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ABSTRACT Many ribosomally synthesized and posttranslationally modified pep-
tide classes (RiPPs) are reliant on a domain called the RiPP recognition element
(RRE). The RRE binds specifically to a precursor peptide and directs the post-
translational modification enzymes to their substrates. Given its prevalence
across various types of RiPP biosynthetic gene clusters (BGCs), the RRE could
theoretically be used as a bioinformatic handle to identify novel classes of RiPPs.
In addition, due to the high affinity and specificity of most RRE-precursor pep-
tide complexes, a thorough understanding of the RRE domain could be exploited
for biotechnological applications. However, sequence divergence of RREs across
RiPP classes has precluded automated identification based solely on sequence
similarity. Here, we introduce RRE-Finder, a new tool for identifying RRE domains
with high sensitivity. RRE-Finder can be used in precision mode to confidently
identify RREs in a class-specific manner or in exploratory mode to assist in the
discovery of novel RiPP classes. RRE-Finder operating in precision mode on the
UniProtKB protein database retrieved �25,000 high-confidence RREs spanning all
characterized RRE-dependent RiPP classes, as well as several yet-uncharacterized
RiPP classes that require future experimental confirmation. Finally, RRE-Finder
was used in precision mode to explore a possible evolutionary origin of the RRE
domain. The results suggest RREs originated from a co-opted DNA-binding tran-
scriptional regulator domain. Altogether, RRE-Finder provides a powerful new
method to probe RiPP biosynthetic diversity and delivers a rich data set of RRE
sequences that will provide a foundation for deeper biochemical studies into this
intriguing and versatile protein domain.

IMPORTANCE Bioinformatics-powered discovery of novel ribosomal natural products
(RiPPs) has historically been hindered by the lack of a common genetic feature
across RiPP classes. Herein, we introduce RRE-Finder, a method for identifying RRE
domains, which are present in a majority of prokaryotic RiPP biosynthetic gene clus-
ters (BGCs). RRE-Finder identifies RRE domains 3,000 times faster than current meth-
ods, which rely on time-consuming secondary structure prediction. Depending on
user goals, RRE-Finder can operate in precision mode to accurately identify RREs
present in known RiPP classes or in exploratory mode to assist with novel RiPP dis-
covery. Employing RRE-Finder on the UniProtKB database revealed several high-
confidence RREs in novel RiPP-like clusters, suggesting that many new RiPP classes
remain to be discovered.
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As of late 2019, nearly one-quarter of a million prokaryotic genomes were publicly
available in the National Center for Biotechnology Information (NCBI) genome

databases (1). This vast genomic resource has accelerated the pace of natural product
discovery, with a recent surge of interest pertaining to the ribosomally synthesized and
posttranslationally modified peptides (RiPPs) (2). RiPP biosynthesis starts with the
ribosomal synthesis of a linear precursor peptide. The genes for RiPP precursor peptides
are often short, hypervariable in sequence, and composed of two parts—an N-terminal
leader region and a C-terminal core region. With a few notable exceptions, the
precursor peptide is genetically encoded adjacent to one or more genes encoding
proteins that bind with high specificity and affinity to the leader region of the
precursor. This interaction facilitates subsequent posttranslational modification of the
core residues (3). After modification is complete, the leader region is enzymatically
removed and the mature RiPP product is exported from the producing organism (3)
(Fig. 1). The exact nature of the posttranslational modifications is used to categorize
RiPPs into individual classes, of which nearly 40 have been reported (2). For example,
lanthionine linkages define the lanthipeptide class, while oxazol(in)e and thiazol(in)e
heterocycles define the linear azol(in)e-containing peptide (LAP) class (4, 5).

Many RiPP biosynthetic proteins recognize and bind their cognate precursor pep-
tide through a domain known as the RiPP recognition element (RRE) (6). The RRE
consists of a conserved secondary structure of three N-terminal alpha helices followed
by a three-stranded beta sheet. The precursor peptide binds in a cleft between the third
alpha helix (�3) and the third beta strand (�3), forming an ordered, four-stranded,
antiparallel beta sheet (Fig. S1). RRE domains can exist either as discretely encoded
proteins (�100 residues) or as fusions to a larger protein domain (6–10). In cases where
a RiPP biosynthetic gene cluster (BGC) encodes a discrete RRE protein, this protein
binds the leader peptide and serves as a scaffold for recruiting the necessary modifying
enzymes. All characterized RREs share structural similarity to PqqD, which is a protein
involved in synthesis of pyrroloquinoline quinone (PQQ), a redox cofactor produced by
many prokaryotes (11). Thus, the existence of a PqqD-like protein encoded near
regulators, enzymes, and transporters is strongly indicative of an RRE-dependent RiPP
BGC. The prevalence of PqqD-like proteins in RiPP BGCs led to the discovery of the RRE
domain and its conservation across RiPP classes in 2015 (6). Before this, the importance
of leader peptide recognition was established in the biosynthesis of a few RiPPs, such
as nisin (lanthipeptide) and streptolysin S (LAP) (12, 13). In addition, an RRE-containing
protein from microcin C7 biosynthesis (MccB) was cocrystallized with its cognate leader
peptide in 2009, but owing to RRE sequence divergence, it was not appreciated at the
time that other RiPP classes employ a similar domain (14).

Consistent with the rapid expansion of characterized RiPP BGCs, a diverse collection
of modifications and enzymatic domains are found among the �40 known RiPP classes.
However, the lack of a common genetic feature remains a major obstacle in the
bioinformatic detection of novel RiPP classes. The fact that RRE domains are prevalent
in prokaryotic RiPP BGCs provides an opportunity. Of the �30 known RiPP classes
produced by prokaryotes, over 50% contain an identifiable RRE domain (Table S1).
Considering that the RRE domain appears to be the most conserved class-independent
feature in RiPP BGCs, it theoretically could be used as an imperfect but useful bioin-
formatic handle to expand known RiPP sequence-function space by identifying new
RRE-dependent RiPP classes.

