0.771. Chun Sheng Yang et al. [22] propose a method 
based on least absolute shrinkage and selection operator (LASSO) 
regression and a 5-fold cross-validation method to obtain radiomic 
features that predicted EGFR mutation status and the sensitivity of TKIs. 
However, the performance of their approach did not exceed 0.6713 for 
the area under the curve (AUC) of the non-improved phases in the 
training group with EGFR mutation status. Xinna Lv et al. [23] propose 
four radiomics models for discriminating KRAS from EGFR which all 
performed well during the training process, but the AUC could not 
exceed 0.85 during the testing process. Shuo Wang et al. use deep 
learning with a conventional neural network model to predict EGFR 
genetic mutations directly from CT images, but the obtained results 
could not exceed the value of 0.81 for AUC [24]. Other noninvasive 
methods have shown fairly good performance in automatically pre-
dicting EGFR gene mutations [25–27].

1.2. Study rationale

Despite the progress made by these methods, they still have limita-
tions. First, most proposed AI approaches do not present high- 
performance metrics capable of guaranteeing and securing the clinical 
applications of these approaches. This pushes the clinical impact of this 
success on the treatment of oncology patients to remain very limited or 
even absent [28,29]. This result is far from being achieved considering 
three 3 obstacles: human errors committed during the annotation of the 
model training images, the accuracy of the output decision of our model, 
and the reduction of expenses linked to the complex parameters of the 
layers of our model.

1.3. Study objectives

The main objective of this study was to propose a noninvasive and 
high-precision method capable of gaining the trust of specialists and 
bridging the clinical validation gap. Noninvasiveness is ensured by 
developing an automatic method based on Deep Learning using patient 
CT images. High performance was achieved by minimizing human er-
rors during database annotation and by developing a stacking deep 
transfer model composed of five CNNs, where only the decision with a 
majority vote is selected as the model’s output.

2. Materials and methods

2.1. Ethics

Ethics committee approval for this study was approved by the faculty 
of Medicine and Pharmacy Ethics Committee of Casablanca, Morocco, 
according to Helsinki Declaration under reference 17/15. Written 
informed consent was obtained for all patients and, all their relative data 
were deidentified.

2.2. Patient cohort and data collection

To collect patient data, a team of three specialist doctors and two IT 
specialists was established. All team members agreed that this study 
must comply with international ethical standards and be conducted 
following the Declaration of Helsinki. Under the suggestions of the 
Institutional Review Board and the Ethics Committee, it was decided 
that all data that will be used for the development of the prediction 
model will be anonymized through the elimination of personal patient 
information.

The team was interested in patients with lung cancer who had un-
dergone a CT scan in the radiology department of the Hassan 2 Uni-
versity Hospital Center of Sidi Mohammed Ben Abdellah University in 
February, and who had undergone surgery or a pathological biopsy to 
determine EGFR gene mutation status between January 2021 and July 
2022.

Among the 521 files analyzed, 138 were selected according to the 
selection criteria shown in Fig. 1. The team included patients with his-
tologically verified primary NSCLC, patients with pathological analysis 
of tumor tissues with EGFR test results, and patients with preoperative 
CT images whose interval between CT examination and pathological 
biopsy was not more than three months. On the other hand, the team 
excluded patients with missing clinical data such as age, gender, tumor 
location, tumor size, stage, and patient smoking status, patients who 
received preoperative treatment, patients without adenocarcinoma cell 
type, patients with tumor size that exceeds 3 cm, patients with preop-
erative CT images with large artifacts or poor image quality, patients 
having neoadjuvant chemotherapy preoperative and patients with no 
EGFR gene test results.