The strategy outlined above is complicated by the sequence diversity of the RRE
domain (6, 9–11). For example, if a pairwise sequence alignment method (e.g., NCBI
BLAST [15]) is used to compare RRE domains from two unrelated RiPP classes, sequence
similarity will frequently not be detected, particularly in cases where the RRE domain is
fused to a larger protein. The most appropriate Pfam (16) model (a family of proteins
sharing sequence similarity) for defining the RRE domain is PF05402, which extensively
covers bona fide PqqD proteins from PQQ-producing BGCs. PF05402 incompletely
retrieves RRE-containing proteins from only a few other RiPP classes (e.g., lasso peptides
and sactipeptides), and indeed, most RREs from other RiPP classes have no represen-
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tation in this Pfam (17–19) (Fig. S1). These results underscore the inability of a single
bioinformatic model to capture the breadth of RRE sequence diversity. Owing to the
fact that RREs share considerable structural similarity, HHpred (20) is a more sensitive
algorithm for detecting RRE domains. HHpred detects remote protein homology by
aligning profile hidden Markov models (pHMMs; a model that defines amino acid
frequency for a protein family) and comparing their (predicted) secondary structures.
RREs were originally detected using this method by analyzing several RiPP-modifying
enzymes, which showed consistent homology to PqqD (6). However, HHpred requires
generation of a multiple sequence alignment (MSA) and secondary structure prediction
using PSIPRED (21). These steps require several minutes of computing time per protein
query, rendering the process unattractive for larger data sets and precluding global
analyses of RRE diversity. In this work, we report a customized tool that permits the
rapid and accurate detection of RREs in known and potentially novel RiPP classes with
the principal goal of directing natural product hunters to the most fruitful areas of the
RiPP sequence-function space.

RESULTS AND DISCUSSION
Development of RRE-Finder. This work presents RRE-Finder, a new tool for mining

RRE domains from microbial genomes. RRE-Finder has two modes of operation: The first
is precision mode, which employs a set of 35 custom pHMMs designed to detect RRE
domains in a class-dependent manner (Fig. S2) (see Data Set S1 at https://figshare.com/
articles/Dataset_S1_MSA_files/12030624 and Data Set S2 at https://figshare.com/
articles/Dataset_S2_HMM_files/12030651). The precision-mode pHMMs are primarily
based on known RiPP classes—in most cases, representative RRE-containing proteins
from these classes have been verified to bind their cognate precursor peptide through
biophysical experiments, such as X-ray crystallography or fluorescence polarization
binding assays. The second mode, exploratory mode, uses a truncated version of the

FIG 1 RRE-dependent RiPP biosynthesis. (A) RiPP BGCs encode one or more short precursor peptides;
their genes often lie adjacent to those for the modifying enzymes, leader peptidases, and proteins for
immunity and export (often ABC transporters). RRE domains are found as discrete polypeptides or fused
to larger biosynthetic proteins. (B) Modifying proteins bind the leader region of the precursor peptide
using RRE domains. Posttranslational modifications are then installed on the core region of the precursor
peptide.
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HHpred (20) pipeline with a custom database of detected RREs. Depending on the end
user’s objective, RRE-Finder can be used in precision mode to accurately predict the
presence of an RRE domain as well as the likely RiPP class in which the precursor
peptide belongs. Alternatively, in exploratory mode, the user can retrieve a wider array
of putative RRE-containing proteins to assist in the discovery of novel RRE-dependent
RiPP classes. RRE-Finder accelerates the process of identifying RRE domains by several
orders of magnitude compared to HHpred. Precision mode, for instance, can analyze
�5,000 protein sequences per second (Table S2A). In addition to 29 core models based
on known RiPP classes, precision mode includes 6 auxiliary models based on high-
confidence, novel RiPP classes. We justified the inclusion of these models based on
repeated observation of RRE domains within RiPP-like genomic contexts across multiple
prokaryotic species. The 35 pHMMs that comprise precision mode are provided in Data
Set S2 (https://figshare.com/articles/Dataset_S2_HMM_files/12030651).

In general, for RiPP classes where an extensive survey of the bioinformatic space has
been performed (e.g., lasso peptides [22, 23], sactipeptides and ranthipeptides [24], and
thiopeptides [25]), custom pHMMs were built by first visualizing sequence space
through use of a sequence similarity network (SSN) for all RRE-containing proteins in
the data set (26). SSN visualization using Cytoscape (27) facilitated selection of the most
diverse and nonredundant subset of RRE primary sequences for seed sequence align-
ment. In cases where a published data set was available for a given RiPP class, model
prediction accuracy was gauged by using hmmscan (from the HMMER3 suite [28]) on
the relevant data set using bit scores of 15, 25, and 35 (referred to here as tolerant,
moderate, and stringent cutoffs). A given pHMM was considered acceptable if �95% of
RRE-containing proteins within the data set were retrieved by the model at a bit score
of 25 (Table S2B).

In cases where a deep bioinformatic profiling of a RiPP class had not been previously
published or where a mature natural product is not known (i.e., clusters predicted by
the auxiliary models), seed alignment input sequences were gathered using PSI-BLAST
(29) to find diverse homologous sequences to a representative sequence from each
given class. The generated pHMMs were considered valid if an hmmsearch of the
UniProtKB database (30) with a bit score cutoff of 25 gave only hits within BGCs with
architectures similar to those of the target class. In addition, characterized data sets of
RiPP proteins (e.g., lanthipeptides [31, 32], lasso peptides [22, 23], and sactipeptides
[24]) were used to test auxiliary models using hmmscan analysis. Models giving few or
no hits were considered to have acceptably low false-positive rates.

Exploratory mode, on the other hand, was built for the detection of RRE domains
with greater sequence divergence from those detected by precision mode. For this
mode, we employed a variation of the HHpred pipeline to detect structural similarity to
RRE domains. HHpred uses a clustered UniProt database (uniclust30) (33), which
comprises a small, representative set of all UniProt protein sequence diversity. Query
proteins are compared to the uniclust30 database to generate a representative protein
family for the query, and the consensus sequence of this representative protein family
is compared to those of other protein families. This search also incorporates compar-
ison of (predicted) secondary structures. As such, HHpred can detect distantly related
sequences and overlap in secondary structures between a query protein and the
UniProt database. However, the vast search space used far exceeds what is necessary
if the goal is to detect RRE domains.

To accelerate the HHpred pipeline for RRE detection, we first built a smaller, more
specialized HHpred database, consisting of �2,400 diverse RRE sequences. These
sequences were gathered by retrieving 5,000 RiPP BGCs from the antiSMASH database
(34) using HHpred. Rather than manually curating the retrieved RREs in a class-specific
manner, as was done for precision mode, all detected RREs were indiscriminately
included. The only manual curation carried out was the removal of helix-turn-helix-
containing proteins and other transcriptional regulators. While these proteins may
display structural similarity to RREs, they are not involved in RiPP biosynthesis and
therefore were excluded from the data set. The selected RREs were supplemented with
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7 RREs from LAP BGCs and an RRE from a proteusin BGC, as no BGCs from these RiPP
classes were present in the antiSMASH database.

The collection of �2,400 RREs was used to build databases for two filtering steps
(Fig. 2). For the first filter, all RREs were clustered into representative protein families
with MMSeqs2 (35), resulting in 377 RRE families. These RRE families were further
enriched by querying each family against the uniclust30 database using HHblits, an
iterative search tool from HHpred (36). For each of the 558 resulting RRE families,
custom pHMMs were constructed, allowing an initial filtering step with hmmsearch
(28). The second filtering step functions in a manner similar to that of HHpred. However,
rather than using the uniclust30 database to retrieve a protein family for a query, we
employed a smaller, custom HHpred database consisting of the �2,400 RRE sequences
retrieved from the antiSMASH database and their related protein families retrieved by
HHblits. When this custom database is used, only protein queries that are homologous
to one of the 377 clustered RRE families will return results. For queries lacking
homology, no protein family would be found in the database, effectively filtering out
such sequences. Finally, exploratory mode compares the family of proteins homolo-
gous to a query protein to three RRE structures in the Protein Data Bank (PDB entries
5V1T, 5SXY, and 3G2B). Any proteins showing homology to these models are output as
putative RRE domains. In all, by employing a small, custom library of RRE sequences,
exploratory mode significantly accelerates detection of RREs relative to the standard
HHpred pipeline.

Model validation against the MIBiG database. As an initial test of accuracy,
RRE-Finder was evaluated in precision and exploratory modes against the MIBiG
database (37). This database contains characterized BGCs for �2,000 natural products,
including polyketides, nonribosomal peptides, and RiPPs. All proteins within the MIBiG
set (version 1.4) of RiPP (n � 242) and non-RiPP BGCs (n � 1,575) were analyzed by
RRE-Finder at tolerant, moderate, and stringent bit scores (Fig. 3).

In general, both precision and exploratory modes accurately predicted the presence
of RRE domains in �90% of the RRE-dependent RiPP BGCs. Taken together, both modes
retrieved 93% (115/122) of RRE-containing proteins found by HHpred (Table S3A). With
increasing bit score stringency, the number of RRE sequences retrieved decreased in

FIG 2 RRE-Finder employs two modes for RRE detection. Precision mode (top) uses a set of pHMMs to
accurately predict RREs. These pHMMs are based on characterized RRE domains for individual RiPP
classes, either from published data sets or from the MIBiG database. Exploratory mode uses a combi-
nation of pHMMs and a truncated HHpred pipeline (including secondary-structure prediction) to facilitate
the identification of divergent RRE sequences (albeit with a higher false-positive rate).
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both RiPP and non-RiPP BGCs, as expected (Fig. 3). At all bit score cutoffs, exploratory
mode predicted more RRE domains in RiPP BGCs (higher true-positive rate than
precision mode), while precision mode retrieved fewer proteins from non-RiPP BGCs
(lower false-positive rate than exploratory mode). After further analysis, we chose a bit
score cutoff of 25 as a compromise between precision and recall. At this cutoff, most
of the RREs found within the MIBiG set by precision mode were also found by
exploratory mode (101/117) (Fig. 3). Only the RREs of linear azol(in)e-containing pep-
tides (LAPs) (4) and streptides (38) proved more difficult to detect by exploratory mode
(Table S3A). The inability of exploratory mode and HHpred to reliably predict LAP RRE
domains may reflect a large diversity of leader peptide recognition sequences within
this class that is better captured by the five distinct LAP models used by precision
mode.

In contrast, precision mode detected only 66% (101/154) of the RREs retrieved by
exploratory mode. A notable number (n � 17) of the RRE-containing proteins not
detected by precision mode were those contained in LanB-like proteins, which are
found in certain lanthipeptide and thiopeptide BGCs. It has been shown that the LanB
RRE domain found in thiopeptide BGCs is possibly vestigial, as the cognate leader
peptide is not required for catalytic processing (39). Exploratory mode also detected
several (n � 14) RREs fused to dehydrogenase enzymes present in cyanobactin, LAP,
and thiopeptide BGCs, which were not detected by precision mode. These RREs may
also be vestigial; thus, precision mode does not include models for identifying these
RRE-like domains. HHpred analysis similarly does not detect many of these potentially

FIG 3 MIBiG validation of RRE-Finder. Both modes were used to retrieve RRE-containing proteins in 242
RiPP BGCs (A and B) and 1,575 non-RiPP BGCs (C and D) from the MIBiG database. With increasing bit
score stringency, the number of RREs detected decreased in both types of BGCs (A and C). At a bit score
of 25, exploratory mode of RRE-Finder detected most of the RREs found by precision mode in RiPP BGCs
(B), as well as several other RREs. However, the number of RREs detected in non-RiPP BGCs was lower for
precision mode than exploratory mode (D).

Kloosterman et al.