To confirm the EGFR gene mutation, these experts used three 
methods: a method based on an analysis of the cellular tissue of the 
tumor by a surgical procedure or a biopsy, a method based on the 
nomogram making it possible to predict the status of EGFR gene mu-
tation from clinical factors [30] and radiomics based method using 
feature engineering [31,32]. Thus, of the 138 patients collected, only 40 
had been selected with a positive EGFR gene mutation status confirmed 
by all three methods, and 98 patients had wild-type (WT) EGFR. This 
allowed us to provide a benchmark dataset that was annotated precisely.

2.3. Clinical characteristics of patients

The clinical characteristics recorded are sex, age, and smoking status. 
The class of smoking was divided into two modes: smoker or non-smoker 
as for the EGFR gene mutation, it was also divided into two modes: 
mutated or non-mutated. Following the NCCN Clinical Practice Guide-
lines for Non-Small Cell Lung Cancer, the tumor stage class has been 
divided into four modes ranging from Stage 1 to Stage 4. Statistics for 
these clinical features are presented in Table 1.

2.4. Tomodensitometric characteristics

To identify Tomodensitometric features showing abnormalities, ra-
diologists relied on guidelines published by the Fleischner Society [33]. 
Thus, the radiologists recorded several characteristics such as the pres-
ence or not of an attack of the pulmonary lobes as well as its distribution, 
the presence or not of ground glass opacities, the presence or not of 
consolidation, the presence or not of fibrosis, calcification, or emphy-
sema and finally the presence or absence of pleural effusion or peri-
cardial effusion. The statistics of these clinical and CT characteristics are 
presented in Table 1.

2.5. Acquisition of CT images

CT scans were performed using the SOMATOM Definition as 
‘Siemens Healthcare GmbH’ under free-breathing conditions. The voxel 
spacing, which is associated with scans in the xy plane, ranged from 
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0.724 to 0.976 mm, which is much smaller than the Z dimension of 
3 mm. We used the Elastix module (version 5.0.1, Linux Foundation, San 
Francisco, CA, USA, https://elastix.lumc.nl, accessed 20 July 2021) in 
3D-Slicer to align the CT images before proceeding to feature extraction. 
To ensure a good comparison of the characteristics obtained from the 
different CT images, we normalized the images and corrected the in-
homogeneity of the images [34].

2.6. Image preprocessing

Since the images of the selected dataset are in DICOM format, we will 
use the Python library ‘Pydicom’ to extract this data. The image pixel 
values were converted to the Hounsfield Unit (HU) which is a relative 
quantitative measurement of radio density used by radiologists in the 
interpretation of computed tomography (CT) images. HU values are 
obtained using the formula: 

HU = pixel × slope + intercept                                                      (1)

where both slope and intercept were obtained in the DICOM data. The 
HU values of all slices were truncated to [− 2000, 0] and then were 
normalized to a value between 0 and 1. The respective binary masks 
were extracted from the corresponding RTSTRUCT files. The CT volume 
was resampled at the same resolution [1 × 1 × 3 mm] and each slice was 
cropped randomly to 256 × 256 size. To process and resize the image we 
will use SciPy-ndimage packages which provide several general image 
processing and analysis functions that are designed to operate with ar-
rays 224 × 224 of arbitrary dimensionality. To save the array as a 2D 
image we will use the Python Imaging Library (PIL) which provides 
general image handling and lots of useful basic image operations like 
resizing, cropping, rotating, color conversion, and much more. Fig. 2
illustrates this preprocessing step.

2.7. Method and model

A fully connected CNN network made up of several classifiers is 
proposed where a prediction vector is obtained at the output of the CNN 
network. To increase the precision of the output decision of our model 
proposed model, we opted for a stacking model where only the decision 
having obtained a majority vote, among the five votes of the general 

model made up of five CNNs, is selected as the model’s output. Indeed, 
the stacking model solves the problem linked to the choice of network 
architecture and increases the precision of the proposed model by using 
several networks as input to the model and choosing to output the so-
lution that has the maximum number of votes. In other words, only the 
cell that obtained the maximum number of votes by the various net-
works was declared at the exit, as in cancer cells. For this, we are 
developing a CNN Deep Transfer Learning Stacking Model (DTLSMCNN) 
composed of five preformed CNN architectures: MobileNetV2, Dense-
Net121, InceptionResNetV2, VGG16 [35], and Xception [36], which has 
already been trained on an ImageNet dataset and will be adapted to our 
dataset accurately. DTLSMCNN was used to execute the image convo-
lution, ReLU activation, and 2D normalizing processes. As illustrated in 
Fig. 3, only the prediction with the highest score is selected as the output 
of the model.