September/October 2020 Volume 5 Issue 5 e00267-20 msystems.asm.org 6

https://msystems.asm.org


inactive RREs; thus, exploratory mode provides the best coverage of functional and
vestigial RRE domains in this instance. We note that some of the RREs detected by
exploratory mode, such as those from the thioamide-containing RiPP and phegano-
mycin pathways, are presumed to be functional but have yet to be experimentally
validated (Table S3A).

While exploratory mode detects a greater number of RREs, it also displays a higher
false-positive rate (e.g., proteins retrieved from known non-RiPP BGCs). The false
positives primarily consisted of helix-turn-helix domains and proteins with homology to
known RRE-containing proteins that occur in non-RiPP contexts, such as radical
S-adenosylmethionine (rSAM) enzymes (Table S3B). Many DNA-binding regulators pos-
sess a helix-turn-helix domain, which are structurally homologous to RRE domains
(Fig. S3A). Indeed, most RRE domains analyzed by HHpred show homology to known
DNA-binding domains and regulatory elements (e.g., PDB entries 3DEE, 2G9W, and
2OBP). Because regulatory proteins are not known to bind or modify RiPP precursor
peptides, RRE-Finder includes an option to filter results that correspond to such
domains.

RRE-Finder operating in either mode retrieved LanB-like proteins within polyketide
BGCs. There is precedence for the assimilation of RiPP-modifying enzymes into
polyketide pathways (31), although the RRE domain within these proteins may be
vestigial (Fig. S3B). Thus, retrieval of proteins outside canonical RiPP BGCs may not
always constitute a false positive. Further biochemical validation is required to confirm
or refute a functional RRE in these instances.

Finally, some pHMMs employed by precision mode were generated largely using
RRE sequences from the MIBiG database. In these cases, validation against MIBiG alone
is not sufficient to confirm or refute whether these models exhibit appropriate recall
and precision. As an orthogonal means of precision mode validation, we ran the
hmmscan function for the �5,000 RiPP BGCs from the antiSMASH database used to
generate the exploratory-mode database (34). As previously stated, these BGCs primar-
ily belong to the lanthipeptide, thiopeptide, LAP, sactipeptide, and lasso peptide
classes. Because this collection of BGCs includes RRE-dependent and RRE-independent
RiPPs (e.g., class II to IV lanthipeptides) (40), there are BGCs anticipated to not be
retrieved by precision mode. These clusters were purposely included in the analysis as
a negative control. All proteins within the 5,000 BGCs were scanned by precision mode
at tolerant, moderate, and stringent bit scores. The percentages of scanned BGCs
predicted by precision mode to contain an RRE were 90%, 87%, and 83%, respectively.
The 10% of BGCs not predicted to contain an RRE by precision mode were manually
examined, with the majority belonging to RiPP classes that are RRE independent. Some
BGCs also contained regulatory elements that represent false positives by HHpred;
these proteins were appropriately not retrieved by precision mode. Thus, precision
mode accurately predicts the presence of RREs in an unbiased collection of BGCs and
appropriately omits RRE-independent RiPP clusters.

Defining the scope of RRE-dependent RiPP BGCs. Next, we profiled the extent to
which the RRE domain is present within sequenced genomes by mining the entire
UniProtKB database (30). Using hmmsearch at a bit score threshold of 25, precision
mode retrieved �25,000 proteins (�13,000 nonredundant sequences) (Fig. 4). A par-
allel search using exploratory mode with regulators filtered out yielded �35,000
nonredundant RRE-containing proteins, almost completely encompassing the proteins
retrieved by precision mode. As expected, the numbers of proteins retrieved by
precision mode is larger than has been previously reported for virtually all RiPP classes,
owing to on-going genome sequencing. For example, the thiopeptide precision model
is the top-scoring model for more than 600 of the retrieved UniProtKB proteins, an
�25% increase from the most recent bioinformatic survey of thiopeptide BGCs (25). In
other cases, the number of retrieved proteins for a given model is misleading. For
example, the precision mode model for discretely encoded lasso peptide RREs is the
top-scoring model for almost 8,000 of the retrieved proteins. However, subsequent
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analysis revealed that only �4,000 of these sequences co-occur with the requisite
leader peptidase and lasso cyclase. This number is more consistent with the most
recent lasso peptide survey, which reported �3,000 lasso peptide BGCs (23, 41).
Proteins retrieved by the discrete lasso peptide model often co-occur with other
common RiPP enzymes, such as rSAM enzymes which represent �300 of the false
positives. Thus, we caution that the number of proteins retrieved by any given model
should not be equated to the number of BGCs specific to a particular RiPP class without
analysis of the local genomic neighborhood. Full information on proteins retrieved by
precision mode is available in Data Set S3 at https://figshare.com/articles/Dataset_S3
_RRE_domains/12568193.

Figure 4 shows the number of retrieved proteins at tolerant, moderate, and strin-
gent bit score cutoffs, as a measure of precision model specificity. Notably, due to
partial model overlap in closely related RiPP classes (e.g., PQQs/lasso peptides and
LAPs/thiopeptides/cyanobactins), the overall numbers of retrieved proteins for these
models do not drastically increase going from moderate to tolerant bit scores. Thus, the
majority of “false positives” detected by precision models at lower significance cutoffs
represent an RRE-dependent RiPP BGC of a separate RiPP class. Notably, the only
precision model that displayed a high count of real false positives, even at a bit score
threshold of 15, was the discrete lasso peptide RRE model, for the reasons stated above.

The excised RREs from all proteins identified by precision mode were visualized
using a sequence similarity network (SSN) (26). The SSN confirms known relationships
between RREs in separate RiPP classes. For example, discretely encoded lasso peptide
RREs (referred to as the B1 or E protein) group separately from RRE-leader peptidase
fusions (known as the B2 or B protein), consistent with a different recognition sequence
for these two varieties of lasso peptide (Fig. 5; Fig. S4A and B) (22, 23). In contrast, the
heterocycloanthracins (LAPs) cluster more tightly with thiopeptides than other LAPs.
This relationship was expected given that heterocycloanthracin and thiopeptide BGCs

FIG 4 Summary of proteins retrieved from UniProtKB using precision mode. The numbers of proteins retrieved from the
UniProtKB database are summarized for several classes of RiPPs. A scan of the entire UniProtKB database of nonredundant
proteins was carried out at three bit scores. In cases where a given UniProt entry was retrieved by more than one precision
model (due to partial model redundancy), the protein was counted only toward the model of higher significance. For classes
with more than one precision-mode pHMM (e.g., LAPs and sactipeptides), the numbers presented are the sum of proteins
retrieved by each individual model. Full data on proteins detected by each precision mode model are available in Data Set S3
(https://figshare.com/articles/Dataset_S3_RRE_domains/12568193). LAP, linear azol(in)e-containing peptide; PQQ, pyrrolo-
quinoline quinone.
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feature an RRE domain fused to an ocin-ThiF-like protein (TIGR03693) that delivers the
peptide substrate to the biosynthetic enzymes (4, 42). In other LAP pathways, the RRE
is fused to members of TIGR03882 (4, 6, 42, 43). Members of TIGR03882 recognize the
peptide substrate through the RRE and perform cyclodehydration reactions, whereas
these functions are carried out by separate proteins in thiopeptide and heterocycloan-
thracin clusters.

Another method to view RRE relatedness is through model redundancy (Fig. S4C
and D). In cases where there is overlap in the proteins retrieved by multiple models, the
redundancy is reflective of RREs in these classes binding their cognate leader peptides
through similar sequence motifs. Similarly, lack of model overlap is indicative of a
divergent leader peptide recognition sequence. For example, at a moderate bit score,
there is virtually no overlap between the lanthipeptide-associated RRE domains with
any other RiPP class, reflective of a unique recognition sequence not yet observed
elsewhere (40, 44) (Fig. S4C). We note that model redundancy, particularly in RiPP BGCs
with more than one RRE-containing protein, may suggest a similar recognition se-
quence on the cognate leader peptide. For example, the 3-thiaglutamate (pearlin RiPP
class) BGC contains three proteins predicted to contain an RRE. The precision-mode
pHMMs for these proteins display greater redundancy with each other than with any
other model. This suggests comparable specificity of these RRE domains, as dictated by
the �3 and �3 regions, and that these RREs likely bind the same region of the precursor
peptide. However, this hypothesis will require further experimental evaluation.

Evolution of the RRE domain. Sequence similarity between recognition sequences
in closely related RiPP classes suggests that the RRE domain emerged once and then
diverged to recognize a variety of leader peptides. Because the leader peptide binds as
an ordered beta-strand between the �3 helix and �3 strand of the RRE, substitutions of
key �3 and �3 residues logically tune the RRE specificity toward the cognate peptide
substrate. Analysis of residue-level conservation between RREs of divergent RiPP classes

FIG 5 Sequence similarity network of UniProtKB proteins retrieved by precision mode. Shown is a RepNode60 SSN at an alignment score of 22
(sequences with �60% identity are conflated to a single node, and edges represent a BLAST expectation value better than 10�22). Proteins are
colored based on the best-fit model by which they were detected. White nodes in region 3 represent proteins that were retrieved by the discrete
lasso peptide RRE model but do not co-occur with the requisite leader peptidase and lasso cyclase. These proteins represent possible false
positives from this model. The discrete lasso peptide RREs clustering with sactipeptides and ranthipeptides in region 2 are discretely encoded RRE
proteins that co-occur with radical SAM enzymes. The SSN was generated using the Enzyme Similarity Tool (https://efi.igb.illinois.edu/efi-est/) (26).
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reveals that the �3 and �3 regions exhibit higher levels of residue conservation than
the remainder of the domain, presumably due to selective pressure to conserve leader
peptide-RRE contacts. This holds true even when closely related RiPP classes, such as
LAPs and thiopeptides, are compared (Fig. S5A). The other regions of the RRE, which are
not directly involved in leader binding, show lower levels of conservation.

A representative phylogenetic tree of excised RRE domains retrieved by precision
mode (bit score of 25) is consistent with the hypothesis that the RRE domain coevolved
with the leader peptide to provide specificity in all RRE-dependent RiPP classes
(Fig. S5B). The tree does not include all proteins retrieved by precision mode; rather,
10% of the proteins contained within each SSN cluster (Fig. 5) were included, along
with all singletons, to generate a diversity-maximized collection of sequences spanning
all RRE-dependent classes. The tree employs a helix-turn-helix DNA-binding protein as
an outgroup (PDB entry 3DEE), as this protein scores well in HHpred searches of
characterized RRE proteins, such as PqqD and LynD. As previously mentioned, it is
plausible that the RRE domain evolved from DNA-binding regulatory elements, given
the shared secondary structure and the similar function of these domains to specifically
bind a stretch of DNA or a peptide (Fig. S3A). Unsurprisingly, the diversity-maximized
tree shows a subset of the discrete lasso peptide RREs branching directly from the
helix-turn-helix outgroup. Although discrete RREs called by this model are dispersed
throughout the tree, the subset branching most directly from the outgroup is mostly
representative of the false positives discussed previously (proteins not co-occurring
with lasso peptide machinery). This may suggest that some of these false positives are
DNA-binding proteins more closely related to true RREs (either in RiPP or non-RiPP
contexts) and that discrete RREs evolved from these regulators. These proteins could
also represent discrete RREs from currently uncharacterized RiPP classes. Furthermore,
the tree shows clades of fused RRE domains branching off from discrete RREs as
separate events for most RiPP classes. Some fused RRE types (e.g., fused lasso
peptide RREs, ranthipeptides, and pantocins) form monophyletic clades branching
from parent clades with discrete RREs. Other classes, like the lanthipeptides, are
dispersed throughout many clades. This may indicate that fusion of the RRE domain
to other domains occurred as separate events, even within some RiPP classes. These
data are also consistent with the observed domain architectures, as some classes
employ N-terminally fused RRE domains, while others exhibit C-terminal fusions
(e.g., proteusins).