Finally, to ensure rapid convergence and reduce the expenses related 
to complex layer parameters and in-depth validation processes, we 
exploited the notion of Transfer Deep Learning. Indeed, the use of deep 
transfer learning solves the problems associated with the small size of 
the dataset as well as the lengthy training and validation process [37, 
38].

2.8. Evaluation metrics

Several metrics have been proposed in literature to evaluate a Deep 
Learning model and measure its performance. Among these perfor-
mance measurement approaches there is the confusion matrix which 
shows, through a matrix, the number of correct predictions per class 
given by the used model [39], the accuracy, the precision, the recall, the 
F1 score, and the area under the curve (AUC) [40].

3. Results

A comparison of our results with those published in the literature, 
thus providing a reference for other researchers in the field is presented 
in this section. To support and visualize the results we will present our 
results in the form of tables, graphs, and diagrams accompanied by 
statistical analysis [41].

Fig. 1. Patient selection criteria in the study.

A. Benfares et al.                                                                                                                                                                                                                               European Journal of Radiology Open 13 (2024) 100601 

3 

https://elastix.lumc.nl


3.1. Statistical analysis

Table 1 summarizes the clinical and CT characteristics of the study 
population, comprising a total of 138 patients. EGFR gene mutations 
were detected in 40 (28.98 %) patients, and mutations were wild-type 
(WT) in 98 (71.01 %) patients. In addition, a description of the char-
acteristics of patients and tumors according to their EGFR status is given 
in Table 1.

3.2. Prediction performance

TensorFlow r1.9 [Apache 2.0 license] was used to write the software 
code for this study, which was created in Python 3.6. The neural net-
works were trained on a graphics processing unit [GPU] optimized 
workstation with four GeForce GTX 1080 Ti cards [11 GB, Pascal 
microarch] and a graphics processing unit [GPU] optimized worksta-
tion. [NVIDIA, Santa Clara, California; 11 GB, Pascal microarch]. Sta-
tistics on inference speed were computed using a single GPU.

3.2.1. Training and testing data set distribution
The 138 patients of our dataset benchmark were randomly divided 

into two sets: a training set composed of 110 patients (32 with EGFR 
gene mutation and 78 with wild-type EGFR) and a test set consisting of 
the remaining 28 patients (8 with EGFR gene mutation and 20 with wild- 
type EGFR) who were left out to be used later to test our model, as shown 
in Table 2.

Thus, for each CT image of a patient, we only selected 2D images 
(sections) containing tumor cells, considering that the number of images 
present in each class is balanced. Thus, our model was trained using 
7752 2D images carefully selected from the CT images: 3776 images 
belonging to the first class, and 3776 images belonging to the second 
class. In the training validation process, we selected 1938 2D images, 
with 969 images belonging to the first EGFR gene mutation type class 
and 969 belonging to the EGFR wild-type class. The proposed model was 
trained and validated using five-fold cross-validation. Finally, in the 
testing process, we used 2350 2D images, with 1175 images belonging to 
the first class and 1175 images belonging to the second class.

All lung tumor images from the same CT scan were used for 
randomization. The neural network was trained and validated using 
five-fold cross-validation. Thus, the training data set was divided into 
five equal data intervals of which four were used for training and the 
fifth data interval for validation. This allowed us to give the measure-
ments of the different performances of our model in the form of an 
average value.

Table 1 
Statistics of clinical, CT characteristics and EGFR gene mutation of patients.

Characteristics Mutated 
n(%)

WT 
n(%)

sex
F 18(13.04) 20(14.49)
M 22(15.94) 78(56.52)

Age
< 60 9(6.52) 47(34.05)
> 60 31(22.46) 51(36.95)

Tobacco   
Yes 13(9.42) 70(50.72)
No 27(19.56) 28(20.28)

Location: central/peripheral
central 22(15.94) 54(39.13)
peripheral 18(13.04) 42(30.43)
pneumonic form 0 2(1.44)

Lob (LS/LM/LI)
LI 14(10.14) 23(16.66)
LS 24(17.39) 71(51.44)
LM 0 1(0.72)
LI + LS 2(1.44) 3(2.17)

Contours: regular, irregular
irregular 35(25.36) 92(66.66)
regular 5(3.62) 4(2.89)
pneumonic form 0 2(1.44)

Speculation: yes no
Yes 21(15.21) 30(21.73)
No 19(13.76) 66(47.82)
pneumonic form 0 2(1.44)

Shape: round, oval, indefinite
indefinite 19(13.76) 44(31.88)
oval 6(4.34) 26(18.84)
round 15(10.86) 26(18.84)
pneumonic form 0 2(1.44)

Limit: well or badly limited
GOOD 22(15.94) 50(36.23)
wrong 18(13.04) 46(33.33)
pneumonic form  2(1.44)

Density: solid, VD, mixed
mixed 4(2.89) 10(7.24)
solid 36(26.08) 87(63.04)
pneumonic form 0 1(0.72)

Air bronchogram
Yes 17(12.31) 38(27.53)
No 23(16.66) 60(43.47)

Fissural attachment
Yes 24(17.39) 62(44.92)
No 16(11.59) 36(26.08)

Pleural attachment
Yes 24(17.39) 81(58.69)
No 16(11.59) 17(12.31)

Fissural retraction
Yes 9(6.52) 26(18.84)
No 31(22.46) 72(52.17)

Pleural retraction
Yes 16(11.59) 40(28.98)
No 24(17.39) 58(42.02)

Enhancement: homogeneous, heterogeneous
homogeneous 14(10.14) 2(1.44)
heterogeneous 26(18.84) 96(69.56)

Cavitation
Yes 4(2.89) 10(7.24)
No 36(26.08) 88(63.76)

Emphysema
Yes 8(5.79) 54(39.13)
No 32(23.18) 44(31.88)

Calcification
Yes 11(7.97) 22(15.94)
No 29(21.01) 76(55.07)

Fibrosis   
Yes 1(0.72) 7(5.072)
No 39(28.26) 91(65.94)

Maximum size: < 3 cm, > 3 cm
> 3 cm 36(26.08) 84(60.86)
< 3 cm 4(2.89) 12(8.69)
pneumonic form 0 2(1.44)

Table 1 (continued )

Characteristics Mutated 
n(%)

WT 
n(%)

Pulmonary nodule in the same lobe
Yes 24(17.39) 36(26.08)
No 16(11.59) 62(44.92)

Nodule in another lobe
Yes 21(15.21) 39(28.26)
No 19(13.76) 59(42.75)

Mediastinal ADP
Yes 26(18.84) 64(46.37)
No 14(10.14) 34(24.63)

Ipsilateral pleural effusion
Yes 18(13.04) 37(26.81)
No 22(15.94) 61(44.20)

Contralateral pleural effusion
Yes 3(2.17) 4(2.89)
No 37(26.81) 94(68.11)

Distant metastasis
Yes 27(19.56) 53(38.40)
No 13(9.42) 45(32.60)

A. Benfares et al.                                                                                                                                                                                                                               European Journal of Radiology Open 13 (2024) 100601 

4 



3.2.2. Characterization of the learning and validation processes
The images were scaled to the same size and signal intensity was 

standardized for each subject. The images were normalized before being 
input into each of the five models for training. The characterization of 
the learning and validation processes was done using the loss function 
deduced from cross-entropy as is shown in Fig. 4. The process of opti-
mizing the values of the different weights of our architecture was carried 

out thanks to the Adam algorithm.
The learning rate starts from the value 0.001 and is reduced after 4 

epochs if the loss value doesn’t improve with the help of the callbacks 
function. The models were configured to train for 60 iterations.