Using RRE-Finder to identify novel RiPP clusters. Theoretically, the sequence
space retrieved by exploratory mode and the auxiliary models of precision mode
encompasses RRE-containing proteins from yet-undiscovered RiPP classes. To explore
this sequence space, divergent clusters mined from UniProtKB were manually examined
for novel RiPP contexts. All proteins retrieved were grouped based on their best-fit
Pfam model. Since we expected many regulatory elements or proteins with helix-turn-
helix domains among the hits, we filtered these sequences after the first step of the
exploratory pipeline, reducing the required computational time.

Among the remaining detected proteins, RRE-Finder reveals several potentially
novel RiPP clusters with new gene architectures containing both discrete and fused RRE
domains (Fig. S6). Included in these clusters are RRE-protein fusions that are not present
in known classes, such as RRE-glycosyltransferase fusions and RRE-glutathione
S-transferase fusions (Fig. S7). Of the nine potential RiPP BGCs shown in Fig. S7, four
encode rSAM enzymes, which are found across several RiPP classes (24). The presence
of rSAM enzymes in conjunction with predicted RREs is suggestive of a RiPP BGC.
However, of the nine BGCs, only three contained probable precursor peptides (small
genes of �150 amino acids, co-occurring with the RRE-containing protein), while four
other BGCs contained precursor candidates predicted by RODEO. Therefore, manual
curation of potentially novel BGCs found by RRE-Finder is strongly recommended. An
overall sequence similarity network of the UniProtKB proteins accessed by exploratory
mode is provided in Fig. S6A.
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To date, almost no RiPP classes have been discovered using solely a bioinformatic
approach. The mycofactocin class was initially predicted through a bioinformatic study
on then-uncharacterized rSAM enzymes (45). In addition, the ranthipeptide class was
defined solely using bioinformatics (as SCIFF [for “six cysteines in forty-five residues”]
peptides) (46); however, this class was incorrectly assumed to be part of the existing
sactipeptide class (24). In other cases, bioinformatics analyses have been used to expand
diversity within known RiPP classes; for example, the streptide class has been expanded to
include enzymes that diverge from the class-defining Lys-Trp cross-linking enzymes (38, 47).
Also, one new RiPP class—the �-keto �-amino acid-containing peptides—and one RiPP-like
class—the pearlins—were discovered through bioinformatic means (48, 49). These classes,
however, were discovered through first identifying a divergent member of a known RiPP
biosynthetic enzyme, rather than through a truly unbiased bioinformatic discovery. We
expect that RRE-Finder will enable such discoveries.

RRE-Finder incorporation into antiSMASH and RODEO. To encourage the use of
RRE-Finder, the algorithm has been made publicly available as a command-line tool
(https://github.com/Alexamk/RREFinder). Protein queries can be supplied in FASTA or
GenBank format. The tool is also capable of analyzing and updating antiSMASH and
DeepBGC output files (50). Precision mode of RRE-Finder will be incorporated into the
next release of antiSMASH. We further have incorporated the precision mode of
RRE-Finder into RODEO (22), a genome-mining tool for RiPP discovery that provides
genomic neighborhood visualization and prediction of precursor peptides. Protein-coding
sequences within the genetic locus are annotated according to Pfam and TIGRFAM models
to identify conserved domains and predict function. With the “include RRE scoring” function
enabled, proteins with an identifiable RRE are annotated, along with their E-value signifi-
cance. Both the command line version of RODEO (https://github.com/the-mitchell-lab/
rodeo2) and the user-friendly Web tool version (http://rodeo.scs.illinois.edu) have been
upgraded with the capabilities of RRE-Finder precision mode.

Conclusion. RRE-Finder rapidly and accurately detects RRE domains within known
and potentially novel RiPP classes. Although not all RiPP classes are RRE dependent, the
majority of prokaryotic RiPP classes are, including the largest known classes (i.e., class
I lanthipeptides, lasso peptides, and ranthipeptides). RiPP natural products are a prime
candidate for pathway engineering, as precursor peptides and their cognate modifying
enzymes are all genetically encoded, typically within one BGC. However, efforts to
bioinformatically predict RiPP BGCs lag behind those for predicting polyketide synthase
(PKS) and nonribosomal peptide synthetase (NRPS) BGCs, due to a lack of strongly
conserved protein domains spanning multiple RiPP classes. Through precision mode of
RRE-Finder, we have shown that characterized RiPP classes contain more members than
currently reported, although analysis of the genomic neighborhood should be per-
formed to confirm class identity. Precision mode can further be employed, particularly
with a tolerant bit score threshold, to predict novel RRE domains, such as those
predicted by the auxiliary models. Finally, using RRE-Finder in exploratory mode reveals
a set of �35,000 proteins that are predicted to contain an RRE, suggesting that
additional classes of RRE-dependent RiPPs remain to be uncovered.

MATERIALS AND METHODS
Generation of precision mode models. Precision mode was generated to accurately predict the

presence of RRE domains specific to characterized RiPP classes, as well as RRE domains in selected bioinfor-
matically predicted RRE-dependent RiPP clusters. There are 29 models employed by precision mode of
RRE-Finder (not including auxiliary models), each specific to a given discrete or fused RRE protein within a
characterized RiPP class (see Fig. S2 for represented classes). Each precision model consists of a custom profile
hidden Markov model (pHMM). To build each pHMM, five to 20 representative sequences were selected from
a given RRE class for seed sequence alignment. For several RiPP classes, an extensive bioinformatic survey of
biosynthetic gene clusters has been conducted. When available, these data sets were employed to select seed
sequences. The data sets included those describing known gene clusters for lanthipeptides (32), lasso
peptides (22), thiopeptides (25), cyanobactins (51), bottromycins (52), linear azol(in)e-containing peptides
(LAPs, including heterocycloanthracins, plantazolicins, nitrile hydratase-like leader peptides [NHLP]-derived
RiPPs, Nif11-derived RiPPs, goadsporins, and cytolysins) (4), pantocins/microcins (53), and radical
S-adenosylmethionine-derived RiPPs (including sactipeptides, ranthipeptides, quinohemoprotein amine de-
hydrogenases, and streptides). In these cases, sequence diversity was evaluated by generating a sequence
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similarity network (SSN) using the Enzyme Function Initiative Enzyme Similarity Tool (EFI-EST) (26) and
visualizing the SSN with Cytoscape (27). Five to 20 sequences (depending on number of clusters in the SSN)
were selected from divergent clusters on the SSN.