3.2.3. Confusion matrix
The confusion matrix calculated for each CNN of our proposed 

Fig. 2. Preprocessing step (a) The original image and (b) the corresponding Hounsfield Unit (HU) histogram, (c) Image result after application of Hounsfield Unit of 
[-2000,0] and (d) the corresponding Hounsfield Unit (HU) histogram, (e) Image result after resizing.

Fig. 3. Proposed Deep Transfer Learning Stacking Model process.
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stacking model is given in Fig. 5. This figure shows that the VGG16 
model is the one that better discriminated the two classes in our data-
base. Indeed, the VGG16 (Fig. 5.d) correctly classified all the images 
corresponding to the mutated cases, however, it only incorrectly clas-
sified two images among the 1500 images.

3.2.4. Air under the ROC curve (AUC)
Generally, sensitivity, specificity, and positive and negative pre-

dictions are used to evaluate the performance of a prediction model. 
Nevertheless, these evaluation criteria do not make it possible to judge 
the ability of a model to distinguish between patients with Mutated 
EGFR and patients with non-mutated EGFR. This is why we used the 
ROC curve (receiver operation characteristic) and more precisely the air 
under the ROC curve (AUC) in addition to other criteria such as confu-
sion matrix, precision, recall, F1-Score, Cohen Kappa, and accuracy 
calculated during a fivefold cross-validation of our model. Given that the 
populations of the two classes considered (EGFR gene muted and EGFR 
wild type) are unbalanced, we will use the Air Under Curve (AUC) 
approach as an evaluation criterion. Indeed, the latter guarantees that a 
dominant class does not distort the performance of the model in the case 
where the classes are unbalanced. Additionally, AUC is often used to 
reliably compare different models while identifying the optimal 
threshold for each model’s classification decisions. Fig. 6 which repre-
sents the plot of the receiver operating characteristic (ROC) of our 
proposed stacking model shows that the AUC of the latter reached a 
value of 0.98 thus far exceeding all the AUC values of the other CNN 
models.

3.2.5. Performance of each class prediction
The performance of each class prediction result obtained by our 

model during the training, validation, and test phase is presented in 
Tables 3–5 respectively. As is shown in these tables the stacking model 
has allowed improving considerably the result obtained by each model 
taken individually.

As we can see in Table 4, VGG16 and InceptionResNetV2 achieved 
the best test accuracy 95.08 and 92.01, respectively. The result for each 
neural network model is shown in Table 4. After analyzing the obtaining 
of the predictions of all models, we combined the results of 5 models: 
MobileNetV2, DenseNet121, InceptionResNetV2, VGG16 and Xception, 
we combine the predicted class of each model in a vector, and we take 
the class which was most frequently predicted by all models. By using 
this technique of ensemble model, we were able to make our finale 
classifier achieved the best performance with test accuracy of 95.22, f1- 
score 96.02, precision of 95.43, Sensitivity 97.01 and Cohen Kappa 
92.01 as is presented in Table 5.

4. Discussion

In recent years, the number of articles and databases related to the 
application of artificial intelligence in the field of oncology has 
increased considerably. Nevertheless, the clinical impact of this success 
on the treatment of patients in oncology remains very limited if not 
absent, thus maintaining a significant gap between scientific work and 

their direct clinical applications in oncology [42,43].
Among the causes of this problem is that most of the proposed AI 

approaches do not present strong performance measures that can 
guarantee and secure the clinical applications of these approaches. 
Indeed, despite the satisfaction of radiologists with the contributions of 
AI in the profession of radiologists where 82 % of radiologists think that 
AI can improve the relevance of clinical decisions [44], the application 
of an AI tool does not pass the clinical stage only if the performance of 
the tests carried out presents very high performance and the percentage 
of false positives and false negatives approaches zero.

In this work, we proposed a high precision, high AUC, a non- 
invasive, intelligent, automatic, and stable method capable of crossing 
the clinical stage to define EGFR mutation status in patients with non- 
small cell lung cancer.

For this, we tackled the three obstacles that limit the high precision 
of our proposed model, namely: human errors committed during the 
annotation of the model training images, the precision of the output 
decision of our model, and the reduction expenses related to the complex 
layer parameters of our model.

Firstly, since the accuracy of the output data, or the decision made by 
the AI, depends on the input data, there is always a dependence on 
humans and the data entered by them, favoring a rate of human error. In 
this work, to minimize human errors made during the annotation of the 
learning database, we increased the number of experts for the annota-
tion of the database by choosing three experts each with at least ten 
years of experience where only an annotation validated by the three 
experts is taken into consideration. In addition, to confirm the EGFR 
gene mutation, these experts used three methods: a method based on an 
analysis of the cellular tissue of the tumor by a surgical procedure or a 
biopsy, a method based on the nomogram making it possible to predict 
the of EGFR gene mutation from clinical factors and radiomics-based 
method using feature engineering. This allowed us to provide a Bench-
mark dataset annotated in a very precise way.

Secondly, to increase the precision of the output decision of our 
model proposed model, we opted for a stacking model where only the 
decision having obtained a majority vote, among the five votes of the 
general model made up of five CNNs, is selected as the model’s output.

Finally, to ensure rapid convergence and reduce expenses related to 
complex layer parameters and in-depth validation processes, we 
exploited the notion of Transfer Deep Learning.

The proposed model showed encouraging results in the test cohort 
(AUC = 0.98). Thus, our results are valuable and can be distinguished 
from previous studies as a first attempt to bridge the AI translational gap 
between initial model development and its clinical application by 
increasing the accuracy of our model’s output decisions. Our proposed 
model provides an alternative method to non-invasively assess EGFR 
information and to aid rapid decision-making when applying a TKI as an 
initial treatment.

Although studies of deep learning models have demonstrated 
promising performance in aiding lung cancer analysis [45–47], our 
study differs from previous studies in its design and high-rate output 
decision accuracy.

Unlike these methods, we proposed a method based on Deep 
Learning which did not require segmentation of the edges of the tumor 
which are often very difficult to locate with the naked eye from CT 
images, nor extraction and selection of features. The big advantage of 
our method is that it makes it possible to extract abstract characteristics 
that are surely strongly correlated with the EGFR gene mutation, unlike 
radiomic or clinical characteristics.

In this study, we only considered a population very restricted to the 
North African region. It would be preferable to consider data from 
different sources so that the decision of EGFR gene mutation is not 
affected by the race of the population considered. Although the per-
formance of our proposed method, based on Deep Learning, has excee-
ded other Machine Learning methods based on clinical or radiomic 
characteristics, it would be desirable to propose, in perspective, a model 

Table 2 
Distribution of CT image data used for training, validation, and testing of the 
proposed model.