Bioinformatic data sets were not available for the following RRE-dependent RiPP classes: PQQ (11),
proteusins, mycofactocins, trifolitoxins, �-keto �-amino acid-containing peptides, and pearlins. In these
cases, a list of homologous sequences to a canonical gene were obtained with position iterative BLAST
searching (PSI-BLAST) (29) with three iterations and an E-value cutoff of 0.05 in November 2019 using the
GenBank nonredundant protein sequence database. Once a list of homologous sequences was obtained,
an SSN was generated in the manner described above, and diverse sequences were selected for seed
sequence alignment.

Seed sequences were analyzed for the presence of an RRE domain using the HHpred Web tool
(https://toolkit.tuebingen.mpg.de) (20). A protein was considered to contain an RRE if part or all of the
protein matched a PqqD model (either PDB entry 5SXY or 3G2B) with 80% probability or greater. All
proteins containing RRE domains were excised in silico to contain only the residues matching the relevant
PqqD model. Excised RRE sequences were then aligned using MAFFT 7.450 (54). MAFFT alignments were
run using the L-INS-I alignment option. Multiple-sequence alignments were used directly to generate a
pHMM using HMMER version 3.3 (28). Models were built using the hmmbuild function and pressed into
binary form using the hmmpress function.

Validation of precision mode models. Precision mode models were validated against the full data
sets from which seed sequences were chosen, excluding the sequences which were included in the
pHMMs themselves. For each model, the pHMM was run against the full data set for the relevant RiPP
class using the hmmscan function of HMMER3.3 (28). Hmmscan was run with a bit score cutoff of 25 and
with all other options set to default. A given model was deemed functional if �95% of RRE-containing
protein sequences in a data set were retrieved by the pHMM at this bit score threshold. In cases where
this criterion was not met, sequences not retrieved by the model were used to enrich the original seed
sequence alignment and an improved model was generated. In cases where an extensive bioinformatic
survey was not available for a certain RiPP class, model accuracy was assessed in two ways: First, the set
of homologous proteins generated by PSI-BLAST during model generation was tested against the pHMM
using hmmscan with a bit score cutoff of 25. Second, an hmmsearch was performed using the HMMER3.3
Web tool (https://www.ebi.ac.uk/Tools/hmmer/search) against the UniProtKB database. The biosynthetic
gene clusters surrounding gene hits were visualized using the RODEO Web tool (22) (http://rodeo.scs
.illinois.edu). A model was considered valid if �95% of the proteins retrieved by PSI-BLAST were detected
by the model and �90% of proteins retrieved from the UniProtKB database co-occurred with genes
belonging to Pfams known to associate with that RiPP class. Finally, all models were tested for
false-positive rates. All models were run against a data set of 3,000 protein sequences selected from
across the data sets used for generating all precision mode models using hmmscan at a bit score cutoff
of 35. Models were considered to have acceptably low false-positive rates if �100 hits for any given
model belonged to a divergent RiPP class.

As described above, precision mode models were also validated against a set of �5,000 proteins
from the antiSMASH database. These protein sequences were employed in the generation of exploratory
mode and thus were a form of cross-validation between the two modes of RRE-Finder. This data set
consists of RRE-containing proteins primarily from the thiopeptide, lasso peptide, lanthipeptide, sacti-
peptide, and LAP classes. Not all proteins contained within the data set canonically contain RRE domains,
particularly those belonging to class II to IV lanthipeptides. All precision-mode models were assessed by
hmmscan searches against this data set with bit score cutoffs of 15, 25, and 35 (representing tolerant,
moderate, and stringent bit score thresholds).

Generation of exploratory mode. Exploratory mode was generated for the purpose of identifying
RRE sequences with higher divergence from RREs in known RiPP classes in a more unbiased manner than
precision mode. For exploratory mode, we constructed a truncated version of the HHpred pipeline (20).
In this pipeline, a query sequence is first expanded with HHblits into a multiple sequence alignment
(MSA) using a database of interest, in this case the uniclust30 database (36). The secondary structure of
the MSA is predicted using the adds.pl script available in the PSIPRED function of the HHsuite tool (21).
The MSA is then searched with HHsearch against a second database, which consists of three sequences
from the Protein Databank (PDB) corresponding to RRE crystal structures (PDB entries 5V1T, 5SXY, and
3G2B). To closely mimic the HHpred pipeline, we used the uniclust30 database for MSA generation
(version from August 2018 [https://uniclust.mmseqs.com]). This database contains all sequences from the
UniProt database clustered with MMseqs2 (35) at a cutoff of 30% pairwise sequence identity.

For the initial generation of an RRE database, we used the above-mentioned pipeline to search 5,000
RiPP BGCs from the antiSMASH database against the uniclust30 database. Regions showing distant
similarity to the reference RRE domains (probability, �40%; length, �50 residues) were extracted with 15
flanking residues on each side, and the extracted regions were resubmitted to the same pipeline with a
higher cutoff to confirm the results (probability, �90%; length, �50 residues). Additional RRE sequences
were added for the LAP, streptide, and proteusin RiPP families, for which no entries were available in the
antiSMASH database.

The resulting database of RREs was used to generate a custom HHpred database as described in the
documentation of the HHsuite tool, including the addition of secondary structure predictions with
PSIPRED. In parallel, all RREs found were clustered with MMSeqs2 using default settings (pairwise identity,
�80%) and the sequences in each cluster of RREs were aligned using MUSCLE (55). The resulting
alignment was converted into .a3m format using the reformat.pl script available in the HHsuite tool. Each
alignment was then further enriched with more homologous sequences from the UniProtKB database by
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using HHblits with the uniclust30 database with three iterations. Finally, the expanded alignments were
converted into pHMMs using HMMER3.3.