Training and validation Testing

110 patients (80 %) 
(32 with EGFR gene mutation and 78 with wild- 
type EGFR)

28 patients (20 %) 
(8 with EGFR gene 
mutation and 20 with wild- 
type EGFR)

Selected 2D images for 
training process 
(80 %)

Selected 2D images for the 
validation process (20 %)

Selected 2D images for the 
test process

7752 1938 2350
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Fig. 4. Train accuracy versus train loss and validation accuracy versus validation loss with 5-fold cross-validation for a five CNN model: (a) Top Train Accuracy 
versus Train loss (b) Bottom Validation Accuracy versus Validation loss with 5-fold cross-validation for MobileNetV2. (c) Top Train Accuracy versus Train loss (d) 
Bottom Validation Accuracy versus Validation loss with 5-fold cross-validation for DenseNet121. (e) Top Train Accuracy versus Train loss (f) Bottom Validation 
Accuracy versus Validation loss with 5-fold cross-validation for InceptionResNetV2 (g) Top Train Accuracy versus Train loss (h) Bottom Validation Accuracy versus 
Validation loss with 5-fold cross-validation for VGG16, (i)Top Train Accuracy versus Train loss (j) Bottom Validation Accuracy versus Validation loss with 5-fold 
cross-validation for Xception.
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that combines these three methods to obtain better performance. 4.1. Limitations of this study

This study had certain limitations. First, this study lacked external 
validation, given that the sample was from a single center. Furthermore, 

Fig. 5. Confusion matrix for each model on the test set, (a) MobileNetV2, (b) DenseNet121, (c) InceptionResNetV2, (d) VGG16, (e) Xception.
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the sample size of this study was not sufficiently large. In the future, we 
plan to consider a larger sample size from several centers. Second, in this 
study, we did not consider the causal epidermal growth factor receptor 
(EGFR) genomic alterations, including deletions of exon 19 (E19 dels) 
and point mutation of E21, which are known to have a favorable 
prognosis due to sensitivity to tyrosine kinase inhibitors. Thus, we plan 
to collect more samples with E19 and E21 mutations confirmed by ge-
netic analysis and CT data to predict different EGFR mutations in detail. 
Finally, we will conduct a prospective study to validate the results of this 
study clinically.

5. Conclusion

This study demonstrated the value of a stacking convolutional neural 
network model trained on a precisely annotated database in improving 
the accuracy of EGFR mutation prediction. With an average sensitivity 
of 97.1, an average accuracy of 95.2, and AUC of 0.98 it provides 
healthcare professionals with a non-invasive and easy-to-use method to 
identify EGFR mutation status to rapidly guide targeted therapy and 
predict EGFR TKI candidates.

Fig. 6. True positive rate (TPR) versus the false positive rate (FPR) (ROC curve) for our Stacking model.

Table 3 
The prediction results with 5-fold cross-validation for each class using the model 
set which combines the five models of the train set.

Model Average 
precision

Average 
sensitivity

Average 
F1_Score

MobileNetV2 Mutated 93.95 95.21 95.12
Wild 
type

93.71 95.32 95.96

DenseNet121 Mutated 92.09 95.62 92.97
Wild 
type

90.47 95.53 90.60

InceptionResNetV2 Mutated 90.24 94.31 90.10
Wild 
type

91.71 94.05 92.99

VGG16 Mutated 95.68 96.51 95.59
Wild 
type

96.84 96.68 95.26

Xception Mutated 89.50 90.33 89.41
Wild 
type

89.67 90.78 89.72

DTLSMCNN Mutated 95.71 96.65 95.75
Wild 
type

96.86 96.73 96.01

Table 4 
The prediction results with 5-fold cross-validation for each class using the model 
set which combines the five models in the validation set.

Model Average 
precision

Average 
sencitivity

Average 
F1_Score

MobileNetV2 Mutated 92.31 95.38 94.74
Wild 
type

92.41 95.70 94.88

DenseNet121 Mutated 90.91 95.38 89.71
Wild 
type

90.86 95.08 92.54

InceptionResNetV2 Mutated 89.36 93.43 90.30
Wild 
type

89.68 93.03 90.43

VGG16 Mutated 96.40 96.01 96.24
Wild 
type

96.56 96.70 96.33

Xception Mutated 89.72 90.37 89.69
Wild 
type

90.07 90.89 90.02

Stacking Method Mutated 96.71 96.92 96.51
Wild 
type

96.83 96.98 96.64
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