In exploratory mode, each query is first subjected to hmmsearch using the pHMMs described above.
Queries passing the initial cutoff (see main text) and with minimum alignment length of 50 residues have
the relevant regions extracted, including 15 flanking residues on each side. The candidate RRE region is
then subjected to the HHpred pipeline described above. In the first step of MSA generation, however, the
custom database containing RRE regions is used instead of the uniclust30 database. RRE regions showing
homology to the reference RRE domains (length, �50 residues; probability, �90%) are considered hits.

Reducing false positives. To remove sequences containing transcriptional regulators (a large source
of false positives using exploratory mode), we constructed a list of Pfam pHMMs containing a variety of
DNA-binding regulators and other helix-turn-helix domains that share structural homology to the RRE
domain. Each resulting hit is searched against this database with hmmsearch using the trusted cutoffs
of each pHMM. Overlap of a regulator with a retrieved RRE is indicated in the output file. Information on
which Pfams were filtered out is available in Data Set S4 (https://figshare.com/articles/Dataset_S4_Pfam
_filtering/12568136).

Analysis of the MIBiG database. The pipeline described above was used to analyze all proteins from
the MIBiG database (version 1.4), using bit score cutoffs ranging from 15 to 50. The resulting hits were
separated into those belonging to RiPP and non-RiPP BGCs. Hits from the RiPP BGCs were additionally
clustered per RiPP class. RiPP BGCs containing only precursors were removed.

Analysis of the UniProtKB database. The pipeline described above was used to analyze all proteins
from the UniProtKB/TrEMBL database (UniProt release 2019_09). A bit score cutoff of 25 was used for
precision mode and the initial filter of exploratory mode. For exploratory mode, proteins identified as
likely regulators were removed after the initial hmmsearch step in the exploratory pipeline.

For the discovery of new classes, UniProtKB hits found by both modes of RRE-Finder, in particular
using the auxiliary models of precision mode, were annotated with Pfam models (version 32.0) (19).
Several hits containing a Pfam domain that indicated an enzymatic activity were selected, and their
genomic neighborhoods were investigated, as well as their overlap with antiSMASH gene clusters. In
addition, the presence of RRE domains in these hits was confirmed by submitting to the HHpred Web
tool (https://toolkit.tuebingen.mpg.de/tools/hhpred).

For analysis of the UniProtKB database using precision mode, the HMMER3.3 Web tools were used.
Each model was individually run through hmmsearch of the UniProtKB database with a bit score cutoff
of 25. Retrieved proteins for each model were compiled, and duplicate protein accessions were removed
to determine the exact number of unique proteins detected by each precision model. Information on
duplicate hits from two or more precision models were used to determine model overlap and RRE
relatedness, as shown in Fig. S4.

Generation of sequence similarity networks and a diversity-maximized phylogenetic tree. The
unique protein accessions from hmmsearch of the UniProtKB database using precision mode were
directly used to generate an SSN using EFI-EST (26) (https://efi.igb.illinois.edu/efi-est/) and visualized with
Cytoscape (27). All sequences were excised to consist of only the RRE domain using a custom script. This
script employs hmmsearch to identify the residues of a protein corresponding to the query pHMM and
includes only those residues in the FASTA output. All SSNs shown are either a RepNode60 or RepNode80
network, meaning that protein sequences sharing more than 60% or 80% sequence identity are
conflated into one node on the network. In general, alignment scores for network visualization were
chosen to reflect a cutoff where sequences with �40% sequence identity cluster together. For the
networks shown in this work, these alignment scores were 22 and 25 (representative of E-value cutoffs
of 10�22 and 10�25, respectively).

A diversity-maximized, maximum-likelihood phylogenetic tree was generated by first selecting a
smaller subset of the sequences represented on the SSN. All sequences represented by clusters
consisting of 1 to 3 nodes were included in the tree. For larger clusters, a random sampling of 10% of
the sequences in the cluster was used for tree generation. All sequences were excised to contain only the
RRE using the methods described above. The subset of sequences was used to generate a multiple-
sequence alignment using MAFFT 7.450 (54). MAFFT alignments were run using the L-INS-I alignment
option. The MSA was transformed into an approximate-maximum-likelihood tree using FastTree 2.1 (56)
with the default Jones-Taylor-Thornton (JTT) model. The tree was visualized using the Interactive Tree of
Life (iTOL) website (http://itol.embl.de/).

Integration of RRE-Finder into RODEO and antiSMASH. Precision mode models have also been
incorporated into both the GitHub and Web tool versions of RODEO 2 (http://rodeo.scs.illinois.edu).
Included is an option to score RRE domains, which, if selected, will show which precision-mode models
are matched, along with the default Pfam matches. The integration of precision mode is in progress for
version 6.0 of antiSMASH, which is currently in the development phase and will be reported elsewhere.
In addition, the standalone RRE-Finder tool is available on GitHub (https://github.com/Alexamk/
RREFinder) and is capable of detecting RREs in precision mode and exploratory mode directly from
antiSMASH and DeepBGC output (50).

SUPPLEMENTAL MATERIAL
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FIG S2, PDF file, 0.5 MB.
FIG S3, PDF file, 1 MB.

RRE-Finder for Class-Independent RiPP Discovery

September/October 2020 Volume 5 Issue 5 e00267-20 msystems.asm.org 13

https://figshare.com/articles/Dataset_S4_Pfam_filtering/12568136
https://figshare.com/articles/Dataset_S4_Pfam_filtering/12568136
https://toolkit.tuebingen.mpg.de/tools/hhpred
https://efi.igb.illinois.edu/efi-est/
http://itol.embl.de/
http://rodeo.scs.illinois.edu
https://github.com/Alexamk/RREFinder
https://github.com/Alexamk/RREFinder
https://msystems.asm.org


FIG S4, PDF file, 2.4 MB.
FIG S5, PDF file, 0.8 MB.
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